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Resumen. El contenido de ARN se descifra con 

fragmentación aleatoria, lo que genera millones de 
secuencias, que en ausencia de referencias se 
reconstruyen basándose en algoritmos que usan 
intensivamente recursos computacionales. Diversos 
factores afectan el resultado de dicho proceso. Este 
estudio considera por primera vez cómo la asignación 
de memoria/núcleos influye sobre la calidad y 
variabilidad del ensamblaje. Se realizaron múltiples 
ensamblajes para 2 organismos modelo, en una 

plataforma monolítica y dos de cómputo de alto 
desempeño. Se encontraron mayores variabilidades 
de contigs en equipos monolíticos con poca memoria 
(1.98 y 2.10 veces más que HPC); sin embargo, gran 
parte de estos (99.16% y 75.79%) mapearon al 
transcriptoma de referencia demostrando ser de 
calidad. Por tanto, contrariamente a lo esperado, se 
observó que una estrategia de ensamblajes múltiples en 
un equipo de bajos recursos supera el uso de 
plataformas de alto rendimiento para el descubrimiento 
de ARNs. 

Palabras clave. ARN, secuenciación NGS, RNA-Seq, 

efecto de memoria en ensamblaje, HPC, optimización 
de ensamblaje. 
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Abstract. RNA content is deciphered by random 

fragmentation of biomolecules, generating millions of 

sequences. In lack of references these sequences are 
reconstructed relying on algorithms that require 
intensive use of computational resources. Numerous 
factors affect this process. This study explores for the 
first time how memory/core allocation on reconstruction 
processes influences assembly quality and variability. 
Multiple de novo assemblies for two model organisms 
were obtained from one monolithic platform and two 
High Performance Computers. Low memory monolithic 
platforms observed greater variability (1.98 & 2.10 times 
greater than HPC); however, most of the obtained 
contigs (99.16% & 75.79%) mapped to the reference 
transcriptome, thus proving good quality. Therefore, 
contrary to what was expected, using low-resource 
equipment when applying assembly strategies that unify 
numerous assemblies outperforms HPCs on RNA 
discovery. 

Keywords. RNA, NGS sequencing, RNS-Seq, memory 

effect on assembly, HPC, assembly optimization. 

1. Introducción y antecedentes 

El genoma de un organismo se puede 
considerar como el conjunto de instrucciones, 
codificadas en una secuencia de nucleótidos 
(ACGT), que contiene toda la información 
necesaria para formar un organismo y heredar 
estas características a sus descendientes [1]. 

La obtención del genoma de un organismo se 
realiza mediante tecnologías de secuenciación. En 
particular las tecnologías de secuenciación de 
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nueva generación (NGS), que generan millones de 
lecturas cortas y un gran volumen de datos, han 
revolucionado la biología molecular impactando en 
áreas como la académica, médica, farmacéutica, 
biotecnológica, agroquímica y en la industria 
alimentaria, entre otras [2]. 

Debido a las limitaciones de los equipos NGS, 
el primer paso en el proceso de secuenciación 
consiste en fragmentar la cadena de ácido 
desoxirribonucleico (ADN) de manera aleatoria, y 
por ende no se cuenta con información de la 
posición relativa de cada fragmento [3]. Para poder 
recuperar la información contenida en la cadena 
original se requiere entonces un proceso de 
reconstrucción conocido como ensamblaje. 

Existen dos formas primordiales de 
ensamblaje: la reconstrucción de la cadena 
alineándola a un genoma de referencia, conocida 
como mapeo; y la reconstrucción a partir 
únicamente de los fragmentos, conocida como 
ensamblaje de novo. El ensamblado de novo de 
lecturas de NGS es complejo debido a varios 
factores, entre ellos, el elevado número de 
secuencias y su tamaño reducido, así como a los 
errores de secuenciación y la repetición de 
cadenas, entre otros [4]. 

Si bien el conjunto de instrucciones necesarias 
para el funcionamiento y formación de un 
organismo se encuentra contenido en su genoma 
(ADN), las células requieren de moléculas 
informativas intermediarias, ácidos ribonucleicos 
(ARN), para dirigir la producción de moléculas de 
trabajo (proteínas) en un proceso conocido como 
traducción. El proceso de envío de instrucciones 
contenidas en el ADN por medio de ARNs se 
conoce como transcripción, ya que dichas 
instrucciones no son copias exactas de los 
segmentos de ADN de las cuales provienen;  
dichas instrucciones se conocen como transcritos 
[5]. El término transcriptoma por consiguiente, se 
refiere al conjunto de ARNs transcritos que 
representan genes expresándose en un momento 
dado, proporcionando el estado biológico de la 
célula [1]. 

De manera similar a como se realiza la 
secuenciación de un genoma, se puede 
secuenciar un transcriptoma.  

Pero, un transcriptoma es más complejo; éste 
contiene miles de transcritos con distinto nivel de 
abundancia, además una sola secuencia del 

genoma (gen) puede transcribirse en varias 
secuencias de transcriptoma (isoformas), debido a 
que sus fragmentos se pueden alinear de diversas 
formas (splicing alternativo). En consecuencia, 
cuando se ensamblan las lecturas obtenidas de la 
secuenciación de un transcriptoma, la fase inicial 
del ensamblaje realiza una agrupación de las 
secuencias pertenecientes al mismo gen 
(clustering).  

Sin embargo, puede incurrirse en el caso de 
que los transcritos sean agrupados erróneamente 
en un mismo cluster. Asimismo, otro problema 
consiste en agrupar genes muy similares 
(parálogos). Reconstruir todos los transcritos e 
isoformas que se encuentran expresados, es decir 
ensamblarlos, ha requerido del desarrollo de 
nuevos algoritmos computacionales capaces de 
procesar la gran cantidad de secuencias cortas 
generadas por las tecnologías NGS [6]. Los 
algoritmos basados en grafos De Bruijin (DBG) o 
ensambladores Eulerianos han demostrado ser 
los más aptos para estas tecnologías [7]. 

Los algoritmos que usan DBGs se basan en 
extraer primeramente fragmentos únicos de 
longitud k (k-meros) a partir de las secuencias 
originales; posteriormente se conforman los nodos 
del grafo con subsecuencias de longitud k-1 
provenientes de los k-meros. A continuación, 
conectan los nodos considerando prefijos y sufijos 
(k-1-meros) a través de grafos dirigidos. Por 
último, resuelven la trayectoria a través de un ciclo 
Euleriano para formar una supercuerda que visite 
los nodos solo una vez y termine donde empezó 
[8]. No obstante, el algoritmo presupone 
condiciones tales como que no existan errores en 
los nodos, que se encuentre completo el alfabeto 
de k-meros, la existencia de un camino optimo que 
genere 1 sola supersecuencia y otros que no se 
cumplen en el proceso de secuenciación. Por 
ejemplo, la lectura incorrecta de bases puede 
generar k-meros incorrectos, en tanto que la 
aparición de secuencias repetidas, consecuencia 
del splicing alternativo, implica que más de una 
supercuerda sea posible [7]. 

