

Evaluación de la influencia de los recursos computacionales
en la variabilidad y calidad de ensamblaje de novo

de transcriptoma

Patricia Carvajal López1, Fernando D. Von Borstel Luna1, Joaquín Gutiérrez Jagüey1,
Humberto Mejía Ruiz1, Gabriela Rustici2, Eduardo Romero Vivas1

1 Instituto Politécnico Nacional, Centro de Investigaciones Biológicas del Noroeste S.C.,
México

2 Cambridge University, Genetics Department,
UK

pcarvajal@pg.cibnor.mx, {fborstel, joaquing04, hmejia04, evivas}@cibnor.mx,
gr231@cam.ac.uk

Resumen. El contenido de ARN se descifra con

fragmentación aleatoria, lo que genera millones de
secuencias, que en ausencia de referencias se
reconstruyen basándose en algoritmos que usan
intensivamente recursos computacionales. Diversos
factores afectan el resultado de dicho proceso. Este
estudio considera por primera vez cómo la asignación
de memoria/núcleos influye sobre la calidad y
variabilidad del ensamblaje. Se realizaron múltiples
ensamblajes para 2 organismos modelo, en una

plataforma monolítica y dos de cómputo de alto
desempeño. Se encontraron mayores variabilidades
de contigs en equipos monolíticos con poca memoria
(1.98 y 2.10 veces más que HPC); sin embargo, gran
parte de estos (99.16% y 75.79%) mapearon al
transcriptoma de referencia demostrando ser de
calidad. Por tanto, contrariamente a lo esperado, se
observó que una estrategia de ensamblajes múltiples en
un equipo de bajos recursos supera el uso de
plataformas de alto rendimiento para el descubrimiento
de ARNs.

Palabras clave. ARN, secuenciación NGS, RNA-Seq,

efecto de memoria en ensamblaje, HPC, optimización
de ensamblaje.

Evaluation of the Influence of
Computational Resources on

Transcriptome de Novo Assembly
Variability and Quality

Abstract. RNA content is deciphered by random

fragmentation of biomolecules, generating millions of

sequences. In lack of references these sequences are
reconstructed relying on algorithms that require
intensive use of computational resources. Numerous
factors affect this process. This study explores for the
first time how memory/core allocation on reconstruction
processes influences assembly quality and variability.
Multiple de novo assemblies for two model organisms
were obtained from one monolithic platform and two
High Performance Computers. Low memory monolithic
platforms observed greater variability (1.98 & 2.10 times
greater than HPC); however, most of the obtained
contigs (99.16% & 75.79%) mapped to the reference
transcriptome, thus proving good quality. Therefore,
contrary to what was expected, using low-resource
equipment when applying assembly strategies that unify
numerous assemblies outperforms HPCs on RNA
discovery.

Keywords. RNA, NGS sequencing, RNS-Seq, memory

effect on assembly, HPC, assembly optimization.

1. Introducción y antecedentes

El genoma de un organismo se puede
considerar como el conjunto de instrucciones,
codificadas en una secuencia de nucleótidos
(ACGT), que contiene toda la información
necesaria para formar un organismo y heredar
estas características a sus descendientes [1].

La obtención del genoma de un organismo se
realiza mediante tecnologías de secuenciación. En
particular las tecnologías de secuenciación de

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

nueva generación (NGS), que generan millones de
lecturas cortas y un gran volumen de datos, han
revolucionado la biología molecular impactando en
áreas como la académica, médica, farmacéutica,
biotecnológica, agroquímica y en la industria
alimentaria, entre otras [2].

Debido a las limitaciones de los equipos NGS,
el primer paso en el proceso de secuenciación
consiste en fragmentar la cadena de ácido
desoxirribonucleico (ADN) de manera aleatoria, y
por ende no se cuenta con información de la
posición relativa de cada fragmento [3]. Para poder
recuperar la información contenida en la cadena
original se requiere entonces un proceso de
reconstrucción conocido como ensamblaje.

Existen dos formas primordiales de
ensamblaje: la reconstrucción de la cadena
alineándola a un genoma de referencia, conocida
como mapeo; y la reconstrucción a partir
únicamente de los fragmentos, conocida como
ensamblaje de novo. El ensamblado de novo de
lecturas de NGS es complejo debido a varios
factores, entre ellos, el elevado número de
secuencias y su tamaño reducido, así como a los
errores de secuenciación y la repetición de
cadenas, entre otros [4].

Si bien el conjunto de instrucciones necesarias
para el funcionamiento y formación de un
organismo se encuentra contenido en su genoma
(ADN), las células requieren de moléculas
informativas intermediarias, ácidos ribonucleicos
(ARN), para dirigir la producción de moléculas de
trabajo (proteínas) en un proceso conocido como
traducción. El proceso de envío de instrucciones
contenidas en el ADN por medio de ARNs se
conoce como transcripción, ya que dichas
instrucciones no son copias exactas de los
segmentos de ADN de las cuales provienen;
dichas instrucciones se conocen como transcritos
[5]. El término transcriptoma por consiguiente, se
refiere al conjunto de ARNs transcritos que
representan genes expresándose en un momento
dado, proporcionando el estado biológico de la
célula [1].

De manera similar a como se realiza la
secuenciación de un genoma, se puede
secuenciar un transcriptoma.

Pero, un transcriptoma es más complejo; éste
contiene miles de transcritos con distinto nivel de
abundancia, además una sola secuencia del

genoma (gen) puede transcribirse en varias
secuencias de transcriptoma (isoformas), debido a
que sus fragmentos se pueden alinear de diversas
formas (splicing alternativo). En consecuencia,
cuando se ensamblan las lecturas obtenidas de la
secuenciación de un transcriptoma, la fase inicial
del ensamblaje realiza una agrupación de las
secuencias pertenecientes al mismo gen
(clustering).

Sin embargo, puede incurrirse en el caso de
que los transcritos sean agrupados erróneamente
en un mismo cluster. Asimismo, otro problema
consiste en agrupar genes muy similares
(parálogos). Reconstruir todos los transcritos e
isoformas que se encuentran expresados, es decir
ensamblarlos, ha requerido del desarrollo de
nuevos algoritmos computacionales capaces de
procesar la gran cantidad de secuencias cortas
generadas por las tecnologías NGS [6]. Los
algoritmos basados en grafos De Bruijin (DBG) o
ensambladores Eulerianos han demostrado ser
los más aptos para estas tecnologías [7].

Los algoritmos que usan DBGs se basan en
extraer primeramente fragmentos únicos de
longitud k (k-meros) a partir de las secuencias
originales; posteriormente se conforman los nodos
del grafo con subsecuencias de longitud k-1
provenientes de los k-meros. A continuación,
conectan los nodos considerando prefijos y sufijos
(k-1-meros) a través de grafos dirigidos. Por
último, resuelven la trayectoria a través de un ciclo
Euleriano para formar una supercuerda que visite
los nodos solo una vez y termine donde empezó
[8]. No obstante, el algoritmo presupone
condiciones tales como que no existan errores en
los nodos, que se encuentre completo el alfabeto
de k-meros, la existencia de un camino optimo que
genere 1 sola supersecuencia y otros que no se
cumplen en el proceso de secuenciación. Por
ejemplo, la lectura incorrecta de bases puede
generar k-meros incorrectos, en tanto que la
aparición de secuencias repetidas, consecuencia
del splicing alternativo, implica que más de una
supercuerda sea posible [7].

Estos y otros factores relacionados con el
proceso biológico, la toma de la muestra, la
tecnología de secuenciación, errores de
secuenciación, preprocesamiento con base en la
calidad de las lecturas obtenidas, la selección del
programa para ensamblar e inclusive los

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1596

parámetros de ensamblaje influyen en el
ensamblaje obtenido. Todos estos factores han
sido estudiados en otras investigaciones [9–11].
Sin embargo, un tema que no se ha abordado con
suficiente profundidad es la influencia que pudiese
tener la disposición y asignación de recursos
computacionales para una tarea de ensamblaje
de novo.

