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Abstract. Artificial neural network has been proved
among the best tools in data mining for classification
tasks. Where, Multilayer Perceptron (MLP) is known as
benchmarked technique for classification tasks due to
common use and easy implementation. Meanwhile, it is
fail to make high combination of inputs from lower
feature space to higher feature space. In this paper,
Shifted Genocchi polynomials and Chebyshev Wavelets
functional expansions based Multilayer Perceptron
techniques with Levenberg Marquardt back propagation
learning are proposed to deal with high dimension
problems in classification tasks. Five datasets from UCI
repository and KEEL datasets were collected to evaluate
the performance in terms of five evaluation measures. T-
test was applied to check the significance of the
proposed techniques. The comparison results show that
the proposed models outperform in terms of accuracy,
sensitivity, specificity, precision and f-measure.

Keywords. Data mining, classification, shifted Genocchi
polynomials, Chebyshev wavelets, multilayer
perceptron.

1 Introduction

Among the different data mining tasks,
classification is appeared as revolutionary task.
Classification problems occur when we have to
allocate an object in specific group or class on the
base of their features or attributes. Classification
task depends on two phases.

First phase is to construct the model, which
consists of precogitated classes group. Second
phase is to classify the unknown objects. The
impact of classification task can be viewed in real
life phenomena’s such as stock exchange [1],
marketing [2], leukemia classification [3], EMG
classification [4] gait type classification on inertial
sensors data [5] and health care data
classification [6].

From last few decades, a variety of models
have been developed for data mining. Statistical
and artificial neural network models are prominent
models. With the passage of time, artificial neural
networks (ANNs) have gained much popularity as
useful alternative of statistical techniques and due
to having the variety of applications in real life [7].
MLP is type of ANNs, which consist of input, hidden
and output nodes. In MLP each node is connected
with other node in next layer to make connection
between them. To train the MLP, different learning
algorithms have been used with back propagation
such as adaptive momentum to improve gradient
descent accuracy [8] and Levenberg Marquardt for
classification task. MLP was used to find missing
values in data [9], fault detection in gearbox [10],
pathological brain detection [11] and power quality
disturbance [12].

MLP has large number of applications,
meanwhile, MLP has also some drawbacks such
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as; firstly, multilayer structure causes increase in
computational work by stuck in local minima.
Secondly, it cannot be used for unsupervised
learning. Thirdly, MLP was unable to make high
combination of inputs to tackle nonlinear high
dimensional problems. To overcome the nonlinear
higher order dimensional problem, Chebyshev
Multilayer Perceptron (CMLP) was proposed [13].
In this neural network, Chebyshev polynomials
based functional expansion layer was introduced
to confront high dimensional nonlinear problems.
Chebyshev polynomials were used to make
standard MLP an efficient tool to perform different
types of data mining tasks. This network has been
used for classification task.

In this paper, two functional expansions were
introduced with MLP such as Shifted Genocchi
polynomials and Chebyshev Wavelets. The reason
behind using these expansions is well explained in
section 2. Simulation results were compared with
CMLP based on five evaluation measures.

The contributions made by this study are
as follow:

— We proposed Shifted Genocchi Polynomials
and Chebyshev Wavelets based Multilayer
Perceptron for classification.

— The properties of Shifted Genocchi
polynomials such as; firstly, less number of
terms as compared to the shifted Chebyshev,
Legendre and Chebyshev polynomials, which
means that with increasing degree of
polynomials, the number of terms also
increases. Secondly, the coefficients of
individual terms in shifted Genocchi
polynomials are smaller than the coefficients of
individual terms in the classical orthogonal
polynomials. These properties encourage us
to implement these polynomials as functional
expansion.

— The properties of chebyshev wavelets such as;
orthonormality, compact support and function
approximation with different resolutions made
this proposed model novel, where these
wavelets are used as functional expansion.

— A comparative analysis of proposed models
with CMLP was completed using five datasets.
The performance of all models was verified in
terms of five evaluation measures.
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The remainder of this paper is organized as
follows. Section 2 describes a brief about proposed
Models. The experimental design used in this work
is discussed in section 3. In section 4 we present
the results and discussion. Finally, the conclusion
is given in section 5.