Estos y otros factores relacionados con el 
proceso biológico, la toma de la muestra, la 
tecnología de secuenciación, errores de 
secuenciación, preprocesamiento con base en la 
calidad de las lecturas obtenidas, la selección del 
programa para ensamblar e inclusive los 
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parámetros de ensamblaje influyen en el 
ensamblaje obtenido. Todos estos factores han 
sido estudiados en otras investigaciones [9–11]. 
Sin embargo, un tema que no se ha abordado con 
suficiente profundidad es la influencia que pudiese 
tener la disposición y asignación de recursos 
computacionales para una tarea de ensamblaje 
de novo.  

Es común que un proyecto que involucre 
ensamblaje de novo esté enfocado en los 
aspectos de laboratorio en lugar de los recursos 
computacionales requeridos. Adicionalmente, una 
de las principales limitantes para una investigación 
en la implementación de un ensamblador de novo 
es la demanda computacional de estos programas 
[12]. Típicamente, un ensamblador de novo de 
vanguardia corre en plataformas multinúcleo, con 
bastante memoria RAM, con alta capacidad de 
almacenamiento y sistemas operativos Linux; 
frecuentemente sobre equipamiento de Cómputo 
de Alto Rendimiento (High Performance 
Computing, HPC), no disponibles en 
muchas instituciones.  

Los reportes actuales sobre ensamblaje de 
novo típicamente muestran los efectos que la 
cantidad memoria y núcleos tienen sobre los 
tiempos de procesamiento o sobre la viabilidad de 
la plataforma para la ejecución del proceso [12–
14]. No obstante, apenas se tienen precedentes de 
la existencia de una ligera variación en la salida del 
ensamblaje, resultado de correr el proceso en 
distintas ocasiones o en hardware distinto [15]. 
Asimismo, se ha reportado que existe aleatoriedad 
en los resultados (de ensamblaje) debido al uso de 
multi-threading en combinación con la utilización 
de estructuras probabilísticas de datos [16].  

En ambos trabajos no cuantificaron 
experimentalmente dicha variabilidad y 
aleatoriedad en los ensamblajes. Dadas las 
condiciones típicas de ensamblaje y los pocos 
precedentes de los efectos computacionales en 
estos procesos, el efecto que un equipo de 
cómputo tiene en la obtención de ensamblajes de 
novo no es tomado en cuenta y no se aprovecha 
en favor de la prospección y generación de 
información de transcriptomas de especies 
poco estudiadas. 

En este trabajo se considera que la influencia 
del equipo de cómputo y la asignación de recursos 
computacionales es relevante en el caso de 

ensamblaje de novo de transcriptoma, dado que el 
proceso de clustering en las primeras etapas a 
partir de las cuales se determinan las isoformas, 
depende de la disponibilidad inicial de secuencias 
y la incorporación sucesiva de secuencias 
candidatas al cluster. La distribución inicial de 
secuencias en las localidades de memoria 
disponibles para cada procesador influirá, por 
ende, en la formación de estos clusters y en el 
resultado final del ensamblaje.  

A partir de esta hipótesis, en este trabajo se 
explora la influencia que tiene la asignación de los 
recursos computacionales en el ensamblaje de 
novo de transcriptoma, en términos de 
repetitividad de un ensamble bajo las mismas 
condiciones, entre condiciones distintas, y en 
términos de calidad al comparar lo obtenido con un 
transcriptoma de referencia. 

2. Metodología 

Para evaluar la repetitividad y calidad se 
realizaron ensamblajes en diferentes plataformas 
computacionales, utilizando organismos modelo 
para los cuales, sí existe una referencia contra la 
cual comparar y determinar la calidad de los 
transcriptomas ensamblados. Se decidió utilizar el 
software ensamblador de transcriptomas Trinity 
(ver. 2.1.1) [17], por ser considerado por la 
comunidad científica como el ensamblador por 
defecto para realizar ensamblaje de novo [13]. 

2.1. Recursos computacionales  

Dado que el ensamblaje de novo de 
transcriptoma demanda el uso de cómputo 
intensivo, se seleccionó como sistema mínimo una 
estación de trabajo y dos sistemas de HPC, 
variando en cada plataforma la asignación de 
memoria y de núcleos de cómputo, tal como se 
muestra en la Tabla 1. Todas las plataformas 
cuentan con sistemas operativos Linux de 64 bits. 

En la estación de trabajo la memoria RAM se 
limitó físicamente, en tanto que en las plataformas 
de HPC, dado que no es posible modificar 
físicamente sus recursos de hardware, se variaron 
los recursos asignados al trabajo de ensamblaje a 
través del planificador correspondiente, en cuanto 
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al número de nodos de cómputo y núcleos 
por nodo. 

En el ensamblador Trinity se asignó el 
parámetro de memoria y el número de hilos por 
CPU para corresponder con las configuraciones 
de hardware. Los demás parámetros fueron 
especificados a sus valores por defecto.  

Se utilizó una estación de trabajo Dell Precision 
T7500, con un procesador Intel Xeon X5680 3.3 
GHz de 6 núcleos, con capacidad en discos duros 
de 2.5 TB, a la cual se le modificó la memoria RAM 
(20 GB, 24 GB) de acuerdo a las configuraciones 
𝑊1 y 𝑊2, respectivamente (Tabla 1). 

Los centros HPC donde se realizaron los 
procesos de ensamblaje son: Laboratorio Nacional 
de Supercómputo del Sureste de México (LNS) de 
la Benemérita Universidad Autónoma de Puebla 
[18] y el proveedor Penguin Computing, a través 
de su servicio en la nube Penguin On 
Demand [19]. 

El primer recurso de HPC está conformado por 
la supercomputadora Cuetlaxcoapan del LNS, 
compuesta de un cluster estándar de cálculo con 
procesadores Intel Xeon y un cluster con 
procesadores Intel Xeon Phi Knights Landing. El 
cluster estándar está compuesto de 228 nodos de 
cálculo Thin y otros 42 nodos de cálculo más 
robustos (fat, semi-fat, ultra-fat). Para los procesos 
de ensamble realizados en este estudio se utilizó 
el cluster estándar, el cual funciona en modo 
virtual y donde los nodos de cálculo Thin, tienen 2 

procesadores Intel Xeon E5-2680 v3 (Haswell) a 
2.5 GHz, con 24 núcleos en total y 128 GB de 
memoria RAM. Los nodos están intercomunicados 
con una red Ethernet Gigabit y una red Infiniband 
FDR a 56 Gbps. Este cluster utiliza el 
administrador de carga de trabajos SLURM [20], 
que es libre y puede manejar un cluster Linux de 
cualquier dimensión. La especificación de los 
recursos computacionales a utilizar en cada 
ensamblaje se definió en el Job Script, a través de 
los parámetros de SLURM: 

#SBATCH -n 24 # number of MPI tasks 
(cores) requested, 

#SBATCH --ntasks-per-node=24 # task (cores) 
per node (maximum 24). 

Este ejemplo especifica que se ejecute el 
trabajo con 24 núcleos (1 nodo Thin) del cluster 
estándar, donde cada núcleo obtiene 5.3 GB de 
RAM [18]. Esta plataforma computacional, se 
utilizó para realizar los ensambles en las 
configuraciones 𝑉1 y 𝑉2 (Tabla 1), especificando el 
uso de 1 nodo en el Job Script, pero variando la 
cantidad de núcleos en concordancia con los 
parámetros de entrada de Trinity. 