Es común que un proyecto que involucre
ensamblaje de novo esté enfocado en los
aspectos de laboratorio en lugar de los recursos
computacionales requeridos. Adicionalmente, una
de las principales limitantes para una investigación
en la implementación de un ensamblador de novo
es la demanda computacional de estos programas
[12]. Típicamente, un ensamblador de novo de
vanguardia corre en plataformas multinúcleo, con
bastante memoria RAM, con alta capacidad de
almacenamiento y sistemas operativos Linux;
frecuentemente sobre equipamiento de Cómputo
de Alto Rendimiento (High Performance
Computing, HPC), no disponibles en
muchas instituciones.

Los reportes actuales sobre ensamblaje de
novo típicamente muestran los efectos que la
cantidad memoria y núcleos tienen sobre los
tiempos de procesamiento o sobre la viabilidad de
la plataforma para la ejecución del proceso [12–
14]. No obstante, apenas se tienen precedentes de
la existencia de una ligera variación en la salida del
ensamblaje, resultado de correr el proceso en
distintas ocasiones o en hardware distinto [15].
Asimismo, se ha reportado que existe aleatoriedad
en los resultados (de ensamblaje) debido al uso de
multi-threading en combinación con la utilización
de estructuras probabilísticas de datos [16].

En ambos trabajos no cuantificaron
experimentalmente dicha variabilidad y
aleatoriedad en los ensamblajes. Dadas las
condiciones típicas de ensamblaje y los pocos
precedentes de los efectos computacionales en
estos procesos, el efecto que un equipo de
cómputo tiene en la obtención de ensamblajes de
novo no es tomado en cuenta y no se aprovecha
en favor de la prospección y generación de
información de transcriptomas de especies
poco estudiadas.

En este trabajo se considera que la influencia
del equipo de cómputo y la asignación de recursos
computacionales es relevante en el caso de

ensamblaje de novo de transcriptoma, dado que el
proceso de clustering en las primeras etapas a
partir de las cuales se determinan las isoformas,
depende de la disponibilidad inicial de secuencias
y la incorporación sucesiva de secuencias
candidatas al cluster. La distribución inicial de
secuencias en las localidades de memoria
disponibles para cada procesador influirá, por
ende, en la formación de estos clusters y en el
resultado final del ensamblaje.

A partir de esta hipótesis, en este trabajo se
explora la influencia que tiene la asignación de los
recursos computacionales en el ensamblaje de
novo de transcriptoma, en términos de
repetitividad de un ensamble bajo las mismas
condiciones, entre condiciones distintas, y en
términos de calidad al comparar lo obtenido con un
transcriptoma de referencia.

2. Metodología

Para evaluar la repetitividad y calidad se
realizaron ensamblajes en diferentes plataformas
computacionales, utilizando organismos modelo
para los cuales, sí existe una referencia contra la
cual comparar y determinar la calidad de los
transcriptomas ensamblados. Se decidió utilizar el
software ensamblador de transcriptomas Trinity
(ver. 2.1.1) [17], por ser considerado por la
comunidad científica como el ensamblador por
defecto para realizar ensamblaje de novo [13].

2.1. Recursos computacionales

Dado que el ensamblaje de novo de
transcriptoma demanda el uso de cómputo
intensivo, se seleccionó como sistema mínimo una
estación de trabajo y dos sistemas de HPC,
variando en cada plataforma la asignación de
memoria y de núcleos de cómputo, tal como se
muestra en la Tabla 1. Todas las plataformas
cuentan con sistemas operativos Linux de 64 bits.

En la estación de trabajo la memoria RAM se
limitó físicamente, en tanto que en las plataformas
de HPC, dado que no es posible modificar
físicamente sus recursos de hardware, se variaron
los recursos asignados al trabajo de ensamblaje a
través del planificador correspondiente, en cuanto

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1597

al número de nodos de cómputo y núcleos
por nodo.

En el ensamblador Trinity se asignó el
parámetro de memoria y el número de hilos por
CPU para corresponder con las configuraciones
de hardware. Los demás parámetros fueron
especificados a sus valores por defecto.

Se utilizó una estación de trabajo Dell Precision
T7500, con un procesador Intel Xeon X5680 3.3
GHz de 6 núcleos, con capacidad en discos duros
de 2.5 TB, a la cual se le modificó la memoria RAM
(20 GB, 24 GB) de acuerdo a las configuraciones
𝑊1 y 𝑊2, respectivamente (Tabla 1).

Los centros HPC donde se realizaron los
procesos de ensamblaje son: Laboratorio Nacional
de Supercómputo del Sureste de México (LNS) de
la Benemérita Universidad Autónoma de Puebla
[18] y el proveedor Penguin Computing, a través
de su servicio en la nube Penguin On
Demand [19].

El primer recurso de HPC está conformado por
la supercomputadora Cuetlaxcoapan del LNS,
compuesta de un cluster estándar de cálculo con
procesadores Intel Xeon y un cluster con
procesadores Intel Xeon Phi Knights Landing. El
cluster estándar está compuesto de 228 nodos de
cálculo Thin y otros 42 nodos de cálculo más
robustos (fat, semi-fat, ultra-fat). Para los procesos
de ensamble realizados en este estudio se utilizó
el cluster estándar, el cual funciona en modo
virtual y donde los nodos de cálculo Thin, tienen 2

procesadores Intel Xeon E5-2680 v3 (Haswell) a
2.5 GHz, con 24 núcleos en total y 128 GB de
memoria RAM. Los nodos están intercomunicados
con una red Ethernet Gigabit y una red Infiniband
FDR a 56 Gbps. Este cluster utiliza el
administrador de carga de trabajos SLURM [20],
que es libre y puede manejar un cluster Linux de
cualquier dimensión. La especificación de los
recursos computacionales a utilizar en cada
ensamblaje se definió en el Job Script, a través de
los parámetros de SLURM:

#SBATCH -n 24 # number of MPI tasks
(cores) requested,

#SBATCH --ntasks-per-node=24 # task (cores)
per node (maximum 24).

Este ejemplo especifica que se ejecute el
trabajo con 24 núcleos (1 nodo Thin) del cluster
estándar, donde cada núcleo obtiene 5.3 GB de
RAM [18]. Esta plataforma computacional, se
utilizó para realizar los ensambles en las
configuraciones 𝑉1 y 𝑉2 (Tabla 1), especificando el
uso de 1 nodo en el Job Script, pero variando la
cantidad de núcleos en concordancia con los
parámetros de entrada de Trinity.

El segundo recurso de HPC utilizó el servicio
en la nube POD de Penguin Computing con la cola
T30, que especifica nodos con un procesador Intel
Xeon E5-2660 v3 (Haswell) a 2.6 GHz con 20
núcleos y 128 GB de RAM.

Todos los nodos están intercomunicados con
una red Ethernet Gigabit de 10 Gbps y una red

Tabla 1. Configuraciones de las plataformas de cómputo para realizar ensamblajes

Plataforma de cómputo Parámetros

Trinity

Planificador

 SLURM TORQUE

Nombre Plataforma
Memoria

RAM (GB)
Núcleos

Máxima
Memoria

CPU Núcleos
Nodo/

Núcleos

𝑾𝟏 Estación de
trabajo

20 6 20 6 - -

𝑾𝟐 24 6 24 6 - -

𝑯𝟏 HPC

(No Virtual)

128/nodo 20/nodo 24 6 - 1/6

𝑯𝟐 128/nodo 20/nodo 64 10 - 1/10

𝑽𝟏 HPC

(Virtual)

128/nodo 24/nodo 24 6 6 -

𝑽𝟐 128/nodo 24/nodo 64 12 12 -

“-” equivale a “No aplica”

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1598

Infiniband QDR a 40 Gbps. El servicio utiliza el
planificador PBS TORQUE [21] para introducir
trabajos al cluster computacional. Sin embargo, es
necesario seleccionar una cola del planificador.
Cada cola provee diferentes tipos de nodo de
cómputo, y por lo tanto tienen diferentes precios.

