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Resumen. El contenido de ARN se descifra con
fragmentacion aleatoria, lo que genera millones de
secuencias, que en ausencia de referencias se
reconstruyen basandose en algoritmos que usan
intensivamente recursos computacionales. Diversos
factores afectan el resultado de dicho proceso. Este
estudio considera por primera vez cémo la asignacion
de memoria/nicleos influye  sobre la calidad vy
variabilidad del ensamblaje. Se realizaron multiples
ensamblajes para 2 organismos modelo, en una
plataforma monolitica y dos de cOmputo de alto
desempefio. Se encontraron mayores variabilidades
de contigs en equipos monoliticos con poca memoria
(1.98 y 2.10 veces méas que HPC); sin embargo, gran
parte de estos (99.16% y 75.79%) mapearon al
transcriptoma de referencia demostrando ser de
calidad. Por tanto, contrariamente a lo esperado, se
observé que una estrategia de ensamblajes miltiples en
un equipo de bajos recursos supera el uso de
plataformas de alto rendimiento para el descubrimiento
de ARNSs.

Palabras clave. ARN, secuenciacion NGS, RNA-Seq,
efecto de memoria en ensamblaje, HPC, optimizacion
de ensamblaje.

Evaluation of the Influence of
Computational Resources on
Transcriptome de Novo Assembly
Variability and Quality

Abstract. RNA content is deciphered by random
fragmentation of biomolecules, generating millions of

sequences. In lack of references these sequences are
reconstructed relying on algorithms that require
intensive use of computational resources. Numerous
factors affect this process. This study explores for the
first time how memory/core allocation on reconstruction
processes influences assembly quality and variability.
Multiple de novo assemblies for two model organisms
were obtained from one monolithic platform and two
High Performance Computers. Low memory monolithic
platforms observed greater variability (1.98 & 2.10 times
greater than HPC); however, most of the obtained
contigs (99.16% & 75.79%) mapped to the reference
transcriptome, thus proving good quality. Therefore,
contrary to what was expected, using low-resource
equipment when applying assembly strategies that unify
numerous assemblies outperforms HPCs on RNA
discovery.

Keywords. RNA, NGS sequencing, RNS-Seq, memory
effect on assembly, HPC, assembly optimization.

1. Introduccién y antecedentes

El genoma de un organismo se puede
considerar como el conjunto de instrucciones,
codificadas en una secuencia de nuclettidos
(ACGT), que contiene toda la informacion
necesaria para formar un organismo y heredar
estas caracteristicas a sus descendientes [1].

La obtencién del genoma de un organismo se
realiza mediante tecnologias de secuenciacién. En
particular las tecnologias de secuenciacion de
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nueva generacion (NGS), que generan millones de
lecturas cortas y un gran volumen de datos, han
revolucionado la biologia molecular impactando en
areas como la académica, médica, farmacéutica,
biotecnolégica, agroquimica y en la industria
alimentaria, entre otras [2].

Debido a las limitaciones de los equipos NGS,
el primer paso en el proceso de secuenciacion
consiste en fragmentar la cadena de &cido
desoxirribonucleico (ADN) de manera aleatoria, y
por ende no se cuenta con informacion de la
posicion relativa de cada fragmento [3]. Para poder
recuperar la informacién contenida en la cadena
original se requiere entonces un proceso de
reconstruccién conocido como ensamblaje.

Existen dos formas primordiales de
ensamblaje: la reconstruccion de la cadena
alineandola a un genoma de referencia, conocida
como mapeo; Yy la reconstruccibn a partir
Unicamente de los fragmentos, conocida como
ensamblaje de novo. El ensamblado de novo de
lecturas de NGS es complejo debido a varios
factores, entre ellos, el elevado numero de
secuencias y su tamafio reducido, asi como a los
errores de secuenciacién y la repeticion de
cadenas, entre otros [4].