El segundo recurso de HPC utilizó el servicio 
en la nube POD de Penguin Computing con la cola 
T30, que especifica nodos con un procesador Intel 
Xeon E5-2660 v3 (Haswell) a 2.6 GHz con 20 
núcleos y 128 GB de RAM.  

Todos los nodos están intercomunicados con 
una red Ethernet Gigabit de 10 Gbps y una red 

Tabla 1. Configuraciones de las plataformas de cómputo para realizar ensamblajes 

Plataforma de cómputo Parámetros 

Trinity 

Planificador 

    SLURM TORQUE 

Nombre Plataforma 
Memoria 

RAM (GB) 
Núcleos 

Máxima 
Memoria 

CPU Núcleos 
Nodo/ 

Núcleos 

𝑾𝟏 Estación de 
trabajo 

20 6 20 6 - - 

𝑾𝟐 24 6 24 6 - - 

𝑯𝟏 HPC 

(No Virtual) 

128/nodo 20/nodo 24 6 - 1/6 

𝑯𝟐 128/nodo 20/nodo 64 10 - 1/10 

𝑽𝟏 HPC 

(Virtual) 

128/nodo 24/nodo 24 6 6 - 

𝑽𝟐 128/nodo 24/nodo 64 12 12 - 

 
“-” equivale a “No aplica” 
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Infiniband QDR a 40 Gbps. El servicio utiliza el 
planificador PBS TORQUE [21] para introducir 
trabajos al cluster computacional. Sin embargo, es 
necesario seleccionar una cola del planificador. 
Cada cola provee diferentes tipos de nodo de 
cómputo, y por lo tanto tienen diferentes precios.  

La especificación de los recursos se definió en 
el Job Script, a través de los parámetros de 
TORQUE: 

#PBS -q T30, 

#PBS -l nodes=1:ppn=20. 

Este ejemplo especifica que se ejecute el 
trabajo con 1 nodo de 20 núcleos de la cola T30, 
donde cada núcleo tiene 6.4 GB de RAM [19]. Se 
utilizó esta plataforma computacional, 
especificando en el Job Script el uso de 1 nodo, 
pero variando el número de núcleos en 
concordancia con los parámetros de entrada de 
Trinity; estas disposiciones se utilizaron para 
realizar los ensambles en las configuraciones 𝐻1 y 

𝐻2 de la Tabla 1. 

2.2. Monitoreo de memoria 

Con la finalidad de cuantificar el uso de 
recursos durante el proceso de ensamblaje se 
decidió monitorear el proceso mediante el 
comando top de Linux. Posteriormente, se 
analizaron los datos con Matlab (r2013a) [22]. El 
registro generado a partir de un muestreo cada 10 
segundos y el registro de tiempos (Trinity.timing) 
permiten identificar la etapa del proceso de 
ensamblaje que hace el uso más extensivo 
de memoria. 

2.3. Organismos 

Aun cuando el ensamblaje de novo se utiliza 
principalmente en organismos que no cuentan con 
un genoma o transcriptoma de referencia, en este 
estudio se requieren referencias para obtener la 
calidad de los ensamblajes, por lo que se 
seleccionaron dos organismos modelo: la Mosca 
de la Fruta (Drosophila melanogaster) y la Pulga 
de Agua (Daphnia pulex). 

Las lecturas crudas de la Mosca de la Fruta, 
fueron obtenidas del Sequence Read Archive 
(SRA) [23] del Centro Nacional de Información 

Biotecnológica (NCBI), con número de 
identificación SRR042489, provenientes del 
proyecto [24]. Las lecturas de la Pulga de Agua 
fueron descargadas de repositorio ENA [25] 
perteneciente al Instituto Europeo de 
Bioinformática, número de identificación 
SRR2075894, obtenidas en el proyecto [26]. 

Se analizó la calidad de las lecturas con 
FastQC [27] y según sus resultados se pre-
procesaron los datos con Trimmomatic (versión 
0.32) [28]. 

Los transcriptomas de referencia fueron 
descargados del repositorio Ensembl [29]. Para la 
Mosca de la Fruta fue la versión 87, que contiene 
30,651 transcritos. Para la Pulga de Agua fue la 
versión GCA_000187875.1 con 30,590 transcritos. 

2.4. Métricas 

2.4.1. Repetitividad por plataforma 
computacional 

Dado un conjunto de lecturas de secuenciación 
𝐿𝑚 de una especie 𝑚 obtenidas de una base de 

datos pública, sea 𝐸(𝑝,𝑚,𝑖) un ensamble (un 

conjunto constituido por contigs) realizado con 
configuración de plataforma computacional 𝑝, 

utilizando 𝐿𝑚 como entrada al proceso de 

ensamblaje de novo, donde 𝑖 es el número 
correspondiente a la repetición del proceso de 
ensamblaje utilizando las mismas condiciones 
iniciales, se tiene que: 

𝐼(𝑝,𝑚,𝑛) = ⋂ 𝐸(𝑝,𝑚,𝑖)
𝑖=𝑛
𝑖=1 , (1) 

donde 𝐼(𝑝,𝑚,𝑛) representa el conjunto de contigs 

resultantes de la intersección entre los 𝑛 
ensambles de novo, con las mismas condiciones. 

Asimismo, se puede decir que el conjunto de 

contigs no intersectados 𝐼(̅𝑝,𝑚,𝑛) es tal, que: 

𝐼(̅𝑝,𝑚,𝑛)  ∩ 𝐼(𝑝,𝑚,𝑛) = {}. (2) 

Por lo tanto, el conjunto 𝐼(̅𝑝,𝑚,𝑛) representa el 

conjunto de contigs que no aparecen en todos los 

ensambles 𝐸(𝑝,𝑚,𝑖) que se generaron durante algún 

ensamblaje en particular. 

De tal manera que la cantidad total de contigs 

obtenidos por plataforma 𝑝 para un organismo 𝑚 
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en 𝑛 repeticiones está dada por la unión de sus 
conjuntos intersectados y no intersectados: 

𝐶_𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛) = 𝐼(𝑝,𝑚,𝑛) ∪  𝐼(̅𝑝,𝑚,𝑛). (3) 

Los análisis de conjuntos intersectados y no 
intersectados se realizaron con el software de 
cómputo científico Matlab (r2013a) [22]. 

La cuantificación de la repetitividad se da con 
base al porcentaje  que representa el subconjunto 

𝐼(𝑝,𝑚,𝑛) del conjunto 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛) y la variabilidad se 

da con base al porcentaje que representa el 

subconjunto 𝐼(̅𝑝,𝑚,𝑛) del conjunto 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛), 

encontrados por plataforma 𝑝 para el organismo 𝑚 

en 𝑛 repeticiones. 

Finalmente, la ganancia por variabilidad entre 
plataformas se cuantifica tomando en cuenta la 
relación de la variabilidad máxima de las 
configuraciones de la estación de trabajo entre la 
variabilidad máxima de las configuraciones en las 
plataformas basadas en HPC. 