La especificación de los recursos se definió en
el Job Script, a través de los parámetros de
TORQUE:

#PBS -q T30,

#PBS -l nodes=1:ppn=20.

Este ejemplo especifica que se ejecute el
trabajo con 1 nodo de 20 núcleos de la cola T30,
donde cada núcleo tiene 6.4 GB de RAM [19]. Se
utilizó esta plataforma computacional,
especificando en el Job Script el uso de 1 nodo,
pero variando el número de núcleos en
concordancia con los parámetros de entrada de
Trinity; estas disposiciones se utilizaron para
realizar los ensambles en las configuraciones 𝐻1 y

𝐻2 de la Tabla 1.

2.2. Monitoreo de memoria

Con la finalidad de cuantificar el uso de
recursos durante el proceso de ensamblaje se
decidió monitorear el proceso mediante el
comando top de Linux. Posteriormente, se
analizaron los datos con Matlab (r2013a) [22]. El
registro generado a partir de un muestreo cada 10
segundos y el registro de tiempos (Trinity.timing)
permiten identificar la etapa del proceso de
ensamblaje que hace el uso más extensivo
de memoria.

2.3. Organismos

Aun cuando el ensamblaje de novo se utiliza
principalmente en organismos que no cuentan con
un genoma o transcriptoma de referencia, en este
estudio se requieren referencias para obtener la
calidad de los ensamblajes, por lo que se
seleccionaron dos organismos modelo: la Mosca
de la Fruta (Drosophila melanogaster) y la Pulga
de Agua (Daphnia pulex).

Las lecturas crudas de la Mosca de la Fruta,
fueron obtenidas del Sequence Read Archive
(SRA) [23] del Centro Nacional de Información

Biotecnológica (NCBI), con número de
identificación SRR042489, provenientes del
proyecto [24]. Las lecturas de la Pulga de Agua
fueron descargadas de repositorio ENA [25]
perteneciente al Instituto Europeo de
Bioinformática, número de identificación
SRR2075894, obtenidas en el proyecto [26].

Se analizó la calidad de las lecturas con
FastQC [27] y según sus resultados se pre-
procesaron los datos con Trimmomatic (versión
0.32) [28].

Los transcriptomas de referencia fueron
descargados del repositorio Ensembl [29]. Para la
Mosca de la Fruta fue la versión 87, que contiene
30,651 transcritos. Para la Pulga de Agua fue la
versión GCA_000187875.1 con 30,590 transcritos.

2.4. Métricas

2.4.1. Repetitividad por plataforma
computacional

Dado un conjunto de lecturas de secuenciación
𝐿𝑚 de una especie 𝑚 obtenidas de una base de

datos pública, sea 𝐸(𝑝,𝑚,𝑖) un ensamble (un

conjunto constituido por contigs) realizado con
configuración de plataforma computacional 𝑝,

utilizando 𝐿𝑚 como entrada al proceso de

ensamblaje de novo, donde 𝑖 es el número
correspondiente a la repetición del proceso de
ensamblaje utilizando las mismas condiciones
iniciales, se tiene que:

𝐼(𝑝,𝑚,𝑛) = ⋂ 𝐸(𝑝,𝑚,𝑖)
𝑖=𝑛
𝑖=1 , (1)

donde 𝐼(𝑝,𝑚,𝑛) representa el conjunto de contigs

resultantes de la intersección entre los 𝑛
ensambles de novo, con las mismas condiciones.

Asimismo, se puede decir que el conjunto de

contigs no intersectados 𝐼(̅𝑝,𝑚,𝑛) es tal, que:

𝐼(̅𝑝,𝑚,𝑛) ∩ 𝐼(𝑝,𝑚,𝑛) = {}. (2)

Por lo tanto, el conjunto 𝐼(̅𝑝,𝑚,𝑛) representa el

conjunto de contigs que no aparecen en todos los

ensambles 𝐸(𝑝,𝑚,𝑖) que se generaron durante algún

ensamblaje en particular.

De tal manera que la cantidad total de contigs

obtenidos por plataforma 𝑝 para un organismo 𝑚

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1599

en 𝑛 repeticiones está dada por la unión de sus
conjuntos intersectados y no intersectados:

𝐶_𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛) = 𝐼(𝑝,𝑚,𝑛) ∪ 𝐼(̅𝑝,𝑚,𝑛). (3)

Los análisis de conjuntos intersectados y no
intersectados se realizaron con el software de
cómputo científico Matlab (r2013a) [22].

La cuantificación de la repetitividad se da con
base al porcentaje que representa el subconjunto

𝐼(𝑝,𝑚,𝑛) del conjunto 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛) y la variabilidad se

da con base al porcentaje que representa el

subconjunto 𝐼(̅𝑝,𝑚,𝑛) del conjunto 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛),

encontrados por plataforma 𝑝 para el organismo 𝑚

en 𝑛 repeticiones.

Finalmente, la ganancia por variabilidad entre
plataformas se cuantifica tomando en cuenta la
relación de la variabilidad máxima de las
configuraciones de la estación de trabajo entre la
variabilidad máxima de las configuraciones en las
plataformas basadas en HPC.

2.4.2. Calidad

Si bien existe variabilidad entre un ensamblaje
y otro, aun partiendo de las mismas condiciones
iniciales, es necesario considerar si esta
variabilidad representa contigs presentes en el
transcriptoma del organismo o son artefactos del
proceso matemático-computacional. Para
identificar la validez de los contigs generados es
necesario realizar un proceso de mapeo de los
contigs al transcriptoma de referencia, definiendo
así la calidad del ensamblaje.

El término calidad de ensamblaje, se refiere a
la concordancia entre el ensamblaje y el
transcriptoma original del organismo modelo [30] o
en este caso, a su referencia codificante más
próxima y el conjunto de contigs obtenidos del
proceso de ensamblado. En este estudio el
objetivo es detectar la calidad de los contigs
originados exclusivamente por la variabilidad de
cada plataforma de cómputo.

En este contexto, se define como referencia
codificante a la mejor aproximación de
ensamblado de transcriptoma disponible en cierta
fecha o versión, disponible en las bases públicas
de los organismos involucrados, ver el sitio de
Ensembl [13, 29].

Formalmente, sean los conjuntos 𝐼(𝑝,𝑚,𝑛) e

𝐼(̅𝑝,𝑚,𝑛) se procede a analizarlos con respecto al

conjunto referencia codificante de la especie,
llamado Transcriptoma de referencia 𝑇𝑚, mediante
un proceso de identidad, utilizando el software
BLAST [31]; de tal manera que:

{(𝑐, 𝑡): 𝑐 ∈ 𝐼𝑚(𝑝,𝑚), 𝑡 ∈ 𝑇(𝑝,𝑚)} = 𝑓 ∶ 𝐼(𝑝,𝑚) → 𝑇𝑚 , (4)

donde (𝑐, 𝑡) representa un par (contig, transcrito) y

𝐼𝑚(𝑝,𝑚) es el conjunto de contigs intersectados

generados con la plataforma computacional 𝑝, que

mapearon en el conjunto referencia 𝑇𝑚. 𝑇(𝑝,𝑚) es el

subconjunto de transcritos de 𝑇𝑚 a los que
mapearon los contigs intersectados del conjunto

𝐼𝑚(𝑝,𝑚). Nótese que, para simplificar, se omitió el

subíndice 𝑛, así mismo en:

{(𝑐, 𝑡): 𝑐 ∈ 𝐼𝑚̅(𝑝,𝑚), 𝑡 ∈ 𝑇̅(𝑝,𝑚)} = 𝑓 ∶ 𝐼(̅𝑝,𝑚) → 𝑇𝑚 , (5)

donde (𝑐, 𝑡) representa un par (contig, transcrito) e

𝐼𝑚̅(𝑝,𝑚) es el conjunto de contigs no intersectados

generados con la plataforma computacional 𝑝, que

mapearon en el conjunto referencia 𝑇𝑚. 𝑇̅(𝑝,𝑚) es el

subconjunto de transcritos de 𝑇𝑚 a los que
mapearon los contigs no intersectados del

conjunto 𝐼𝑚̅(𝑝,𝑚).