Si bien el conjunto de instrucciones necesarias
para el funcionamiento y formacién de un
organismo se encuentra contenido en su genoma
(ADN), las células requieren de moléculas
informativas intermediarias, acidos ribonucleicos
(ARN), para dirigir la produccién de moléculas de
trabajo (proteinas) en un proceso conocido como
traduccién. El proceso de envio de instrucciones
contenidas en el ADN por medio de ARNs se
conoce como transcripcion, ya que dichas
instrucciones no son copias exactas de los
segmentos de ADN de las cuales provienen;
dichas instrucciones se conocen como transcritos
[5]. El término transcriptoma por consiguiente, se
refiere al conjunto de ARNs transcritos que
representan genes expresandose en un momento
dado, proporcionando el estado bhiolégico de la
célula [1].

De manera similar a como se realiza la
secuenciacion de un genoma, se puede
secuenciar un transcriptoma.

Pero, un transcriptoma es mas complejo; éste
contiene miles de transcritos con distinto nivel de
abundancia, ademas una sola secuencia del
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genoma (gen) puede transcribirse en varias
secuencias de transcriptoma (isoformas), debido a
que sus fragmentos se pueden alinear de diversas
formas (splicing alternativo). En consecuencia,
cuando se ensamblan las lecturas obtenidas de la
secuenciacion de un transcriptoma, la fase inicial
del ensamblaje realiza una agrupacién de las
secuencias pertenecientes al mismo gen
(clustering).

Sin embargo, puede incurrirse en el caso de
que los transcritos sean agrupados erréneamente
en un mismo cluster. Asimismo, otro problema
consiste en agrupar genes muy similares
(parédlogos). Reconstruir todos los transcritos e
isoformas que se encuentran expresados, es decir
ensamblarlos, ha requerido del desarrollo de
nuevos algoritmos computacionales capaces de
procesar la gran cantidad de secuencias cortas
generadas por las tecnologias NGS [6]. Los
algoritmos basados en grafos De Bruijin (DBG) o
ensambladores Eulerianos han demostrado ser
los méas aptos para estas tecnologias [7].

Los algoritmos que usan DBGs se basan en
extraer primeramente fragmentos Unicos de
longitud k (k-meros) a partir de las secuencias
originales; posteriormente se conforman los nodos
del grafo con subsecuencias de longitud k-1
provenientes de los k-meros. A continuacion,
conectan los nodos considerando prefijos y sufijos
(k-1-meros) a través de grafos dirigidos. Por
Gltimo, resuelven la trayectoria a través de un ciclo
Euleriano para formar una supercuerda que visite
los nodos solo una vez y termine donde empezé
[8]. No obstante, el algoritmo presupone
condiciones tales como que no existan errores en
los nodos, que se encuentre completo el alfabeto
de k-meros, la existencia de un camino optimo que
genere 1 sola supersecuencia y otros que no se
cumplen en el proceso de secuenciaciéon. Por
ejemplo, la lectura incorrecta de bases puede
generar k-meros incorrectos, en tanto que la
aparicién de secuencias repetidas, consecuencia
del splicing alternativo, implica que mas de una
supercuerda sea posible [7].

Estos y otros factores relacionados con el
proceso biolégico, la toma de la muestra, la
tecnologia de secuenciacién, errores de
secuenciacién, preprocesamiento con base en la
calidad de las lecturas obtenidas, la seleccion del
programa para ensamblar e inclusive los
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pardmetros de ensamblaje influyen en el
ensamblaje obtenido. Todos estos factores han
sido estudiados en otras investigaciones [9-11].
Sin embargo, un tema que no se ha abordado con
suficiente profundidad es la influencia que pudiese
tener la disposicion y asignacion de recursos
computacionales para una tarea de ensamblaje
de novo.

Es comun que un proyecto que involucre
ensamblaje de novo esté enfocado en los
aspectos de laboratorio en lugar de los recursos
computacionales requeridos. Adicionalmente, una
de las principales limitantes para una investigacion
en la implementacion de un ensamblador de novo
es la demanda computacional de estos programas
[12]. Tipicamente, un ensamblador de novo de
vanguardia corre en plataformas multindcleo, con
bastante memoria RAM, con alta capacidad de
almacenamiento y sistemas operativos Linux;
frecuentemente sobre equipamiento de Cémputo
de Alto Rendimiento (High Performance
Computing, HPC), no disponibles en
muchas instituciones.