2.4.2. Calidad 

Si bien existe variabilidad entre un ensamblaje 
y otro, aun partiendo de las mismas condiciones 
iniciales, es necesario considerar si esta 
variabilidad representa contigs presentes en el 
transcriptoma del organismo o son artefactos del 
proceso matemático-computacional. Para 
identificar la validez de los contigs generados es 
necesario realizar un proceso de mapeo de los 
contigs al transcriptoma de referencia, definiendo 
así la calidad del ensamblaje. 

El término calidad de ensamblaje, se refiere a 
la concordancia entre el ensamblaje y el 
transcriptoma original del organismo modelo [30] o 
en este caso, a su referencia codificante más 
próxima y el conjunto de contigs obtenidos del 
proceso de ensamblado. En este estudio el 
objetivo es detectar la calidad de los contigs 
originados exclusivamente por la variabilidad de 
cada plataforma de cómputo. 

En este contexto, se define como referencia 
codificante a la mejor aproximación de 
ensamblado de transcriptoma disponible en cierta 
fecha o versión, disponible en las bases públicas 
de los organismos involucrados, ver el sitio de 
Ensembl [13, 29].  

Formalmente, sean los conjuntos 𝐼(𝑝,𝑚,𝑛) e  

𝐼(̅𝑝,𝑚,𝑛) se procede a analizarlos con respecto al 

conjunto referencia codificante de la especie, 
llamado Transcriptoma de referencia 𝑇𝑚, mediante 
un proceso de identidad, utilizando el software 
BLAST [31]; de tal manera que: 

{(𝑐, 𝑡): 𝑐 ∈ 𝐼𝑚(𝑝,𝑚), 𝑡 ∈ 𝑇(𝑝,𝑚)}    = 𝑓 ∶ 𝐼(𝑝,𝑚) → 𝑇𝑚 , (4) 

donde (𝑐, 𝑡) representa un par (contig, transcrito) y 

𝐼𝑚(𝑝,𝑚) es el conjunto de contigs intersectados 

generados con la plataforma computacional 𝑝, que 

mapearon en el conjunto referencia 𝑇𝑚. 𝑇(𝑝,𝑚) es el 

subconjunto de transcritos de 𝑇𝑚 a los que 
mapearon los contigs intersectados del conjunto 

𝐼𝑚(𝑝,𝑚). Nótese que, para simplificar, se omitió el 

subíndice 𝑛, así mismo en: 

{(𝑐, 𝑡): 𝑐 ∈ 𝐼𝑚̅(𝑝,𝑚), 𝑡 ∈ 𝑇̅(𝑝,𝑚)}   = 𝑓 ∶  𝐼(̅𝑝,𝑚) → 𝑇𝑚 , (5) 

donde (𝑐, 𝑡) representa un par (contig, transcrito) e 

𝐼𝑚̅(𝑝,𝑚) es el conjunto de contigs no intersectados 

generados con la plataforma computacional 𝑝, que 

mapearon en el conjunto referencia 𝑇𝑚. 𝑇̅(𝑝,𝑚) es el 

subconjunto de transcritos de 𝑇𝑚 a los que 
mapearon los contigs no intersectados del 

conjunto 𝐼𝑚̅(𝑝,𝑚). 

Ya que pueden existir contigs intersectados y 
no intersectados que mapean a un transcrito 
común, se puede realizar la siguiente operación: 

𝑇(𝑝,𝑚) ∩ 𝑇̅(𝑝,𝑚) =   𝑇(𝑝,𝑚)
∗  , (6) 

donde 𝑇(𝑝,𝑚)
∗  es el subconjunto de transcritos 

mapeados compartidos por los conjuntos de 
contigs intersectados y no intersectados. Para 
obtener los contigs no intersectados compartidos, 
se realiza: 

{(𝑐, 𝑡): 𝑐 ∈  𝐼𝑚̅(𝑝,𝑚)
∗ , 𝑡 ∈ 𝑇(𝑝,𝑚)

∗ } 

= 𝑓 ∶  𝐼(̅𝑝,𝑚) → 𝑇(𝑝,𝑚) 
∗ , 

(7) 

donde 𝐼𝑚̅(𝑝,𝑚)
∗   es el conjunto de contigs mapeados 

no intersectados compartidos. 
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Asimismo, se puede realizar la 
siguiente operación: 

𝐼𝑚̅(𝑝,𝑚) − 𝐼𝑚̅(𝑝,𝑚)
∗ = 𝐼𝑚̅(𝑝,𝑚)

+ , (8) 

donde 𝐼𝑚̅(𝑝,𝑚)
+  es el conjunto de contigs no 

intersectados que exclusivamente mapean a 
transcritos en 𝑇𝑚 que no son compartidos con el 
conjunto de transcritos mapeados inicialmente por 
𝐼𝑚(𝑝,𝑚). La representación de estos conjuntos con 

respecto al transcriptoma de referencia se muestra 
en la Figura 1. 

Para decidir que contigs se compartían entre 
ensamblajes se utilizó un criterio estricto de 
coincidencia única, es decir, ambas cadenas 
deberían ser exactamente iguales en tamaño y 
composición. No obstante, los algoritmos de 
mapeo tienen un criterio más laxo, permitiendo 
reconocer secciones similares aun cuando no 
sean las cadenas exactamente iguales. Este 
criterio permite variar la longitud y composición 
del contig.  

Debido a este criterio pudiese haber contigs 
que siendo ligeramente distintos mapean a la 
misma porción del transcriptoma.  

Esta situación puede ocurrir para ambos 
conjuntos (comunes y no compartidos) y entre 
conjuntos. Por ello, la evaluación de calidad 
considera como información válida originada por 
variabilidad de plataforma a todos aquellos contigs 

contenidos en el subconjunto 𝐼(̅𝑝,𝑚,𝑛). Esta 

evaluación se expresa en el porcentaje 
representado por los contigs mapeados 

provenientes del conjunto no intersectado 𝐼𝑚̅(𝑝,𝑚), 

por plataforma 𝑝 para un organismo 𝑚 con 

respecto al 𝐼(̅𝑝,𝑚,𝑛), dados 𝑛 ensambles.  

Asimismo, considera como información nueva 
originada por la variabilidad de plataforma solo a 
los contigs mapeados exclusivos al conjunto no 

intersectado 𝐼𝑚̅(𝑝,𝑚)
+ . Esta evaluación se expresa 

en el porcentaje representado por los contigs 
mapeados exclusivos provenientes del conjunto 

no intersectado 𝐼𝑚̅(𝑝,𝑚)
+ , por plataforma 𝑝 para un 

organismo 𝑚 con respecto al 𝐼(̅𝑝,𝑚,𝑛), dados 

𝑛 ensambles. 

 

Fig. 1. Mapeo de contigs intersectados y no intersectados, así como su clasificación dependiendo del transcripto al que 
hayan sido referenciados 
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La ganancia en calidad se cuantifica tomando 
en cuenta la relación del número máximo de 

contigs representados por el conjunto 𝐼𝑚̅(𝑝,𝑚) de 

una de las configuraciones basadas en la estación 
de trabajo, entre el número máximo de contigs 

representados en 𝐼𝑚̅(𝑝,𝑚) de una de las 

configuraciones basadas en HPC. 