Ya que pueden existir contigs intersectados y
no intersectados que mapean a un transcrito
común, se puede realizar la siguiente operación:

𝑇(𝑝,𝑚) ∩ 𝑇̅(𝑝,𝑚) = 𝑇(𝑝,𝑚)
∗ , (6)

donde 𝑇(𝑝,𝑚)
∗ es el subconjunto de transcritos

mapeados compartidos por los conjuntos de
contigs intersectados y no intersectados. Para
obtener los contigs no intersectados compartidos,
se realiza:

{(𝑐, 𝑡): 𝑐 ∈ 𝐼𝑚̅(𝑝,𝑚)
∗ , 𝑡 ∈ 𝑇(𝑝,𝑚)

∗ }

= 𝑓 ∶ 𝐼(̅𝑝,𝑚) → 𝑇(𝑝,𝑚)
∗ ,

(7)

donde 𝐼𝑚̅(𝑝,𝑚)
∗ es el conjunto de contigs mapeados

no intersectados compartidos.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1600

Asimismo, se puede realizar la
siguiente operación:

𝐼𝑚̅(𝑝,𝑚) − 𝐼𝑚̅(𝑝,𝑚)
∗ = 𝐼𝑚̅(𝑝,𝑚)

+ , (8)

donde 𝐼𝑚̅(𝑝,𝑚)
+ es el conjunto de contigs no

intersectados que exclusivamente mapean a
transcritos en 𝑇𝑚 que no son compartidos con el
conjunto de transcritos mapeados inicialmente por
𝐼𝑚(𝑝,𝑚). La representación de estos conjuntos con

respecto al transcriptoma de referencia se muestra
en la Figura 1.

Para decidir que contigs se compartían entre
ensamblajes se utilizó un criterio estricto de
coincidencia única, es decir, ambas cadenas
deberían ser exactamente iguales en tamaño y
composición. No obstante, los algoritmos de
mapeo tienen un criterio más laxo, permitiendo
reconocer secciones similares aun cuando no
sean las cadenas exactamente iguales. Este
criterio permite variar la longitud y composición
del contig.

Debido a este criterio pudiese haber contigs
que siendo ligeramente distintos mapean a la
misma porción del transcriptoma.

Esta situación puede ocurrir para ambos
conjuntos (comunes y no compartidos) y entre
conjuntos. Por ello, la evaluación de calidad
considera como información válida originada por
variabilidad de plataforma a todos aquellos contigs

contenidos en el subconjunto 𝐼(̅𝑝,𝑚,𝑛). Esta

evaluación se expresa en el porcentaje
representado por los contigs mapeados

provenientes del conjunto no intersectado 𝐼𝑚̅(𝑝,𝑚),

por plataforma 𝑝 para un organismo 𝑚 con

respecto al 𝐼(̅𝑝,𝑚,𝑛), dados 𝑛 ensambles.

Asimismo, considera como información nueva
originada por la variabilidad de plataforma solo a
los contigs mapeados exclusivos al conjunto no

intersectado 𝐼𝑚̅(𝑝,𝑚)
+ . Esta evaluación se expresa

en el porcentaje representado por los contigs
mapeados exclusivos provenientes del conjunto

no intersectado 𝐼𝑚̅(𝑝,𝑚)
+ , por plataforma 𝑝 para un

organismo 𝑚 con respecto al 𝐼(̅𝑝,𝑚,𝑛), dados

𝑛 ensambles.

Fig. 1. Mapeo de contigs intersectados y no intersectados, así como su clasificación dependiendo del transcripto al que
hayan sido referenciados

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1601

La ganancia en calidad se cuantifica tomando
en cuenta la relación del número máximo de

contigs representados por el conjunto 𝐼𝑚̅(𝑝,𝑚) de

una de las configuraciones basadas en la estación
de trabajo, entre el número máximo de contigs

representados en 𝐼𝑚̅(𝑝,𝑚) de una de las

configuraciones basadas en HPC.

De la misma forma, la ganancia en información
nueva se cuantifica tomando en cuenta la relación
del número máximo de contigs representados por

el conjunto 𝐼𝑚̅(𝑝,𝑚)
+

de una de las configuraciones

basadas en la estación de trabajo, entre el número

máximo de contigs representados en 𝐼𝑚̅(𝑝,𝑚) de

una de las configuraciones basadas en HPC.

Cabe hacer notar que los parámetros del
software BLAST fueron establecidos de tal manera
que se obtuviese un hit (alineamiento positivo) por
secuencia de entrada, alta similitud entre
secuencias alineadas, pero con bajos valores de
expectación. Umbrales utilizados: valor de
expectación e-value 1x10-9; porcentaje de
identidad: 95%; alineamientos máximos por
secuencia de entrada max_hps: 1; cantidad de
secuencias alineadas max_target_seqs:1;
cantidad de núcleos: 1.

3. Resultados

3.1. Datos de entrada

Las estrategias de pre procesamiento para los
datos de secuenciación se realizaron basadas en

los correspondientes reportes de calidad de las
lecturas para cada organismo. Para Mosca de la
Fruta fue: corte de primeras 10 bases, remoción
de adaptadores en modo palíndromo, 𝑙 > 32. En
los datos de Pulga de Agua: corte de primeras 10
bases, remoción de adaptadores en modo
palíndromo, 𝑄𝑚𝑖𝑛 25, 𝑙 > 32; posterior al
preprocesamiento los datos seguían conteniendo
secuencias sobrerrepresentadas, ribosómicas
según la búsqueda en la base de datos del NCBI
[32], consecuentemente se realizó un segundo
pre-procesamiento para remover dichas
secuencias.

Los datos de entrada pre-procesados fueron
7,564,138 y 7,168,393 lecturas pareadas con
longitudes variables de 32-66 bases para Mosca
de la Fruta y Pulga de Agua, respectivamente.

3.2 Contigs ensamblados

La Tabla 2 muestra el promedio de contigs
generados después de 5 repeticiones del
ensamblaje efectuados en cada configuración. De
los promedios y desviaciones se puede apreciar
que el número de contigs generados en cada
repetición es muy parecido.

3.3. Uso de memoria

El ensamblador Trinity consta de tres módulos:
Inchworm, donde realiza la agrupación inicial de
lecturas pertenecientes al mismo gen (clustering)
y una construcción extendida de secuencias con
base en dichos clusters; Chrysalis:

Tabla 2. Cantidad de Contigs ensamblados por plataforma computacional

Mosca de la Fruta Pulga de Agua

Plataforma

Computacional
Promedio

Desviación
Estándar

Promedio
Desviación
Estándar

𝑾𝟏 25,994.80 6.72 53,280.4 37.63

𝑾𝟐 25,988.80 5.81 53,276.8 39.93

𝑯𝟏 25,981.60 3.44 53,220.8 20.32

𝑯𝟐 25,984.40 5.68 53,247.8 15.08

𝑽𝟏 25,988.40 3.65 53,321.6 23.06

𝑽𝟐 25,989.40 2.30 53,320.0 23.98

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1602

− Es el módulo donde construye los grafos
De Bruijn con base en los clusters de
lecturas y los contigs extendidos, para
finalmente pasar al módulo; Butterfly,
donde resuelve ambigüedades en los
grafos con base en la cantidad de lecturas
que respaldan la trayectoria de análisis
[15].

El módulo Inchworm es el primero en ser
ejecutado. Posteriormente, los módulos Chrysalys
y Butterfly se ejecutan de forma alterna.

La Figura 2 muestra el uso de memoria RAM
durante los procesos de ensamblaje de novo de
transcriptoma para Mosca de la Fruta y Pulga de
Agua en las plataformas 𝐻2 y 𝑊2. Se delimitó con
una línea vertical intermitente la duración del
módulo Inchworm.