2 Functional Expansions Based
Multilayer Perceptron Neural
Network: Proposed Models

This section describes about functional
expansions based proposed models with their
network structure.

2.1 Shifted Genocchi Multilayer Perceptron

Functional expansion plays a vital role to make
high combination of inputs. These expansions are
based on basis functions and selection of basis
function is very important task, because basis
functions are selected according to the nature of
the problem. According to approximation theory,
usually orthogonal polynomials are considered as
good approximates such as Chebyshev orthogonal
polynomial. Researchers have used different types
of basis functions as functional expansion such as
Chebyshev polynomials, Laguerre polynomials
and Legendre polynomials [14].

We introduce shifted Genocchi (non-
orthogonal)  polynomial, which is better
approximation property as compared to orthogonal
polynomials due to certain characteristics. Firstly,
Shifted Genocchi polynomials have less number of
terms than the shifted Chebyshev, Legendre and
Chebyshev polynomials, which means that with
increasing degree of polynomials, the number of
terms also increases. For example, on third order
degree Shifted Genocchi have three numbers of
terms and shifted Chebyshev have four numbers
of terms leading to less computational work.
Secondly, the coefficients of individual terms in
shifted Genocchi polynomials are smaller than the
coefficients of individual terms in the classical
orthogonal polynomials.

Since the computational errors in the
polynomial are related to the coefficient of
individual terms, the computational errors are less
by using shifted Genocchi polynomials. Motivated
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Fig. 1. Shifted Genocchi Multilayer Perceptron Neural
Network

from above properties, Shifted Genocchi
polynomials are proposed. The equation to derive
the polynomials is given in Equation 1 as follows:

SGo(t) =1,
SG,(t) =2t -3,

D 16,
SG-(6) ‘22(1 IR

where SGy(t), SG,(t) are the first and second
polynomials respectively. SG;(t) is the analytical
form of nt" shifted Genocchi polynomials and ‘G’ is
the Genocchi number. The network structure is
presented in Figure 1, where, X, X, ... X,,, are the
inputs and Y;,Y,,...Y, indicates the output of the
neural network.

)

2.2 Chebyshev Wavelets Multilayer Perceptron

As discussed earlier that, basis functions have very
important role as functional expansions to tackle
the high dimensions nonlinear problems. Here,
Chebyshev wavelets which are derived from
Chebyshev polynomials are also used as
functional expansion. These wavelets were
derived from the dilation and translation of single
function. The properties of orthonormality, compact
support and due to functions approximation with
different resolutions in Chebyshev wavelets made
them better as compared to Chebyshev
polynomials and Shifted Genocchi polynomials

[15]. To understand the reason behind using
wavelets, we have discussed three cases
regarding to these properties.

Case 1. Orthonormality

Two vectors in an inner product space are
orthonormal if they are orthogonal and unit vectors.
In more simple way, “A set of vectors form
an orthonormal setif all vectors in the set are
mutually orthogonal and all of unit length”. An
orthonormal set which forms a basis is called
an orthonormal basis. In case of functional
expansion, the constant of expansion for the
wavelets is more accurate due to orthonomality
property as compared to polynomials, where
constant of expansion is hot more accurate due to
orthogonality.

Case 2. Compact Support

In mathematics, compact support can be defined
s, “A function has compact support if it is zero
outside of a compact set”. For example, set ‘A’ has
a compact support means that it has support which
is closed and bounded. On the other hand, the
function f:x — x? in its entire domain (i.e., f:R -
R*) does not have compact support. In case of
wavelets as functional expansion, wavelets with
compact support have more advantage over that
without compact support, because function
approximation within the interval will be more
accurate as compared to out of the interval.

Case 3. Function approximation with different
resolution

In case of functional expansion, for wavelets we
can maintain the degree of governing polynomial
and increase the resolution by increasing values of
k(integer). Therefore, we have the advantage of
seeing the values of expansion at different
intervels. For polynomials, just with the
maintenance of degree, we cannot see the
advantage of increase in accuracy.