De la misma forma, la ganancia en información 
nueva se cuantifica tomando en cuenta la relación 
del número máximo de contigs representados por 

el conjunto 𝐼𝑚̅(𝑝,𝑚)
+

de una de las configuraciones 

basadas en la estación de trabajo, entre el número 

máximo de contigs representados en 𝐼𝑚̅(𝑝,𝑚) de 

una de las configuraciones basadas en HPC. 

Cabe hacer notar que los parámetros del 
software BLAST fueron establecidos de tal manera 
que se obtuviese un hit (alineamiento positivo) por 
secuencia de entrada, alta similitud entre 
secuencias alineadas, pero con bajos valores de 
expectación. Umbrales utilizados: valor de 
expectación e-value 1x10-9; porcentaje de 
identidad: 95%; alineamientos máximos por 
secuencia de entrada max_hps: 1; cantidad de 
secuencias alineadas max_target_seqs:1; 
cantidad de núcleos: 1. 

3. Resultados 

3.1. Datos de entrada 

Las estrategias de pre procesamiento para los 
datos de secuenciación se realizaron basadas en 

los correspondientes reportes de calidad de las 
lecturas para cada organismo. Para Mosca de la 
Fruta fue: corte de primeras 10 bases, remoción 
de adaptadores en modo palíndromo, 𝑙 > 32. En 
los datos de Pulga de Agua: corte de primeras 10 
bases, remoción de adaptadores en modo 
palíndromo, 𝑄𝑚𝑖𝑛 25, 𝑙 > 32; posterior al 
preprocesamiento los datos seguían conteniendo 
secuencias sobrerrepresentadas, ribosómicas 
según la búsqueda en la base de datos del NCBI 
[32], consecuentemente se realizó un segundo 
pre-procesamiento para remover dichas 
secuencias. 

Los datos de entrada pre-procesados fueron 
7,564,138 y 7,168,393 lecturas pareadas con 
longitudes variables de 32-66 bases para Mosca 
de la Fruta y Pulga de Agua, respectivamente. 

3.2 Contigs ensamblados 

La Tabla 2 muestra el promedio de contigs 
generados después de 5 repeticiones del 
ensamblaje efectuados en cada configuración. De 
los promedios y desviaciones se puede apreciar 
que el número de contigs generados en cada 
repetición es muy parecido.  

3.3. Uso de memoria  

El ensamblador Trinity consta de tres módulos: 
Inchworm, donde realiza la agrupación inicial de 
lecturas pertenecientes al mismo gen (clustering) 
y una construcción extendida de secuencias con 
base en dichos clusters; Chrysalis:  

Tabla 2. Cantidad de Contigs ensamblados por plataforma computacional 

 

Mosca de la Fruta Pulga de Agua 

Plataforma 

Computacional 
Promedio 

Desviación 
Estándar 

Promedio 
Desviación 
Estándar 

𝑾𝟏 25,994.80 6.72 53,280.4 37.63 

𝑾𝟐 25,988.80 5.81 53,276.8 39.93 

𝑯𝟏 25,981.60 3.44 53,220.8 20.32 

𝑯𝟐 25,984.40 5.68 53,247.8 15.08 

𝑽𝟏 25,988.40 3.65 53,321.6 23.06 

𝑽𝟐 25,989.40 2.30 53,320.0 23.98 
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− Es el módulo donde construye los grafos 
De Bruijn con base en los clusters de 
lecturas y los contigs extendidos, para 
finalmente pasar al módulo; Butterfly, 
donde resuelve ambigüedades en los 
grafos con base en la cantidad de lecturas 
que respaldan la trayectoria de análisis 
[15].  

El módulo Inchworm es el primero en ser 
ejecutado. Posteriormente, los módulos Chrysalys 
y Butterfly se ejecutan de forma alterna. 

La Figura 2 muestra el uso de memoria RAM 
durante los procesos de ensamblaje de novo de 
transcriptoma para Mosca de la Fruta y Pulga de 
Agua en las plataformas 𝐻2 y 𝑊2. Se delimitó con 
una línea vertical intermitente la duración del 
módulo Inchworm. 

Nótese que el manejo de los millones de 
secuencias de entrada se ven reflejadas en el 
manejo de memoria por parte del ensamblador, 
sobre todo en el primer módulo, Inchworm, donde 
ambos organismos hicieron uso intensivo de 
memoria, ~80 GB en la plataforma 𝐻2 (Figura 2 a 
y b). La duración del primer módulo en las 
configuraciones 𝐻2 fue de ~24 minutos en 
procesos de Mosca de la Fruta y ~5 minutos en 
ensamblajes de Pulga de Agua. Asimismo, se 
puede observar que el uso de memoria en los 
módulos posteriores fue mayor en los procesos de 
Pulga de Agua teniendo un pico de uso en 34.3 GB 
(Tabla 3). El uso de memoria en los módulos 
alternados Chrysalis y Butterfly en el caso de 
Mosca de la Fruta no excedió los 24 GB. 

El uso de memoria en las plataformas 𝑊1 y 𝑊2 
se vio limitado por la capacidad física de memoria 

de las plataformas, inclusive los ensamblajes de 
Mosca de la Fruta tendieron a saturar el primer 
módulo (Figura 2 c), y se observaron picos 
máximos de memoria en al menos 2 módulos al 
procesar la Pulga de Agua (Figura 2 d). 

En la Tabla 3 se muestra la utilización máxima 
de memoria por configuración, especie y módulo 
de Trinity.  

3.4. Repetitividad por intersecciones 

Las figuras 3 y 4 muestran el resultado de 
intersectar los conjuntos generados con las 5 
repeticiones del ensamblaje por máquina. Las 
intersecciones son los contigs comunes a los 
ensamblajes que contienen exactamente las 
mismas secuencias. Basta un cambio de base, 
inserción o perdida entre dos contigs para que se 
consideren ambos distintos y se envíen al conjunto 
de no intersectados. Nótese la diferencia de 
escalas, y que los contigs no intersectados 
constituyen menos del 5% en el caso de la Mosca 
de la Fruta y menos del 30% para Pulga de Agua.  

En la Tabla 4 se muestran los porcentajes de 
repetividad y variabilidad por plataforma para 
ambos organismos, encontrándose mayor 
repetitividad en las plataformas HPC, pero mayor 
variabilidad en las plataformas con menor 
memoria. Se observa también que la ganancia 
máxima por variabilidad de una de las 
configuraciones basadas en la estación de trabajo, 
para Mosca de la Fruta es 4.49/2.26 = 1.98 veces  

Tabla 3. Utilización máxima de memoria RAM (GB) por plataforma computacional, organismo y módulo de 

ensamblaje de Trinity 

 Mosca de la Fruta Pulga de Agua 

Plataforma Computacional Inchworm Chr/Btf Inchworm Chr/Btf 

𝑾𝟏 20.4 9.7 20.4 20.4 

𝑾𝟐 24.4 12.8 24.5 24.5 

𝑯𝟏 21.1 13.0 26.0 27.8 

𝑯𝟐 78.3 23.3 75.7 34.3 

Inchworm: Primer módulo del ensamblador. Chr/Btf: Segundo y tercer módulo del ensamblador Trinity, Chrysalis 
y Butterfly respectivamente 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Utilización de memoria RAM durante el ensamblaje en la plataforma 𝐻2 de Mosca de la Fruta en las 

configuraciones (a) y Pulga de Agua (b); ensamblaje en la plataforma 𝑊2 de Mosca de la Fruta (c) y Pulga de Agua 
(d). Línea vertical intermitente indica fin del módulo Inchworm 
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más que el máximo de una de las plataformas 
basadas en HPC; para Pulga de Agua es 
22.45/10.68 = 2.10 veces más que el máximo de 
una de las plataformas basadas en HPC. 