Nótese que el manejo de los millones de
secuencias de entrada se ven reflejadas en el
manejo de memoria por parte del ensamblador,
sobre todo en el primer módulo, Inchworm, donde
ambos organismos hicieron uso intensivo de
memoria, ~80 GB en la plataforma 𝐻2 (Figura 2 a
y b). La duración del primer módulo en las
configuraciones 𝐻2 fue de ~24 minutos en
procesos de Mosca de la Fruta y ~5 minutos en
ensamblajes de Pulga de Agua. Asimismo, se
puede observar que el uso de memoria en los
módulos posteriores fue mayor en los procesos de
Pulga de Agua teniendo un pico de uso en 34.3 GB
(Tabla 3). El uso de memoria en los módulos
alternados Chrysalis y Butterfly en el caso de
Mosca de la Fruta no excedió los 24 GB.

El uso de memoria en las plataformas 𝑊1 y 𝑊2
se vio limitado por la capacidad física de memoria

de las plataformas, inclusive los ensamblajes de
Mosca de la Fruta tendieron a saturar el primer
módulo (Figura 2 c), y se observaron picos
máximos de memoria en al menos 2 módulos al
procesar la Pulga de Agua (Figura 2 d).

En la Tabla 3 se muestra la utilización máxima
de memoria por configuración, especie y módulo
de Trinity.

3.4. Repetitividad por intersecciones

Las figuras 3 y 4 muestran el resultado de
intersectar los conjuntos generados con las 5
repeticiones del ensamblaje por máquina. Las
intersecciones son los contigs comunes a los
ensamblajes que contienen exactamente las
mismas secuencias. Basta un cambio de base,
inserción o perdida entre dos contigs para que se
consideren ambos distintos y se envíen al conjunto
de no intersectados. Nótese la diferencia de
escalas, y que los contigs no intersectados
constituyen menos del 5% en el caso de la Mosca
de la Fruta y menos del 30% para Pulga de Agua.

En la Tabla 4 se muestran los porcentajes de
repetividad y variabilidad por plataforma para
ambos organismos, encontrándose mayor
repetitividad en las plataformas HPC, pero mayor
variabilidad en las plataformas con menor
memoria. Se observa también que la ganancia
máxima por variabilidad de una de las
configuraciones basadas en la estación de trabajo,
para Mosca de la Fruta es 4.49/2.26 = 1.98 veces

Tabla 3. Utilización máxima de memoria RAM (GB) por plataforma computacional, organismo y módulo de

ensamblaje de Trinity

 Mosca de la Fruta Pulga de Agua

Plataforma Computacional Inchworm Chr/Btf Inchworm Chr/Btf

𝑾𝟏 20.4 9.7 20.4 20.4

𝑾𝟐 24.4 12.8 24.5 24.5

𝑯𝟏 21.1 13.0 26.0 27.8

𝑯𝟐 78.3 23.3 75.7 34.3

Inchworm: Primer módulo del ensamblador. Chr/Btf: Segundo y tercer módulo del ensamblador Trinity, Chrysalis
y Butterfly respectivamente

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1603

(a)

(b)

(c)

(d)

Fig. 2. Utilización de memoria RAM durante el ensamblaje en la plataforma 𝐻2 de Mosca de la Fruta en las

configuraciones (a) y Pulga de Agua (b); ensamblaje en la plataforma 𝑊2 de Mosca de la Fruta (c) y Pulga de Agua
(d). Línea vertical intermitente indica fin del módulo Inchworm

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1604

más que el máximo de una de las plataformas
basadas en HPC; para Pulga de Agua es
22.45/10.68 = 2.10 veces más que el máximo de
una de las plataformas basadas en HPC.

3.5. Calidad por mapeos

De igual forma, el mapeo de los contigs de los
conjuntos no intersectados por plataforma fue
mayor para los conjuntos provenientes de las
plataformas con menor memoria (𝑊1 y 𝑊2).

Las figuras 5 y 6 muestran el mapeo por
plataforma computacional para los organismos
Mosca de la Fruta y la Pulga de Agua,
respectivamente. También, se observan en la
Tabla 5 los mapeos de contigs intersectados con
respecto a las referencias y los porcentajes que
estos representan.

La ganancia máxima de contigs no
intersectados mapeados, para Mosca de la Fruta

es 1,186/584 = 2.03 veces más que el máximo de
una de las plataformas basadas en HPC;
asimismo, para Pulga de Agua es 10,057/4,327 =
2.39 veces más.

La ganancia máxima de contigs no
intersectados mapeados exclusivos, para Mosca
de la Fruta es 315/182 = 1.73 veces más que el
máximo porcentaje de las plataformas basadas en
HPC; asimismo, para Pulga de Agua es
4,017/1,628 = 2.46 veces más.

4. Discusión

La aproximación inicial de los recursos
mínimos computacionales para ensamblaje de
novo está dada por los requerimientos básicos del
software ensamblador y la cantidad de datos de
entrada. El requerimiento mínimo de memoria para
ensamblaje de novo de transcriptoma reportado en
el ensamblador Trinity es ~ 1GB de memoria por

Tabla 4. Repetitividad y Variabilidad

Mosca de la Fruta

Plataforma

Computacional 𝑪𝒕𝒐𝒕𝒂𝒍(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) 𝑰(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓)

Repetitividad

(%) 𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓)

Variabilidad

(%)

𝑾𝟏 26,618 25,422 95.51 1,196 4.49

𝑾𝟐 26,544 25,474 95.97 1,070 4.03

𝑯𝟏 26,286 25,693 97.74 593 2.26

𝑯𝟐 26,286 25,692 97.74 594 2.26

𝑽𝟏 26,202 25,784 98.40 418 1.60

𝑽𝟐 26,180 25,807 98.58 373 1.42

Pulga de Agua

Plataforma

Computacional 𝑪𝒕𝒐𝒕𝒂𝒍(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓) 𝑰(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓)

Repetitividad

(%) 𝑰̅(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓)

Variabilidad

(%)

𝑾𝟏 60,632 47,510 78.36 13,122 21.64

𝑾𝟐 60,943 47,261 77.55 13,682 22.45

𝑯𝟏 56,617 50,590 89.35 6,027 10.65

𝑯𝟐 56,630 50,580 89.32 6,050 10.68

𝑽𝟏 55,545 51,627 92.95 3,918 7.05

𝑽𝟐 55,176 51,783 93.85 3,393 6.15

Repetitividad: 𝐼(𝑝,𝑚,𝑛) / 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛). Variabilidad: 𝐼(̅𝑝,𝑚,𝑛) / 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛). Máxima Variabilidad entre plataformas 𝑊1 y

𝑊2, y máxima variabilidad entre plataformas HPC remarcadas en gris

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1605

Fig. 3. Comparación de los conjuntos de contigs intersectados 𝐼(𝑝,𝑚𝑜𝑠𝑐𝑎,5) y los conjuntos de contigs no intersectados

𝐼(̅𝑝,𝑚𝑜𝑠𝑐𝑎,5) obtenidos después de 5 repeticiones de ensamblajes 𝐸(𝑝,𝑚𝑜𝑠𝑐𝑎,5) para el organismo Mosca de la Fruta, por

cada plataforma computacional 𝑝 de la Tabla 1

Fig. 4. Comparación de los conjuntos de contigs intersectados 𝐼(𝑝,𝑝𝑢𝑙𝑔𝑎,5) y los conjuntos de contigs no intersectados

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5), obtenidos después de 5 repeticiones de ensamblajes 𝐸(𝑝,𝑝𝑢𝑙𝑔𝑎,5) para el organismo Pulga de Agua, por cada

plataforma computacional 𝑝 de la Tabla 1

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1606

cada millón de lecturas de entrada [17]. Según
esta estimación, para los datos de Mosca de la
Fruta (~7.5 millones de lecturas) y Pulga de Agua
La memoria en todas las plataformas era mucho
mayor que los requerimientos mínimos teóricos
para ensamblaje, para los datos en ambos
organismos, como se indicó en la Tabla 1. Con
base en los requerimientos mínimos teóricos de
ensamblaje, la asignación de memoria o memoria
disponible por plataforma fue calculada a más del
doble o el triple.