Therefore, with the advantages of above three
properties, we have proposed Chebyshev
Wavelets based MLP (CWMLP) in this study. In
this proposed method, these wavelets were used
as functional expansion for more accurate
classification. Chebyshev wavelets can be derived
as following.
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Chebyshev wavelets for piecewise polynomial
spaces can be construct on interval [0, 1].

Some notations are needs to be introduce for
this work, such as:

Ny :={0,1,...}, N denotes the natural numbers
and Zs = {0,1,2, ..., § — 1} for a positive integers.

For an integer 6 > 1, contractive mappings is
considered on I := [0, 1]:

t+v
Yo(®) =—5—,t€[0,1]v € Zs.
Mappings {¥,} clearly fulfil the following
properties:
lpv(l) c Il Vv € Zé‘;
Jwo=1
VEZ§

Let G, is finite dimensional linear space on [0,
1], which is spanned by Chebyshev polynomials:

TO (ZX - 1), TI(ZX - 1), ...,TM_l(Zx - 1),

where M € N and T, (x) is the polynomial of m-
order, namely:

Gy = span{T,,(2x — 1),/ x € [0,1]1 m € Zy}.

It is known that Chebyshev polynomials T,, (x)
are orthogonal w.r.t weight function w(x) =

-1
(1 —x*)Zzon[-1, 1]. Some Chebyshev polynomials
are:

To(x) =1,
Ti(x) =x,
Te1(x) = 2x Ty () — Tpe1 (x), m = 1,2,3.

For construction of orthonormal base of L?[0, 1],
we define for each v € Zs an isometry R, on
L?[0,1]:

Ry )(x) = 4 S @51 00), x €y (D),

0, x & Y, (D).

Starting from G, space, we define the sequence
of spaces {G, k € N,} via the recurrence relation:

Gen =P RG  ken,
VEZ§

where
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A®B ={f+g:f €A g € B}.

Generally denotes the direct sum of A and B
spaces:

GO cC Gl cC - C Gk C Gk+1 C -
and

dimG, = M8*, k€ N,,

U G, = 12[0,1].
k=0

Now by constructing the orthonormal base for
each space Gy:

Hy = (1nTn(2x — 1), x€[0,1]|m € Z,,,},
where:
(|2
Nm = 4 T @)
2

k; m>0,

is an orthonormal base of space G, and for all
f(x) € L2[0,1].

supp{R,f}Nsupp{R, f} = p,v #v',

Y® @
Kk k n—1 n
=[nm62Tm(26 x—2n+1), 5 <x< 5
0 otherwise ,

Then the set of (™ (x) |n =1.2,..,65me

Zy} forms an orthonormal base for space G, w.r.t
weight function w,, (x) where:

n—1 n

Ko _ < "
Wn(x)={w(26x 2n+ 1), 5 _x<8k'

0 otherwise.

For 6=2k=1 and M = 3,Chebyshev
wavelets on interval [0, 1) are as follows:
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(1) _2
1,0 (X) - \/_ﬁ'

€] —9 |2 _ 1
P =2 [P -, | 0<x<

W) = z\/ga — 16x + 32x2),

(1) _2
2,0 (X) - ﬁ;

P00 = 2 \F (4x—3),

2
D) = 2\/;(17 — 48x + 32x2).

The network structure of Chebyshev Wavelets
Multilayer Perceptron (CWMLP) is depicted in
Figure 2, where, X, X, ...X,, are the inputs and
Y.,Y,,..Y, indicates the output of the
neural network.

The construction of orthonormal basis box was
used to construct the wavelets because without
constructing orthonormal basis wavelets cannot be
derived. Functional expansion layer is the
representation of high combination of inputs.

N R
IN
=
N
[

2.3 Correct / Wrong Classification Examples

To check that, whether the both proposed
techniques such as SGMLP and CWMLP can
classify the data correctly or not firstly we have
considered the XOR binary dataset. The summary
of the dataset is given in Table 1.