Los reportes actuales sobre ensamblaje de
novo tipicamente muestran los efectos que la
cantidad memoria y nudcleos tienen sobre los
tiempos de procesamiento o sobre la viabilidad de
la plataforma para la ejecucién del proceso [12—
14]. No obstante, apenas se tienen precedentes de
la existencia de una ligera variacion en la salida del
ensamblaje, resultado de correr el proceso en
distintas ocasiones o en hardware distinto [15].
Asimismo, se ha reportado que existe aleatoriedad
en los resultados (de ensamblaje) debido al uso de
multi-threading en combinacién con la utilizacién
de estructuras probabilisticas de datos [16].

En ambos trabajos no cuantificaron
experimentalmente dicha variabilidad y
aleatoriedad en los ensamblajes. Dadas las
condiciones tipicas de ensamblaje y los pocos
precedentes de los efectos computacionales en
estos procesos, el efecto que un equipo de
coémputo tiene en la obtencién de ensamblajes de
novo no es tomado en cuenta y no se aprovecha
en favor de la prospeccion y generacion de
informacion de transcriptomas de especies
poco estudiadas.

En este trabajo se considera que la influencia
del equipo de computo y la asignacion de recursos
computacionales es relevante en el caso de

ensamblaje de novo de transcriptoma, dado que el
proceso de clustering en las primeras etapas a
partir de las cuales se determinan las isoformas,
depende de la disponibilidad inicial de secuencias
y la incorporacion sucesiva de secuencias
candidatas al cluster. La distribucion inicial de
secuencias en las localidades de memoria
disponibles para cada procesador influira, por
ende, en la formacién de estos clusters y en el
resultado final del ensamblaje.

A partir de esta hipétesis, en este trabajo se
explora la influencia que tiene la asignacion de los
recursos computacionales en el ensamblaje de
novo de ftranscriptoma, en términos de
repetitividad de un ensamble bajo las mismas
condiciones, entre condiciones distintas, y en
términos de calidad al comparar lo obtenido con un
transcriptoma de referencia.

2. Metodologia

Para evaluar la repetitividad y calidad se
realizaron ensamblajes en diferentes plataformas
computacionales, utilizando organismos modelo
para los cuales, si existe una referencia contra la
cual comparar y determinar la calidad de los
transcriptomas ensamblados. Se decidio utilizar el
software ensamblador de transcriptomas Trinity
(ver. 2.1.1) [17], por ser considerado por la
comunidad cientifica como el ensamblador por
defecto para realizar ensamblaje de novo [13].

2.1. Recursos computacionales

Dado que el ensamblaje de novo de
transcriptoma demanda el uso de cOmputo
intensivo, se seleccioné como sistema minimo una
estacion de trabajo y dos sistemas de HPC,
variando en cada plataforma la asignacion de
memoria y de nudcleos de cémputo, tal como se
muestra en la Tabla 1. Todas las plataformas
cuentan con sistemas operativos Linux de 64 bits.

En la estacion de trabajo la memoria RAM se
limité fisicamente, en tanto que en las plataformas
de HPC, dado que no es posible modificar
fisicamente sus recursos de hardware, se variaron
los recursos asignados al trabajo de ensamblaje a
través del planificador correspondiente, en cuanto
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Tabla 1. Configuraciones de las plataformas de computo para realizar ensamblajes

Plataforma de computo Pardmetros Planificador
Trinity SLURM TORQUE
Memoria , Maxima , Nodo/
Nombre Plataforma RAM (GB) Nucleos Memoria CPU Nucleos Nicleos
W, Estacion de 20 6 20 6 - -
w, trabajo 24 6 24 6 - -
Hy HPC 128/nodo 20/nodo 24 6 - 1/6
H, (No Virtual) 128/nodo 20/nodo 64 10 - 1/10
vV, HPC 128/nodo 24/nodo 24 6 6 -
Vv, (Virtual) 128/nodo 24/nodo 64 12 12 -

“ 9

equivale a “No aplica”

al nimero de nodos de cémputo y nucleos
por nodo.