En la práctica los requerimientos mínimos
reales de memoria para ensamblar excedieron el
límite teórico, utilizando más del triple de este; tal
como se observa en la Figura 2 (a y b), donde se
graficó la utilización de memoria en 𝐻2, y asimismo

en la Figura 2 (c y d) para 𝑊2, al ensamblar ambos
organismos. El ensamblador tiende a utilizar
cuanta memoria esté disponible para realizar sus
procesos, independientemente del parámetro de
uso de memoria asignado.

Se ha reportado que el primer módulo de Trinity
es más extensivo en el uso de memoria [15], lo
cual coincide con las gráficas de la Figura 2.
Según la asignación de memoria para 𝐻2 el límite
de uso debió haber sido muy cercano a 64 GB,
pero éste fue excedido por más de 11 GB en
ambos organismos (ver Tabla 3).

Caben destacar que los ensambles generados
por las plataformas 𝑉1 y 𝐻1, en donde el uso de
memoria, asignado en Trinity, estaba limitado a la
misma cantidad de GB que en la plataforma 𝑊2, y
cuyos conjuntos intersecciones de contigs fueron
mayores, tuvieron mayor disponibilidad de
memoria, ya que como se demostró con
anterioridad, el parámetro de uso de memoria del
ensamblador no fue una limitante para la
utilización del recurso.

De esta manera, se puede decir que los análisis
aquí presentados fueron realizados en
plataformas con tres cantidades distintas de
memoria 20, 24 y 128 GB, estando representadas

Tabla 5. Mapeos de contigs con respecto a las referencias

Mosca de la Fruta

Plataforma
Computacional

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂) 𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)
+ 𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓)

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)

/𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) (%)

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)
+

/𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) (%)

𝑾𝟏 1,186 315 1,196 99.16 26.33

𝑾𝟐 1,054 312 1,070 98.50 29.15

𝑯𝟏 584 160 593 98.48 26.93

𝑯𝟐 583 182 594 98.15 30.63

𝑽𝟏 409 87 418 97.85 20.81

𝑽𝟐 364 86 373 97.59 23.05

Pulga de Agua

Plataforma
Computacional

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎) 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+ 𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5)

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)/

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5) (%)

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+ /

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5) (%)

𝑾𝟏 10,057 3,831 13,122 76.64 29.19

𝑾𝟐 10,369 4,017 13,682 75.79 29.35

𝑯𝟏 4,245 1,628 6,027 70.43 27.01

𝑯𝟐 4,327 1,567 6,050 71.52 25.90

𝑽𝟏 2,385 1,323 3,918 60.87 33.76

𝑽𝟐 2,074 1,119 3,393 61.13 32.97

𝐼𝑚̅(𝑝,𝑚)/𝐼(̅𝑝,𝑚,𝑛) y 𝐼𝑚̅(𝑝,𝑚)
+ /𝐼(̅𝑝,𝑚,𝑛) expresado en porcentaje.

Máximos entre plataformas 𝑊1, 𝑊2 y en HPC remarcados en gris.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1607

las primeras dos en las plataformas de menor
memoria (𝑊1 y 𝑊2, respectivamente) y la última en

las de mayor memoria (𝑉1, 𝑉2, 𝐻1, y 𝐻2), en donde
la configuración de memoria por parámetro no fue

tomada en cuenta al momento de ejecutar los
ensamblajes.

De este modo se empiezan a observar los
efectos de las plataformas de cómputo sobre el

Fig. 5 Comparación de los conjuntos de contigs intersectados mapeados 𝐼𝑚(𝑝,𝑚𝑜𝑠𝑐𝑎) al transcriptoma de referencia de

la Mosca de la Fruta 𝑇𝑚𝑜𝑠𝑐𝑎, contigs no intersectados mapeados exclusivos 𝐼𝑚̅(𝑝,𝑚𝑜𝑠𝑐𝑎)
+ , y contigs no intersectados

compartidos 𝐼𝑚̅(𝑝,𝑚𝑜𝑠𝑐𝑎)
∗ , haciendo 5 ensamblajes 𝐸(𝑝,𝑚𝑜𝑠𝑐𝑎,5), por cada plataforma computacional 𝑝. Nótese que la

escala inicia en 2.4x104

Fig. 6 Comparación de los conjuntos de contigs intersectados mapeados 𝐼𝑚(𝑝,𝑝𝑢𝑙𝑔𝑎) al transcriptoma de referencia de

la Mosca de la Fruta 𝑇𝑝𝑢𝑙𝑔𝑎, contigs no intersectados mapeados exclusivos 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+ y contigs no intersectados

compartidos 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
∗ , haciendo 5 ensamblajes 𝐸(𝑝,𝑝𝑢𝑙𝑔𝑎,5), por cada plataforma computacional 𝑝. Nótese que la

escala inicia en 2x104

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1608

conjunto de contigs de ensamblajes debido a la
disponibilidad de memoria física.

Se observa en la Tabla 2 que las desviaciones
estándar indican muy poca variación en la
cantidad de contigs construidos, de 2.3 a 6.7 para
Mosca de la Fruta y de 15.08 a 39.9 para Pulga de
Agua, tendiendo a ser mayores para las
plataformas de menor memoria (𝑊1 y 𝑊2). Si se
dejase en este punto la exploración de resultados
se encontraría que estas variaciones son muy
pequeñas en comparación con la cantidad de
contigs obtenidos. Sin embargo, el efecto que los
recursos computacionales tuvieron sobre el
conjunto de contigs es encontrado en el análisis
del contenido de éstos.

En ambos organismos se encontró mayor
repetitividad en los ensamblajes procesados por
las plataformas con mayor disponibilidad de
memoria (𝑉1, 𝑉2, 𝐻1 y 𝐻2), 97.74% al 98.58%,
mientras que en las plataformas con menor
memoria (𝑊1 y 𝑊2) la repetitividad en Mosca de la
Fruta fue de 95.51% y 95.97%, respectivamente.
Para Pulga de Agua la repetitividad observada en
las plataformas con mayor memoria fue del
89.32% al 93.85%, mientras que la repetitividad en
las plataformas 𝑊1 y 𝑊2 fue 77.55% y 78.36%.
Esto puede ser observado en los conjuntos de
contigs intersectados de las Figuras 3 y 4, y en la
Tabla 4.

Por otro lado, las plataformas con menor
memoria presentaron mayor variabilidad (ver
Tabla 4). Para Mosca de la Fruta la mayor
variabilidad observada en las plataformas de baja
memoria fue de 4.49% (en 𝑊1); en el caso de las
plataformas HPC la variabilidad máxima fue de
2.26% (mismo porcentaje en 𝐻1 y 𝐻2). Para Pulga
de Agua las plataformas de menor memoria
presentaron una variabilidad máxima de 22.45%
(en 𝑊2), mientras que para HPC fue del 10.68%

(en 𝐻2). Dadas estas variabilidades se observa
que las plataformas menores presentan
aproximadamente el doble de variabilidad en
comparación de las plataformas de mayor
memoria, 1.98 y 2.10 veces mayor en Mosca de la
Fruta y Pulga de Agua respectivamente, de
acuerdo con el cálculo de ganancia por
variabilidad entre plataformas de la sección 2.4.1.

Las plataformas con menos memoria
produjeron mayor cantidad de combinaciones de
contigs. Sin embargo, se necesita determinar si

estas secuencias, producto de un algoritmo
computacional, tienen correspondencia a un
transcrito real.

Como se mencionó con anterioridad, la
concordancia entre ensamblajes y los
transcriptomas originales se determinó por medio
de mapeos a la referencia codificante más próxima
de los organismos. De acuerdo con el análisis de
resultados realizado, los mapeos de los conjuntos
de contigs no intersectados fueron mayores en los
conjuntos provenientes de plataformas con poca
memoria (Figuras 5 y 6).