This dataset is too small to train and test the
performance of proposed techniques therefore we
have taken twenty times of this dataset for the
experiments. The simulation results are shown
in Table 2.

The simulation results of training, testing sets
and all samples training results using SGMLP and
CWMLP are summarized in Table 2. The results
have shown that, SGMLP has performed 92.38 %
and 94.16% accuracy on training and testing
dataset respectively.

On the other hand, the performance of CWMLP
was found 98.73% on testing set, which is more
accurate on XOR binary dataset which means that,
both models have ability to perform better on multi-
class dataset due to addition of functional
expansional layer for data Classification.

UE

NN oo
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Construction of TA v
INPUTS |e=b| Orthonormal E —)® > ¥,
Basic N
os

AQ

Transfer fimction
LH

Hidden Layer

Back Propagation

Fig. 2. Chebyshev Wavelets Multilayer Perceptron
Neural Network

Table 1. XOR dataset

X, X, Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 2. XOR dataset simulation results

XOR (Dataset) SGMLP CWMLP
Training set 92.38 % 95.97%
Testing set 94.16% 98.73%
When X; = o o

0,X, = 0, 100% 100%
\Aéh)e(” = 96.02% 98.89%
1 A2 =
When X; = o 0
1X, =0 100% 100%
V\ih)e(” fllz 97.25% 98.46%
1 A2 —
Average 93.27% 97.35%

Moreover, these simulation results have also
shown that, both techniques have correctly
classified the binary dataset.

2.4 Basic Definitions

This section comprises of some basic definitions
that are related to this research work.
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Table 3. Description of datasets

Datasets Sglr?wlptl)(fes Fglgh?;s C’TI:SI sO(:s
Banana 5300 2 2
Titanic 2210 3 2

Ringnorm 7400 20 2

Breast Cancer 699 10 2
e, W52

Table 4. Description of Evaluation Measure

Evaluation . .
Matrices Mathematical Equations
Accurac Tp+Tn
uracy Tp+Tn+Fp+Fn
Sensitivit Tp x 100
ensitivity Tp+ Fn
Specificit ™ _ 100
pecificity Tn+ Fp
Precisi Tp X 100
ecision —
recisi Tp+ Fp
precision. Sensitivity
F-Measure * — —
precision + Senstivity
Epochs 1000
[ aoaoa
Area Under the AUC= f;‘” Ao(AL(0))dx,
Curve here,
dAq(t)
t) =
a(t) dt
Mean squared 1<
error = Z(?i —y)?
"=

Imbalanced Datasets: Imbalanced datasets are a
special case for classification problem where the
class distribution is not uniform among the classes.
Typically, they are composed by two classes:

The majority (negative) class and the minority
(positive) class.

Balanced Datasets: A balanced dataset is a set
that contains all elements observed in all time
frames.

1 http://archive.ics.uci.edu/ml datasets.html
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Supervised Learning: All data is labeled and the
algorithms learn to predict the output from the
input data.

Unsupervised Learning: All data is unlabeled and
the algorithms learn to deduce structure from the
input data.

3 Experimental Design

This section explains step by step about
experimental design of all techniques. The
datasets, evaluation measures, data pre-
processing and network topology of comparison
and proposed techniques were discussed.

3.1 Data Collection

The data sets for classification analysis, which is
the requisite input to the models, are obtained from
UCI Repository! and KEEL datasets? [16, 17].

Here the UCI Machine Learning Repository is a
collection of databases, domain theories, and data
generators that are used by the machine learning
community for the empirical analysis of machine
learning algorithms and KEEL (Knowledge
Extraction based on Evolutionary Learning) is an
open source (GPLv3) Java software tool that can
be used for a large number of different knowledge
data discovery tasks.

We have collected five datasets namely,
Ringnorm, Banana, Titanic, Breast Cancer and
Bank Note Authentication datasets. Each dataset
was divided into two parts; training set and testing
set. The data ratio of 70% and 30% was set for
training and testing respectively. The details of the
used data sets are described in Table 3.