3.5. Calidad por mapeos 

De igual forma, el mapeo de los contigs de los 
conjuntos no intersectados por plataforma fue 
mayor para los conjuntos provenientes de las 
plataformas con menor memoria (𝑊1 y 𝑊2). 

Las figuras 5 y 6 muestran el mapeo por 
plataforma computacional para los organismos 
Mosca de la Fruta y la Pulga de Agua, 
respectivamente. También, se observan en la 
Tabla 5 los mapeos de contigs intersectados con 
respecto a las referencias y los porcentajes que 
estos representan.  

La ganancia máxima de contigs no 
intersectados mapeados, para Mosca de la Fruta 

es 1,186/584 = 2.03 veces más que el máximo de 
una de las plataformas basadas en HPC; 
asimismo, para Pulga de Agua es 10,057/4,327 = 
2.39 veces más. 

La ganancia máxima de contigs no 
intersectados mapeados exclusivos, para Mosca 
de la Fruta es 315/182 = 1.73 veces más que el 
máximo porcentaje de las plataformas basadas en 
HPC; asimismo, para Pulga de Agua es 
4,017/1,628 = 2.46 veces más. 

4. Discusión 

La aproximación inicial de los recursos 
mínimos computacionales para ensamblaje de 
novo está dada por los requerimientos básicos del 
software ensamblador y la cantidad de datos de 
entrada. El requerimiento mínimo de memoria para 
ensamblaje de novo de transcriptoma reportado en 
el ensamblador Trinity es ~ 1GB de memoria por  

Tabla 4. Repetitividad y Variabilidad 

Mosca de la Fruta 

Plataforma 

Computacional 𝑪𝒕𝒐𝒕𝒂𝒍(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) 𝑰(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) 

Repetitividad 

(%) 𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) 

Variabilidad 

(%) 

𝑾𝟏 26,618 25,422 95.51 1,196 4.49 

𝑾𝟐 26,544 25,474 95.97 1,070 4.03 

𝑯𝟏 26,286 25,693 97.74 593 2.26 

𝑯𝟐 26,286 25,692 97.74 594 2.26 

𝑽𝟏 26,202 25,784 98.40 418 1.60 

𝑽𝟐 26,180 25,807 98.58 373 1.42 

Pulga de Agua 

Plataforma 

Computacional 𝑪𝒕𝒐𝒕𝒂𝒍(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓) 𝑰(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓) 

Repetitividad 

(%) 𝑰̅(𝒑,𝒑𝒖𝒍𝒈𝒂,𝟓) 

Variabilidad 

(%) 

𝑾𝟏 60,632 47,510 78.36 13,122 21.64 

𝑾𝟐 60,943 47,261 77.55 13,682 22.45 

𝑯𝟏 56,617 50,590 89.35 6,027 10.65 

𝑯𝟐 56,630 50,580 89.32 6,050 10.68 

𝑽𝟏 55,545 51,627 92.95 3,918 7.05 

𝑽𝟐 55,176 51,783 93.85 3,393 6.15 

 

Repetitividad: 𝐼(𝑝,𝑚,𝑛) / 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛). Variabilidad: 𝐼(̅𝑝,𝑚,𝑛) / 𝐶𝑡𝑜𝑡𝑎𝑙(𝑝,𝑚,𝑛). Máxima Variabilidad entre plataformas 𝑊1 y 

𝑊2, y máxima variabilidad entre plataformas HPC remarcadas en gris 
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Fig. 3. Comparación de los conjuntos de contigs intersectados 𝐼(𝑝,𝑚𝑜𝑠𝑐𝑎,5) y los conjuntos de contigs no intersectados 

𝐼(̅𝑝,𝑚𝑜𝑠𝑐𝑎,5) obtenidos después de 5 repeticiones de ensamblajes 𝐸(𝑝,𝑚𝑜𝑠𝑐𝑎,5) para el organismo Mosca de la Fruta, por 

cada plataforma computacional 𝑝 de la Tabla 1 

 

Fig. 4. Comparación de los conjuntos de contigs intersectados 𝐼(𝑝,𝑝𝑢𝑙𝑔𝑎,5) y los conjuntos de contigs no intersectados 

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5), obtenidos después de 5 repeticiones de ensamblajes 𝐸(𝑝,𝑝𝑢𝑙𝑔𝑎,5) para el organismo Pulga de Agua, por cada 

plataforma computacional 𝑝 de la Tabla 1 
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cada millón de lecturas de entrada [17]. Según 
esta estimación, para los datos de Mosca de la 
Fruta (~7.5 millones de lecturas) y Pulga de Agua 
La memoria en todas las plataformas era mucho 
mayor que los requerimientos mínimos teóricos 
para ensamblaje, para los datos en ambos 
organismos, como se indicó en la Tabla 1. Con 
base en los requerimientos mínimos teóricos de 
ensamblaje, la asignación de memoria o memoria 
disponible por plataforma fue calculada a más del 
doble o el triple. 

En la práctica los requerimientos mínimos 
reales de memoria para ensamblar excedieron el 
límite teórico, utilizando más del triple de este; tal 
como se observa en la Figura 2 (a y b), donde se 
graficó la utilización de memoria en 𝐻2, y asimismo 

en la Figura 2 (c y d) para 𝑊2, al ensamblar ambos 
organismos. El ensamblador tiende a utilizar 
cuanta memoria esté disponible para realizar sus 
procesos, independientemente del parámetro de 
uso de memoria asignado.  

Se ha reportado que el primer módulo de Trinity 
es más extensivo en el uso de memoria [15], lo 
cual coincide con las gráficas de la Figura 2. 
Según la asignación de memoria para 𝐻2 el límite 
de uso debió haber sido muy cercano a 64 GB, 
pero éste fue excedido por más de 11 GB en 
ambos organismos (ver Tabla 3). 

Caben destacar que los ensambles generados 
por las plataformas 𝑉1 y 𝐻1, en donde el uso de 
memoria, asignado en Trinity, estaba limitado a la 
misma cantidad de GB que en la plataforma 𝑊2, y 
cuyos conjuntos intersecciones de contigs fueron 
mayores, tuvieron mayor disponibilidad de 
memoria, ya que como se demostró con 
anterioridad, el parámetro de uso de memoria del 
ensamblador no fue una limitante para la 
utilización del recurso. 