También se observa en la Tabla 5, que para la
Mosca de la Fruta los mapeos máximos de los
conjuntos no intersectados fueron de 99.16% para
plataformas con poca memoria (en 𝑊1), mientras
que en HPC fue de 98.48% (en 𝐻1). Para la Pulga
de Agua los mapeos máximos de los conjuntos no
intersectados fue 76.64% (en 𝑊1), mientras que en

HPC fue 71.52%(en 𝐻2). Si bien los porcentajes de
mapeos son similares para ambos organismos, los
contigs no intersectados mapeados en las
plataformas de menor memoria son
aproximadamente el doble en comparación con los
contigs mapeados en las plataformas HPC.

Para Mosca de la fruta la cantidad de contigs
mapeados fue 2.03 veces mayor en la estación de
trabajo comparando con los mapeos máximos
para HPC; en Pulga de Agua mapearon 2.39
veces más contigs en la estación de trabajo
comparando con los mapeos máximos en HPC.

Se puede observar también que los
porcentajes de mapeos exclusivos provenientes

de los conjuntos no intersectados 𝐼𝑚̅(𝑝,𝑚)
+ son

similares para ambos organismos y que estos
representan la proporción de información validada
generada de manera exclusiva por una plataforma
dada. Dichos contigs variaron desde el 29.15% al
30.63% en Mosca de la Fruta y del 29.35% al
33.76% en Pulga de Agua. Sin embargo, las
ganancias en información nueva, que se basan en

los contigs mapeados exclusivos 𝐼𝑚̅(𝑝,𝑚)
+ , indican

que para Mosca de la Fruta la estación de trabajo
obtuvo 1.73 veces más contigs mapeados
exclusivos que las plataformas HPC; asimismo, en
Pulga de Agua se obtuvieron en la estación de
trabajo 2.46 veces más contigs mapeados
exclusivos en comparación con las
plataformas HPC.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1609

Cabe mencionar que una referencia constituye
la mejor aproximación disponible, en determinada
fecha, al transcriptoma de estudio. En este
contexto, se puede decir que gran porcentaje de
los contigs obtenidos en los ensamblajes de
ambos organismos corresponden a
transcritos reales.

Algunos contigs no lograron ser mapeados a
sus referencias. Sin embargo, no se puede
asegurar que dichas secuencias no tengan
correspondencia a algún transcrito, ya que las
referencias son actualizadas según se profundice
en el conocimiento de cierto organismo. Se tiene
mayor conocimiento de las secuencias
transcriptómicas en Mosca de la Fruta que de los
transcritos de Pulga de Agua, ya que Drosophila
melanogaster es uno de los organismos modelo
más estudiados por la comunidad científica. El
hecho de que los mapeos en Pulga de Agua sean
menores no significa que las secuencias no
mapeadas sean incorrectas, simplemente las
secuencias de dichos contigs pueden ser parte de
transcritos que aún no son descubiertos por falta
de conocimiento sobre la biología molecular
del organismo.

Asimismo, se puede mencionar que las
ganancias aquí indicadas se presentaron al
trabajar en plataformas computacionales con
disponibilidad baja de memoria, pero con ~3 veces
más que el mínimo teórico reportado[15], bajo las
condiciones de viabilidad de plataforma para el
procesamiento de conjuntos de lecturas de 7-8
millones de lecturas pareadas y con la unión sin
repeticiones de contigs provenientes de
5 ensamblajes.

Dados estos resultados, se evidenció que la
variación de un ensamblaje está dada en función
de la disponibilidad de memoria del equipo de
cómputo; a mayor disponibilidad de memoria
menos variación en ensamblaje y a menor
disponibilidad de memoria mayor variación
en ensamblaje.

Una de las principales ventajas del RNA-Seq
(secuenciación NGS de Transcriptoma) es el
poder descubrir nuevos transcritos [6]. Tomando
esta característica en cuenta y con base en los
resultados de este estudio, se sugiere el emplear
una estrategia repetitiva de ensamblaje de novo de
transcriptoma para el descubrimiento de una
mayor cantidad de transcritos.

Dicha estrategia consiste en la obtención de
varios ensamblajes bajo condiciones iniciales
iguales en plataformas computacionales viables
para proceso, pero con baja disponibilidad de
memoria; posteriormente, realizar la unión no
repetitiva de contigs de múltiples ensamblajes, ya
que se logra obtener conjuntos más grandes de
contigs de alta calidad, como fue realizado en los
contigs obtenidos en las plataformas de menor

memoria 𝑊1 y 𝑊2 (ver Figuras 5 y 6).

El efecto de memoria en otras métricas
distintas a la cantidad de contigs o su contenido no
fueron analizadas en este estudio. Diversas
métricas estadísticas buscan dar un indicativo de
la calidad de ensamblaje con respecto al
transcritptoma original, pero éstas métricas no
muestran indicios cuantitativos del desempeño del
equipo de cómputo o su influencia en el conjunto
de contigs.

 Del mismo modo, se hubiese esperado que la
repetitividad de las plataformas 𝑉1 y 𝐻1 fuese muy
similar dado que tienen la misma cantidad de
memoria (128 GB); no obstante, se encontró
mayor variación en la plataforma 𝐻1. Esto pudiese
sugerir que, aparte de la memoria RAM disponible
para los procesos de ensamblaje, los efectos
computacionales en ensamblaje pueden ser
influidos en menor proporción por otros recursos,
como la memoria cache del procesador (que es
menor en el nivel L3 para los procesadores de las
plataformas 𝐻1 y 𝐻2). Éste y otros aspectos, como
el número de núcleos de procesamiento, necesitan
ser estudiados para ampliar el conocimiento de los
efectos computacionales en la tarea
de ensamblaje.

5. Conclusiones

El ensamblaje de novo de transcriptoma es una
etapa clave en estudios exploratorios del
contenido de ARN. Es necesario tomar en cuenta
los efectos que la plataforma computacional tiene
sobre este proceso. Así mismo, el
aprovechamiento de las plataformas disponibles
para trabajos de investigación prospectiva debe
ser potencializado en la etapa de ensamblaje. Un
ensamblaje varía en función de la disponibilidad de
memoria del equipo de cómputo; menor
disponibilidad de memoria origina mayor variación

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1610

o combinaciones en múltiples ensamblajes. Aún
más, los contigs extra originados por dicha
variación han mostrado tener correspondencia con
transcriptomas de referencia. Tomando ventaja de
la viabilidad de datos, disponibilidad de plataforma
y recursos computacionales y su influencia en
variabilidad del ensamblaje en función de la
memoria, se sugiere descubrir mayor cantidad de
contigs de calidad al realizar 𝑛 repeticiones de
ensamblajes bajo las mismas
condiciones iniciales.

Agradecimientos

Los autores agradecen al Laboratorio Nacional
de Supercómputo del Sureste de México (LNS),
perteneciente al padrón de laboratorios nacionales
CONACYT, por los recursos computacionales, el
apoyo y la asistencia técnica brindados, a través
del proyecto No. 2016-028. También agradecen a
Jorge Mario Rodríguez Meza, Roberto González
Castellanos, Luis Carlos Moreno Galván, y María
Isabel Castro Hernández del CIBNOR, por su
apoyo técnico en redes de comunicaciones. La
autora P.C.L. también agradece a CONACyT por
su beca 362054. Asimismo, a Penguin Computing
On-Demand por su soporte técnico. Finalmente,
también agradece el soporte técnico
proporcionado por el grupo de ayuda a usuarios
del software ensamblador Trinity.

Referencias

1. Krebs, J. E., Lewin, B., & Kilpatrick, S. T. (2014).
Lewin’s genes XI.

2. Romero-Vivas, E., Von Borstel-Luna, F. D.,
Gutiérrez-Jagüey, J., & et al. (2012). Análisis de

información genómica: Investigación Bioinformática
(CIBNOR). Ciencia, Tecnología e Innovación Para
el Desarrollo de México, pp. 119.

3. Mardis, E. R. (2008). Next-generation DNA

sequencing methods. Annual Review of Genomics
and Human Genetics, Vol. 9, pp. 387–402. DOI:
10.1146/annurev.genom.9.081307.164359.