3.2 Evaluation Measures

The performance of comparison and proposed
models is evaluated on the base of five evaluation
measures. The formulae of evaluation measures is
given in Table 4, where Tp, Tn, Fp and Fn are the
true positive, true negative, false positive and false
negative values respectively.

2 http://sci2s.ugr. es/keel/datasets.php
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Fig. 3. Comparison in terms of accuracy in Ringnorm

Fig. 4. Comparison in terms of accuracy in Banana
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Fig. 5. Comparison in terms of accuracy in Titanic

3.3 Data Pre-Processing

Data transformation is the process to normalize
each data set into useful data. Data was
normalized to the range [0.2, 0.8] and minimum
and maximum normalization method was applied
as given in Equation 2:

x—-ming

% = (max, — miny) * ( ) + miny, 3)

maxg—ming

a

where X is the normalize value of x. min, and
max, are the minimum and maximum values of
new range, and min, and max,are the minimum
and maximum values of all observations.

Fig. 6. Comparison in terms of accuracy in Breast Cancer

3.4 Training and Network Topology

The proposed models topology of SGMLP and
CWMLP is shown in Table 5. Settings were
selected empirically.

Levenberg Marquardt (LM) back propagation
was used as learning algorithm with all techniques.

4 Results and Discussion

This section consists of simulation results of
comparison and proposed models. The
experiments were performed 10 times and then
average was taken to obtain verified results.
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Table 5. Network Topology

Setting Value
Activation Function Sigmoid function
Genocchi Polynomial degree 3
Stopping Criteria Maximum no. of epochs=1000
Learning rate [0.1-0.3]
Momentum [0.3-0.9]

Learning Algorithm

LM back propagation

Table 6. Comparison in terms of sensitivity, specificity and precision

Datasets Techniques Sensitivity Specificity Precision
CMLP 93.41 93.41 93.41
Ringnorm SGMLP 94.79 94.79 94.79
CWMLP 98.26 98.26 98.26
CMLP 71.97 71.97 80.09
Banana SGMLP 72.54 72.54 80.71
CWMLP 77.08 77.08 78.95
CMLP 80.09 80.09 80.09
Titanic SGMLP 80.65 80.71 80.49
CWMLP 80.77 80.79 80.77
CMLP 74.88 72.13 70.93
g;iisetr SGMLP 76.25 76.25 76.25
CWMLP 77.32 77.22 77.02
CMLP 90 90 90
Bank Note SGMLP 100 100 100
Authentication
CWMLP 100 100 100

1000 number of iterations was taken in all
experiments. Levenberg Marquardt  back
propagation was used as learning algorithm in all
models. Classification accuracy of all models in all
datasets was shown in bar graph from Figure 3 to
Figure 7.

The accuracy is used to check the overall
effectiveness of the techniques. It can be seen
that, CWMLP performance was better on
Ringnorm and Banana datasets, whereas,
CWMLP perform slightly better on Titanic dataset
as compared to SGMLP and CMLP.
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The reason behind these significant results is
that, the proposed solution helps CWMLP to raise
and find more appropriate settings during the
training which helps to enhance the classification
performance for network. This better performance
is also due the reason that, Chebyshev wavelets
can generate more numbers of basis functions
using same degree as compared to Shifted
Genocchi polynomials based MLP technique that
help to generate more enhanced values with small
coefficients and reduced the computational task.
Meanwhile, it seems that SGMLP was not fully
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supported by parameter settings that cause less
improvement with CWMLP.

In case of Brest Cancer dataset, SGMLP
performance was lower than the CMLP, but
CWMLP perform better than both of the techniques
with 78.70% classification accuracy. This is due to
the reason that, sometime due to the imbalanced
dataset, techniques are not able to classify the
data correctly. In Bank Note Authentication
dataset, CWMLP and SGMLP performance was
100% to classify the data. The same parameters
setting and number of epochs are the reason
behind the same results on the other hand CMLP
performance was found to be 90%. Over all, it can
be seen that CWMLP performance was much
better than the SGMLP and CMLP on all datasets
in terms of classification accuracy.