De esta manera, se puede decir que los análisis 
aquí presentados fueron realizados en 
plataformas con tres cantidades distintas de 
memoria 20, 24 y 128 GB, estando representadas 

Tabla 5. Mapeos de contigs con respecto a las referencias 

Mosca de la Fruta 

Plataforma 
Computacional 

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂) 𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)
+  𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) 

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)

/𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) (%) 

𝑰̅𝒎(𝒑,𝒎𝒐𝒔𝒄𝒂)
+

/𝑰̅(𝒑,𝒎𝒐𝒔𝒄𝒂,𝟓) (%) 

𝑾𝟏 1,186 315 1,196 99.16 26.33 

𝑾𝟐 1,054 312 1,070 98.50 29.15 

𝑯𝟏 584 160 593 98.48 26.93 

𝑯𝟐 583 182 594 98.15 30.63 

𝑽𝟏 409 87 418 97.85 20.81 

𝑽𝟐 364 86 373 97.59 23.05 

Pulga de Agua 

Plataforma 
Computacional 

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎) 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+  𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5) 

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)/

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5) (%) 

𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+ /

𝐼(̅𝑝,𝑝𝑢𝑙𝑔𝑎,5) (%) 

𝑾𝟏 10,057 3,831 13,122 76.64 29.19 

𝑾𝟐 10,369 4,017 13,682 75.79 29.35 

𝑯𝟏 4,245 1,628 6,027 70.43 27.01 

𝑯𝟐 4,327 1,567 6,050 71.52 25.90 

𝑽𝟏 2,385 1,323 3,918 60.87 33.76 

𝑽𝟐 2,074 1,119 3,393 61.13 32.97 

𝐼𝑚̅(𝑝,𝑚)/𝐼(̅𝑝,𝑚,𝑛)  y 𝐼𝑚̅(𝑝,𝑚)
+ /𝐼(̅𝑝,𝑚,𝑛)  expresado en porcentaje. 

Máximos entre plataformas 𝑊1,  𝑊2  y en HPC remarcados en gris. 
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las primeras dos en las plataformas de menor 
memoria (𝑊1 y 𝑊2, respectivamente) y la última en 

las de mayor memoria (𝑉1, 𝑉2, 𝐻1, y 𝐻2), en donde 
la configuración de memoria por parámetro no fue 

tomada en cuenta al momento de ejecutar los 
ensamblajes. 

De este modo se empiezan a observar los 
efectos de las plataformas de cómputo sobre el 

 

Fig. 5 Comparación de los conjuntos de contigs intersectados mapeados 𝐼𝑚(𝑝,𝑚𝑜𝑠𝑐𝑎) al transcriptoma de referencia de 

la Mosca de la Fruta 𝑇𝑚𝑜𝑠𝑐𝑎, contigs no intersectados mapeados exclusivos 𝐼𝑚̅(𝑝,𝑚𝑜𝑠𝑐𝑎)
+ ,  y contigs no intersectados 

compartidos 𝐼𝑚̅(𝑝,𝑚𝑜𝑠𝑐𝑎)
∗ , haciendo 5 ensamblajes 𝐸(𝑝,𝑚𝑜𝑠𝑐𝑎,5), por cada plataforma computacional 𝑝. Nótese que la 

escala inicia en 2.4x104 

 

Fig. 6 Comparación de los conjuntos de contigs intersectados mapeados 𝐼𝑚(𝑝,𝑝𝑢𝑙𝑔𝑎) al transcriptoma de referencia de 

la Mosca de la Fruta 𝑇𝑝𝑢𝑙𝑔𝑎, contigs no intersectados mapeados exclusivos 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
+  y contigs no intersectados 

compartidos 𝐼𝑚̅(𝑝,𝑝𝑢𝑙𝑔𝑎)
∗ ,  haciendo 5 ensamblajes 𝐸(𝑝,𝑝𝑢𝑙𝑔𝑎,5), por cada plataforma computacional 𝑝. Nótese que la 

escala inicia en 2x104 
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conjunto de contigs de ensamblajes debido a la 
disponibilidad de memoria física.  

Se observa en la Tabla 2 que las desviaciones 
estándar indican muy poca variación en la 
cantidad de contigs construidos, de 2.3 a 6.7 para 
Mosca de la Fruta y de 15.08 a 39.9 para Pulga de 
Agua, tendiendo a ser mayores para las 
plataformas de menor memoria (𝑊1 y 𝑊2). Si se 
dejase en este punto la exploración de resultados 
se encontraría que estas variaciones son muy 
pequeñas en comparación con la cantidad de 
contigs obtenidos. Sin embargo, el efecto que los 
recursos computacionales tuvieron sobre el 
conjunto de contigs es encontrado en el análisis 
del contenido de éstos. 

En ambos organismos se encontró mayor 
repetitividad en los ensamblajes procesados por 
las plataformas con mayor disponibilidad de 
memoria (𝑉1, 𝑉2, 𝐻1 y 𝐻2), 97.74% al 98.58%, 
mientras que en las plataformas con menor 
memoria (𝑊1 y 𝑊2) la repetitividad en Mosca de la 
Fruta fue de 95.51% y 95.97%, respectivamente. 
Para Pulga de Agua la repetitividad observada en 
las plataformas con mayor memoria fue del 
89.32% al 93.85%, mientras que la repetitividad en 
las plataformas 𝑊1 y 𝑊2 fue 77.55% y 78.36%. 
Esto puede ser observado en los conjuntos de 
contigs intersectados de las Figuras 3 y 4, y en la 
Tabla 4. 

Por otro lado, las plataformas con menor 
memoria presentaron mayor variabilidad (ver 
Tabla 4). Para Mosca de la Fruta la mayor 
variabilidad observada en las plataformas de baja 
memoria fue de 4.49% (en 𝑊1); en el caso de las 
plataformas HPC la variabilidad máxima fue de 
2.26% (mismo porcentaje en 𝐻1 y 𝐻2). Para Pulga 
de Agua las plataformas de menor memoria 
presentaron una variabilidad máxima de 22.45% 
(en 𝑊2), mientras que para HPC fue del 10.68% 

(en 𝐻2). Dadas estas variabilidades se observa 
que las plataformas menores presentan 
aproximadamente el doble de variabilidad en 
comparación de las plataformas de mayor 
memoria, 1.98 y 2.10 veces mayor en Mosca de la 
Fruta y Pulga de Agua respectivamente, de 
acuerdo con el cálculo de ganancia por 
variabilidad entre plataformas de la sección 2.4.1. 

Las plataformas con menos memoria 
produjeron mayor cantidad de combinaciones de 
contigs. Sin embargo, se necesita determinar si 

estas secuencias, producto de un algoritmo 
computacional, tienen correspondencia a un 
transcrito real. 

Como se mencionó con anterioridad, la 
concordancia entre ensamblajes y los 
transcriptomas originales se determinó por medio 
de mapeos a la referencia codificante más próxima 
de los organismos. De acuerdo con el análisis de 
resultados realizado, los mapeos de los conjuntos 
de contigs no intersectados fueron mayores en los 
conjuntos provenientes de plataformas con poca 
memoria (Figuras 5 y 6).  