En el ensamblador Trinity se asign6 el
parametro de memoria y el nimero de hilos por
CPU para corresponder con las configuraciones
de hardware. Los demas parametros fueron
especificados a sus valores por defecto.

Se utilizé una estacion de trabajo Dell Precision
T7500, con un procesador Intel Xeon X5680 3.3
GHz de 6 nucleos, con capacidad en discos duros
de 2.5 TB, ala cual se le modificé la memoria RAM
(20 GB, 24 GB) de acuerdo a las configuraciones
W, y W,, respectivamente (Tabla 1).

Los centros HPC donde se realizaron los
procesos de ensamblaje son: Laboratorio Nacional
de Supercémputo del Sureste de México (LNS) de
la Benemérita Universidad Autonoma de Puebla
[18] y el proveedor Penguin Computing, a través
de su servicio en la nube Penguin On
Demand [19].

El primer recurso de HPC esta conformado por
la supercomputadora Cuetlaxcoapan del LNS,
compuesta de un cluster estandar de calculo con
procesadores Intel Xeon y un cluster con
procesadores Intel Xeon Phi Knights Landing. El
cluster estdndar esta compuesto de 228 nodos de
célculo Thin y otros 42 nodos de célculo mas
robustos (fat, semi-fat, ultra-fat). Para los procesos
de ensamble realizados en este estudio se utilizé
el cluster estandar, el cual funciona en modo
virtual y donde los nodos de calculo Thin, tienen 2
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procesadores Intel Xeon E5-2680 v3 (Haswell) a
2.5 GHz, con 24 nucleos en total y 128 GB de
memoria RAM. Los nodos estén intercomunicados
con una red Ethernet Gigabit y una red Infiniband
FDR a 56 Gbps. Este cluster utiliza el
administrador de carga de trabajos SLURM [20],
que es libre y puede manejar un cluster Linux de
cualquier dimensién. La especificacion de los
recursos computacionales a utlizar en cada
ensamblaje se definio en el Job Script, a través de
los pardmetros de SLURM:

#SBATCH -n 24 # number of MPI tasks
(cores) requested,

#SBATCH --ntasks-per-node=24 # task (cores)
per node (maximum 24).

Este ejemplo especifica que se ejecute el
trabajo con 24 nuacleos (1 nodo Thin) del cluster
estandar, donde cada nucleo obtiene 5.3 GB de
RAM [18]. Esta plataforma computacional, se
utiliz6 para realizar los ensambles en las
configuraciones V; y V, (Tabla 1), especificando el
uso de 1 nodo en el Job Script, pero variando la
cantidad de nucleos en concordancia con los
pardmetros de entrada de Trinity.

El segundo recurso de HPC utilizé el servicio
en la nube POD de Penguin Computing con la cola
T30, que especifica nodos con un procesador Intel
Xeon E5-2660 v3 (Haswell) a 2.6 GHz con 20
nacleos y 128 GB de RAM.

Todos los nodos estan intercomunicados con
una red Ethernet Gigabit de 10 Gbps y una red
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Infiniband QDR a 40 Gbps. El servicio utiliza el
planificador PBS TORQUE [21] para introducir
trabajos al cluster computacional. Sin embargo, es
necesario seleccionar una cola del planificador.
Cada cola provee diferentes tipos de nodo de
cémputo, y por lo tanto tienen diferentes precios.

La especificacién de los recursos se definié en
el Job Script, a través de los parametros de
TORQUE:

#PBS -q T30,
#PBS -l nodes=1:ppn=20.

Este ejemplo especifica que se ejecute el
trabajo con 1 nodo de 20 nucleos de la cola T30,
donde cada nucleo tiene 6.4 GB de RAM [19]. Se
utilizé esta plataforma computacional,
especificando en el Job Script el uso de 1 nodo,
pero variando el numero de nlcleos en
concordancia con los parametros de entrada de
Trinity; estas disposiciones se utilizaron para
realizar los ensambles en las configuraciones H; y
H, de la Tabla 1.