4. Baker, M. (2012). De novo genome assembly: what
every biologist should know. Nature Methods, Vol.
9, No. 4, pp. 333–337.

5. Lodish, H., Berk, A., Kaiser, C. A., Scott, M. P.,
Zipursky, L., & Darnell, J. (2016). Molecular Cell
Biology.

6. Korf, I. (2013). Genomics: the state of the art in
RNA-Seq analysis. Nature Methods, Vol. 10, pp.
1165–1166. DOI: 10.1038/nmeth.2735.

7. Miller, J. R., Koren, S., & Sutton, G. (2010).
Assembly algorithms for next-generation
sequencing data. Genomics, Vol. 95, pp. 315–327.
DOI: 10.1016/j.ygeno.2010.03.001.

8. Compeau, P. E. C., Pevzner, P., & Tesler, G.
(2011). How to apply de Bruijn graphs to genome
assembly. Nature Biotechnology, Vol. 29, pp. 987–
991. DOI: 10.1038/nbt.2023.

9. Earl, D., Bradnam, K., St John, J., & et al. (2011).
Assemblathon 1: a competitive assessment of de
novo short read assembly methods. Genome
Research, Vol. 21, pp. 2224–2241.

10. Bradnam, K. R., Fass, J. N., Alexandrov, A., & et
al. (2012). Assemblathon 2: evaluating de novo

methods of genome assembly in three vertebrate
species. Gigascience, Vol. 2, pp. 10. DOI:
10.1186/2047-217X-2-10.

11. Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu,
D., Magoc, T., Koren, S., Treangen, T. J., Schatz,
M. C., Delcher, A. L., Roberts, M., Marçais, G.,
Pop, M., & Yorke, J. (2012). GAGE: A critical

evaluation of genome assemblies and assembly
algorithms. Genome Research, Vol. 22, pp. 557–
567. DOI: 10.1101/gr.131383.111.

12. Lin, Y., Li, J., Shen, H., Zhang, L., Papasian, C.
J., & Deng, H. W. (2011). Comparative studies of

de novo assembly tools for next-generation
sequencing technologies. Bioinformatics, Vol. 27,
No. 15, pp. 2031–2037. DOI: 10.1093/
bioinformatics/btr319.

13. Zhao, Q. Y., Wang, Y., Kong, Y. M., Luo, D., Li, X.,
& Hao, P. (2011). Optimizing de novo transcriptome

assembly from short-read RNA-Seq data: a
comparative study. BMC Bioinformatics, Vol. 12,
No. 14. DOI: 10.1186/1471-2105-12-S14-S2.

14. Henschel, R., Nista, P. M., Lieber, M., & et al.
(2012). Trinity RNA-Seq assembler performance
optimization. Proceedings of the 1st Conference on
Extreme Science and Engineering Discovery
Environment on Bridging from the eXtreme to the
campus and beyond. (XSEDE’12), Vol. 8. DOI:
10.1145/2335755.2335842.

15. Haas, B. J., Papanicolaou, A., Yassour, M.,
Grabherr, M., Blood, P. D., Bowden, J., Couger,
M. B., Eccles, D., Li, B., Lieber, M., MacManes, M.
D., Ott, M., Orvis, J., Pochet, N., Strozzi, F.,
Weeks, N., Westerman, R., William, T., Dewey, C.
N., Henschel, R. D., LeDuc, R., Friedman, N., &

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2883

Evaluación de la influencia de los recursos computacionales en la variabilidad y calidad de ensamblaje ... 1611

https://doi.org/10.1038/nmeth.2735
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1186/2047-217X-2-10
http://www.genome.org/cgi/doi/10.1101/gr.131383.111
https://doi.org/10.1093/bioinformatics/btr319
https://doi.org/10.1093/bioinformatics/btr319
https://doi.org/10.1186/1471-2105-12-S14-S2
https://doi.org/10.1145/2335755.2335842

Regev, A. (2013). De novo transcript sequence

reconstruction from RNA-seq using the Trinity
platform for reference generation and analysis.
Nature Protocols, Vol. 8, pp. 1494–1512. DOI:
10.1038/nprot.2013.084.

16. QUIAGEN Company (2014). Manual for CLC
Genomics Workbench 7.0.

17. Grabherr, M. G., Haas, B. J., Yassour, M., & et al
(2011). Full-length transcriptome assembly from

RNA-Seq data without a reference genome. Nature
Biotechnology, Vol. 29, pp. 644–652. DOI:
10.1038/nbt.1883.

18. BUAP (2017). Laboratorio Nacional de
Supercómputo del Sureste de México.

19. POD (2017). Penguin Computing on Demand. URL:
https://pod.penguincomputing.com.

20. Yoo, A. B., Jette, M. A., & Grondona, M. (2003).

SLURM: Simple Linux Utility for Resource
Management. Job Scheduling Strategies for
Parallel Processing, pp. 44–60. DOI:
10.1007/10968987_3.

21. Staples G. (2006). TORQUE Resource Manager.
Proceedings of the ACM/IEEE Conference on
Supercomputing.

22. The MathWorks Inc. (2013). MATLAB and
Bioinformatics Toolbox Release 2013a.

23. Leinonen, R., Sugawara, H., & Shumway, M.,
(2011). The Sequence Read Archive. Nucleic Acids
Research. Vol. 39, No. 1, pp. D19–D21. DOI:
10.1093/nar/gkq1019.

24. Daines, B., Wang, H., Wang, L., & et al. (2011).
The Drosophila melanogaster transcriptome by
paired-end RNA sequencing. Genome Research,
Vol. 21, pp. 315–324. DOI: 10.1101/gr.107854.110.

25. Leinonen, R., Akhtar, R., Birney, E., & et al.
(2011). The European Nucleotide Archive. Nucleic
Acids Research, Vol. 39. DOI: 10.1093/nar/gkq967.

26. Rozenberg, A., Parida, M., Leese, F., & et al.
(2015). Transcriptional profiling of predator-induced
phenotypic plasticity in Daphnia pulex. Frontiers in
Zoology, Vol. 12, No. 18. DOI: 10.1186/s12983-
015-0109-x.

27. Andrews, S. (2015). FastQC A Quality Control tool
for High Throughput Sequence Data.

28. Bolger, A., Lohse, M., & Usadel, B. (2014).

Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics, Vol. 130, No. 15, pp.
2114-2120. DOI: 10.1093/bioinformatics/btu170.

29. Flicek, P., Amode, M. R., Barrell, D., & et al.
(2014). Ensembl 2014. Nucleic Acids Research,

Vol. 42, pp. 749–755. DOI: 10.1093/nar/gkt1196.

30. Vezzi, F., Narzisi, G., & Mishra, B. (2012).

Reevaluating assembly evaluations with feature
response curves: GAGE and assemblathons. PLoS
One. DOI: 10.1371/journal.pone.0052210.

31. Camacho, C., Coulouris, G., Avagyan, V., et al.
(2009). BLAST+: architecture and applications.

BMC Bioinformatics, Vol. 10, No. 1. DOI:
10.1186/1471-2105-10-421.

32. Wheeler, D. L. (2003). Database resources of the
National Center for Biotechnology. Nucleic Acids
Research, Vol. 31, pp. 28–33. DOI:
10.1093/nar/gkl1031.

Article received on 23/01/2018; accepted on 02/04/2018.
Corresponding author is Patricia Carvajal López.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1612

https://doi.org/10.1038/nprot.2013.084
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1093/nar/gkq1019
http://www.genome.org/cgi/doi/10.1101/gr.107854.110
https://doi.org/10.1093/nar/gkq967
https://doi.org/10.1186/s12983-015-0109-x
https://doi.org/10.1186/s12983-015-0109-x
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/nar/gkt1196
https://doi.org/10.1371/journal.pone.0052210
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/nar/gkl1031

	reglas de autor.pdf
	CyS_20_No_3_2016-papel
	R_1_Ingles
	R_2_Español
	costos