También se observa en la Tabla 5, que para la 
Mosca de la Fruta los mapeos máximos de los 
conjuntos no intersectados fueron de 99.16% para 
plataformas con poca memoria (en 𝑊1), mientras 
que en HPC fue de 98.48% (en 𝐻1). Para la Pulga 
de Agua los mapeos máximos de los conjuntos no 
intersectados fue 76.64% (en 𝑊1), mientras que en 

HPC fue 71.52%(en 𝐻2). Si bien los porcentajes de 
mapeos son similares para ambos organismos, los 
contigs no intersectados mapeados en las 
plataformas de menor memoria son 
aproximadamente el doble en comparación con los 
contigs mapeados en las plataformas HPC.  

Para Mosca de la fruta la cantidad de contigs 
mapeados fue 2.03 veces mayor en la estación de 
trabajo comparando con los mapeos máximos 
para HPC; en Pulga de Agua mapearon 2.39 
veces más contigs en la estación de trabajo 
comparando con los mapeos máximos en HPC. 

Se puede observar también que los 
porcentajes de mapeos exclusivos provenientes 

de los conjuntos no intersectados 𝐼𝑚̅(𝑝,𝑚)
+ son 

similares para ambos organismos y que estos 
representan la proporción de información validada 
generada de manera exclusiva por una plataforma 
dada. Dichos contigs variaron desde el 29.15% al 
30.63% en Mosca de la Fruta y del 29.35% al 
33.76% en Pulga de Agua. Sin embargo, las 
ganancias en información nueva, que se basan en 

los contigs mapeados exclusivos 𝐼𝑚̅(𝑝,𝑚)
+ , indican 

que para Mosca de la Fruta la estación de trabajo 
obtuvo 1.73 veces más contigs mapeados 
exclusivos que las plataformas HPC; asimismo, en 
Pulga de Agua se obtuvieron en la estación de 
trabajo 2.46 veces más contigs mapeados 
exclusivos en comparación con las 
plataformas HPC. 
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Cabe mencionar que una referencia constituye 
la mejor aproximación disponible, en determinada 
fecha, al transcriptoma de estudio. En este 
contexto, se puede decir que gran porcentaje de 
los contigs obtenidos en los ensamblajes de 
ambos organismos corresponden a 
transcritos reales.  

Algunos contigs no lograron ser mapeados a 
sus referencias. Sin embargo, no se puede 
asegurar que dichas secuencias no tengan 
correspondencia a algún transcrito, ya que las 
referencias son actualizadas según se profundice 
en el conocimiento de cierto organismo. Se tiene 
mayor conocimiento de las secuencias 
transcriptómicas en Mosca de la Fruta que de los 
transcritos de Pulga de Agua, ya que Drosophila 
melanogaster es uno de los organismos modelo 
más estudiados por la comunidad científica. El 
hecho de que los mapeos en Pulga de Agua sean 
menores no significa que las secuencias no 
mapeadas sean incorrectas, simplemente las 
secuencias de dichos contigs pueden ser parte de 
transcritos que aún no son descubiertos por falta 
de conocimiento sobre la biología molecular 
del organismo. 

Asimismo, se puede mencionar que las 
ganancias aquí indicadas se presentaron al 
trabajar en plataformas computacionales con 
disponibilidad baja de memoria, pero con ~3 veces 
más que el mínimo teórico reportado[15], bajo las 
condiciones de viabilidad de plataforma para el 
procesamiento de conjuntos de lecturas de 7-8 
millones de lecturas pareadas y con la unión sin 
repeticiones de contigs provenientes de 
5 ensamblajes. 

Dados estos resultados, se evidenció que la 
variación de un ensamblaje está dada en función 
de la disponibilidad de memoria del equipo de 
cómputo; a mayor disponibilidad de memoria 
menos variación en ensamblaje y a menor 
disponibilidad de memoria mayor variación 
en ensamblaje. 

Una de las principales ventajas del RNA-Seq 
(secuenciación NGS de Transcriptoma) es el 
poder descubrir nuevos transcritos [6]. Tomando 
esta característica en cuenta y con base en los 
resultados de este estudio, se sugiere el emplear 
una estrategia repetitiva de ensamblaje de novo de 
transcriptoma para el descubrimiento de una 
mayor cantidad de transcritos.  

Dicha estrategia consiste en la obtención de 
varios ensamblajes bajo condiciones iniciales 
iguales en plataformas computacionales viables 
para proceso, pero con baja disponibilidad de 
memoria; posteriormente, realizar la unión no 
repetitiva de contigs de múltiples ensamblajes, ya 
que se logra obtener conjuntos más grandes de 
contigs de alta calidad, como fue realizado en los 
contigs obtenidos en las plataformas de menor 

memoria 𝑊1 y 𝑊2 (ver Figuras 5 y 6). 

El efecto de memoria en otras métricas 
distintas a la cantidad de contigs o su contenido no 
fueron analizadas en este estudio. Diversas 
métricas estadísticas buscan dar un indicativo de 
la calidad de ensamblaje con respecto al 
transcritptoma original, pero éstas métricas no 
muestran indicios cuantitativos del desempeño del 
equipo de cómputo o su influencia en el conjunto 
de contigs. 

 Del mismo modo, se hubiese esperado que la 
repetitividad de las plataformas 𝑉1 y 𝐻1 fuese muy 
similar dado que tienen la misma cantidad de 
memoria (128 GB); no obstante, se encontró 
mayor variación en la plataforma 𝐻1. Esto pudiese 
sugerir que, aparte de la memoria RAM disponible 
para los procesos de ensamblaje, los efectos 
computacionales en ensamblaje pueden ser 
influidos en menor proporción por otros recursos, 
como la memoria cache del procesador (que es 
menor en el nivel L3 para los procesadores de las 
plataformas 𝐻1 y 𝐻2). Éste y otros aspectos, como 
el número de núcleos de procesamiento, necesitan 
ser estudiados para ampliar el conocimiento de los 
efectos computacionales en la tarea 
de ensamblaje. 

5. Conclusiones 

El ensamblaje de novo de transcriptoma es una 
etapa clave en estudios exploratorios del 
contenido de ARN. Es necesario tomar en cuenta 
los efectos que la plataforma computacional tiene 
sobre este proceso. Así mismo, el 
aprovechamiento de las plataformas disponibles 
para trabajos de investigación prospectiva debe 
ser potencializado en la etapa de ensamblaje. Un 
ensamblaje varía en función de la disponibilidad de 
memoria del equipo de cómputo; menor 
disponibilidad de memoria origina mayor variación 

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1595–1612
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2883

Patricia Carvajal López, Fernando D. Von Borstel Luna, Joaquín Gutiérrez Jagüey, Humberto Mejía Ruiz, et al.1610



o combinaciones en múltiples ensamblajes. Aún 
más, los contigs extra originados por dicha 
variación han mostrado tener correspondencia con 
transcriptomas de referencia. Tomando ventaja de 
la viabilidad de datos, disponibilidad de plataforma 
y recursos computacionales y su influencia en 
variabilidad del ensamblaje en función de la 
memoria, se sugiere descubrir mayor cantidad de 
contigs de calidad al realizar 𝑛 repeticiones de 
ensamblajes bajo las mismas 
condiciones iniciales. 
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