2.2. Monitoreo de memoria

Con la finalidad de cuantificar el uso de
recursos durante el proceso de ensamblaje se
decidi6 monitorear el proceso mediante el
comando top de Linux. Posteriormente, se
analizaron los datos con Matlab (r2013a) [22]. El
registro generado a partir de un muestreo cada 10
segundos y el registro de tiempos (Trinity.timing)
permiten identificar la etapa del proceso de
ensamblaje que hace el uso mas extensivo
de memoria.

2.3. Organismos

Aun cuando el ensamblaje de novo se utiliza
principalmente en organismos que no cuentan con
un genoma o transcriptoma de referencia, en este
estudio se requieren referencias para obtener la
calidad de los ensamblajes, por lo que se
seleccionaron dos organismos modelo: la Mosca
de la Fruta (Drosophila melanogaster) y la Pulga
de Agua (Daphnia pulex).

Las lecturas crudas de la Mosca de la Fruta,
fueron obtenidas del Sequence Read Archive
(SRA) [23] del Centro Nacional de Informacién

Biotecnolégica  (NCBI), con numero de
identificacion SRR042489, provenientes del
proyecto [24]. Las lecturas de la Pulga de Agua
fueron descargadas de repositorio ENA [25]
perteneciente  al Instituto  Europeo  de
Bioinformética, ndmero  de identificacion
SRR2075894, obtenidas en el proyecto [26].

Se analiz6 la calidad de las lecturas con
FastQC [27] y segun sus resultados se pre-
procesaron los datos con Trimmomatic (version
0.32) [28].

Los transcriptomas de referencia fueron
descargados del repositorio Ensembl [29]. Para la
Mosca de la Fruta fue la versién 87, que contiene
30,651 transcritos. Para la Pulga de Agua fue la
version GCA _000187875.1 con 30,590 transcritos.

2.4. Métricas

2.4.1. Repetitividad por plataforma
computacional

Dado un conjunto de lecturas de secuenciacion
L,, de una especie m obtenidas de una base de
datos publica, sea Egm,; un ensamble (un
conjunto constituido por contigs) realizado con
configuracién de plataforma computacional p,
utilizando L,, como entrada al proceso de
ensamblaje de novo, donde i es el numero
correspondiente a la repeticion del proceso de
ensamblaje utilizando las mismas condiciones
iniciales, se tiene que:

Ipmm = N Egmiy, (1)

donde I, .y representa el conjunto de contigs
resultantes de la interseccion entre los n
ensambles de novo, con las mismas condiciones.
Asimismo, se puede decir que el conjunto de
contigs no intersectados I_(,,Jm,n) es tal, que:

Tomm N lpmm =0 )

Por lo tanto, el conjunto I_(,,,m,n) representa el
conjunto de contigs que no aparecen en todos los
ensambles E, »,, ;) que se generaron durante alguin
ensamblaje en particular.

De tal manera que la cantidad total de contigs
obtenidos por plataforma p para un organismo m
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en n repeticiones esta dada por la unién de sus
conjuntos intersectados y no intersectados:

C_totalipmmny = Ipmmy Y Ipmmn)- ®)

Los analisis de conjuntos intersectados y no
intersectados se realizaron con el software de
coémputo cientifico Matlab (r2013a) [22].

La cuantificacién de la repetitividad se da con
base al porcentaje que representa el subconjunto
I(p,mny del conjunto Ctotal, ) Y la variabilidad se
da con base al porcentaje que representa el
subconjunto I_(p,m,n) del conjunto Ctotal,mn),
encontrados por plataforma p para el organismo m
en n repeticiones.

Finalmente, la ganancia por variabilidad entre
plataformas se cuantifica tomando en cuenta la
relacion de la variabilidad maxima de las
configuraciones de la estacién de trabajo entre la
variabilidad maxima de las configuraciones en las
plataformas basadas en HPC.

2.4.2. Calidad

Si bien existe variabilidad entre un ensamblaje
y otro, aun partiendo de las mismas condiciones
iniciales, es necesario considerar si esta
variabilidad representa contigs presentes en el
transcriptoma del organismo o son artefactos del
proceso matematico-computacional. Para
identificar la validez de los contigs generados es
necesario realizar un proceso de mapeo de los
contigs al transcriptoma de referencia, definiendo
asi la calidad del ensamblaje.