The best performance with CMLP, SGMLP and
CWMLP using the Banana, Titanic, Ringnorm,
Breast Cancer and Bank Note Authentication
datasets in terms of Sensitivity, Specificity and
Precision is shown in Table 6. As it can be noticed
from Table 6, CWMLP identify the proportion of
positive values (Sensitivity), proportion of negative
values (specificity) and selected items, which are
relevant  (Precision) correctly with  higher
performance on Bank note Authentication and
Ringnorm datasets.

In Titanic dataset, there is slightly difference
between all comparison techniques. In Breast
Cancer dataset, SGMLP perform well as compared
to CMLP, because Shifted Genocchi can generate
more better enhanced inputs due to small
coefficient value and less degree, similarly,
CWMLP perform slightly high than the SGMLP in
terms of Sensitivity, Specificity, and Precision.
Over all, it can be seen that CWMLP outperform on
all datasets in comparison of SGMLP and CMLP.
Bold font was used to prominent the proposed
techniques results.

Test's accuracy was measured by F-Measure.
Precision and Sensitivity were used to compute the
fl-score. The higher value shows its best, lower
value shows its worst. In the Figure 8 bar graph
represents the F-Measure results of all the
comparison  techniqgues. In  Bank Note
Authentication, SGMLP and CWMLP gives their
best with 100% fl-score as compared to CMLP.
After that, in Ringnorm dataset CWMLP perform

F-Measure
[EnN

U O

o O

0 = CMLP
g = § % f‘% B SGMLP
SEEa” CWMLP
D m
£

Datasets

Fig. 8. Comparison in terms of f-measure on all
datasets

ﬁ 100

g5 E CMLP

‘r’ 90 H SGMLP
a 85 CWMLP
c Bank Note

y

authentication

Fig. 7. Comparison in terms of accuracy in
BankNote Authentication

well with 98.26 % as compare to SGMLP
and CMLP.

In Titanic dataset all the comparison techniques
score was slightly different from each other. From
results we can conclude that, CWMLP
performance was much better than the other
techniques in terms of F- Measure. On the whole,
it can viewed that the performance of CWMLP is
much better due to their property of generating
more number of small value coefficient based
wavelets as compared to other basis functions.
Whereas, the enhanced inputs generated by
Chebyshev polynomials are not able to reduce the
computational complexity of the network.

4.1 Significance Using T-test

To check that how much significant are our
proposed techniques, we have applied paired two
samples for means t-test in relation of accuracy.
We found that, in all datasets SGMLP has shown
significance except in Ringnorm dataset when
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compared with CMLP. Insignificance has caused
due to approximately similar high accuracy of both
proposed and comparison techniques. In Breast
Cancer dataset, SGMLP again remain insignificant
due to approximately similar accuracy when
compared with CWMLP. Inrest of datasets, CMLP
remained insignificant in all datasets. The
hypothetic value was taken 0.05. If we achieved
‘value < 0.05’ then called as significant and ‘value
>0.05’ then called as insignificant.

5 Conclusion

In this paper, two functional expansions based
multilayer perceptron models were proposed to
tackle higher dimension nonlinear problems. The
concept of adding new functional expansion layer
in MLP using Shifted Genocchi polynomials and
Chebyshev wavelets were proved much better. It
is due to reason that, the number of enhanced
inputs generated by these polynomials and
wavelets are small in values and less
computational as compared to CMLP. Moreover,
Chebyshev wavelets have ability to produce more
number of basis functions on the same degree as
compared to Shifted Genocchi and Chebyshev
polynomials. Which is helpful to increase the
accuracy of the classifier.

CWMLP and SGMLP were experimentally
trained and tested on five benchmarked data sets,
which were taken from UCI repository and KEEL
datasets. The performance of the proposed
models indicates their validity for classification
task. The evaluation measures performance show
that the SGMLP and CWMLP has better
performance in terms of accuracy, sensitivity,
specificity, precision and F-Measure over CMLP.
Overall, CWMLP performance was outstanding as
compared to rest of the techniques.

Similarly, t-test clearly validates the significance
of proposed techniques over the benchmarked
approaches.
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