El término calidad de ensamblaje, se refiere a
la concordancia entre el ensamblaje y el
transcriptoma original del organismo modelo [30] o
en este caso, a su referencia codificante mas
préxima y el conjunto de contigs obtenidos del
proceso de ensamblado. En este estudio el
objetivo es detectar la calidad de los contigs
originados exclusivamente por la variabilidad de
cada plataforma de cémputo.

En este contexto, se define como referencia
codificante a la mejor aproximacion de
ensamblado de transcriptoma disponible en cierta
fecha o version, disponible en las bases publicas
de los organismos involucrados, ver el sitio de
Ensembl [13, 29].
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Formalmente, sean los conjuntos I;mn) €
I_(p,m,n) se procede a analizarlos con respecto al
conjunto referencia codificante de la especie,
llamado Transcriptoma de referencia T,,,, mediante
un proceso de identidad, utilizando el software
BLAST [31]; de tal manera que:

{(C, t): cE Im(p,m),t € T(p,m)} = f : I(p,m) = T, (4)

donde (c, t) representa un par (contig, transcrito) y
Immy €s el conjunto de contigs intersectados
generados con la plataforma computacional p, que
mapearon en el conjunto referencia T,y,. T, ) €S €l
subconjunto de transcritos de T,, a los que
mapearon los contigs intersectados del conjunto
Im,m). NOtese que, para simplificar, se omitio el
subindice n, asi mismo en:

{(C, t): c€E I_M(p’m),t € T(p,m)} = f : I_(p,m) - Tm' (5)

donde (c, t) representa un par (contig, transcrito) e
I'm, .y es el conjunto de contigs no intersectados
generados con la plataforma computacional p, que
mapearon en el conjunto referencia Ty,. T, ) €S €l
subconjunto de transcritos de T,, a los que
mapearon los contigs no intersectados del
conjunto Im, ).

Ya que pueden existir contigs intersectados y
no intersectados que mapean a un transcrito
comun, se puede realizar la siguiente operacion:

Tom) N Tom) = Topm) (6)

donde T¢,.,, €s el subconjunto de transcritos
mapeados compartidos por los conjuntos de
contigs intersectados y no intersectados. Para
obtener los contigs no intersectados compartidos,
se realiza:

{(c,t):c € ITm{y )t € Ty}
. i )
=1+ lpm = Tom)

donde I_mfp,m) es el conjunto de contigs mapeados
no intersectados compartidos.
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Mapeo y Clasificacién de Conjuntos de Contigs

Conjunto de
Contigs
Intersectados
Mapeados

1M, m)

Transcritos de

FIrr

Referencia «+ ... AGG...TAG... ] .TCG...CCA..ATC...CGA...

..CAA.. | ..CCT..AGA..

m

Conjunto de
Contigs No
Intersectados
Mapeados
I Mp,m)

Contig referenciado a un
transcrito comun entre

|:| intersectados y no intersectados: I:l

Contig € I'm x(p.m]

Contig intersectado
mapeado a un transcrito:
Contig € Im,

— ... AGC... e

Contig referenciado exclusivo aun
transcrito mapeado por no
intersectados:

Contig €Tm +(p.m]

Fig. 1. Mapeo de contigs intersectados y no intersectados, asi como su clasificacion dependiendo del transcripto al que

hayan sido referenciados

Asimismo, se puede realizar la
siguiente operacion:
Impmy = Iy my = My my, ®)

donde Im{,,, es el conjunto de contigs no
intersectados que exclusivamente mapean a
transcritos en T, que no son compartidos con el
conjunto de transcritos mapeados inicialmente por
Im(, m). La representacion de estos conjuntos con
respecto al transcriptoma de referencia se muestra
en la Figura 1.

Para decidir que contigs se compartian entre
ensamblajes se utilizd un criterio estricto de
coincidencia Unica, es decir, ambas cadenas
deberian ser exactamente iguales en tamafio y
composicién. No obstante, los algoritmos de
mapeo tienen un criterio mas laxo, permitiendo
reconocer secciones similares aun cuando no
sean las cadenas exactamente iguales. Este
criterio permite variar la longitud y composicion
del contig.

Debido a este criterio pudiese haber contigs
que siendo ligeramente distintos mapean a la
misma porcién del transcriptoma.

Esta situacion puede ocurrir para ambos
conjuntos (comunes y no compartidos) y entre
conjuntos. Por ello, la evaluacion de calidad
considera como informacién valida originada por
variabilidad de plataforma a todos aquellos contigs

contenidos en el subconjunto I .,.. Esta
evaluacion se expresa en el porcentaje
representado por los contigs mapeados

provenientes del conjunto no intersectado Im, ),
por plataforma p para un organismo m con
respecto al [ ), dados n ensambles.

Asimismo, considera como informacién nueva
originada por la variabilidad de plataforma solo a
los contigs mapeados exclusivos al conjunto no
intersectado Imf, ,,,. Esta evaluacion se expresa
en el porcentaje representado por los contigs
mapeados exclusivos provenientes del conjunto
no intersectado I_mgfp‘m), por plataforma p para un
organismo m con respecto al [;my), dados
n ensambles.
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Tabla 2. Cantidad de Contigs ensamblados por plataforma computacional

Mosca de la Fruta

Pulga de Agua

Plataforma Promedio Desv,iaci(’)n Promedio Desv,iacién
Computacional Estandar Estandar

W, 25,994.80 6.72 53,280.4 37.63

W, 25,988.80 5.81 53,276.8 39.93

H, 25,981.60 3.44 53,220.8 20.32

H, 25,984.40 5.68 53,247.8 15.08

Vi 25,988.40 3.65 53,321.6 23.06

V, 25,989.40 2.30 53,320.0 23.98

La ganancia en calidad se cuantifica tomando
en cuenta la relacion del ndmero maximo de
contigs representados por el conjunto I_m(p_m) de
una de las configuraciones basadas en la estacion
de trabajo, entre el nimero maximo de contigs
representados en Img,,, de una de las
configuraciones basadas en HPC.

De la misma forma, la ganancia en informacion
nueva se cuantifica tomando en cuenta la relaciéon
del nidmero maximo de contigs representados por

. T+ ; i
el conjunto Img,,,de una de las configuraciones

basadas en la estacion de trabajo, entre el nimero
maximo de contigs representados en Img,,,, de
una de las configuraciones basadas en HPC.

Cabe hacer notar que los parametros del
software BLAST fueron establecidos de tal manera
que se obtuviese un hit (alineamiento positivo) por
secuencia de entrada, alta similitud entre
secuencias alineadas, pero con bajos valores de
expectacion. Umbrales utilizados: valor de
expectacion e-value 1x10°; porcentaje de
identidad: 95%; alineamientos méaximos por
secuencia de entrada max_hps: 1; cantidad de
secuencias alineadas max_target_seqs:1;
cantidad de nucleos: 1.

3. Resultados
3.1. Datos de entrada

Las estrategias de pre procesamiento para los
datos de secuenciacion se realizaron basadas en

los correspondientes reportes de calidad de las
lecturas para cada organismo. Para Mosca de la
Fruta fue: corte de primeras 10 bases, remocion
de adaptadores en modo palindromo, [ > 32. En
los datos de Pulga de Agua: corte de primeras 10
bases, remocion de adaptadores en modo
palindromo, Q... 25, [>32; posterior al
preprocesamiento los datos seguian conteniendo
secuencias sobrerrepresentadas, ribosémicas
segun la busqueda en la base de datos del NCBI
[32], consecuentemente se realiz6 un segundo
pre-procesamiento  para  remover  dichas
secuencias.

Los datos de entrada pre-procesados fueron
7,564,138 y 7,168,393 lecturas pareadas con
longitudes variables de 32-66 bases para Mosca
de la Fruta y Pulga de Agua, respectivamente.

3.2 Contigs ensamblados

La Tabla 2 muestra el promedio de contigs
generados después de 5 repeticiones del
ensamblaje efectuados en cada configuracion. De
los promedios y desviaciones se puede apreciar
que el nimero de contigs generados en cada
repeticion es muy parecido.

3.3. Uso de memoria

El ensamblador Trinity consta de tres médulos:
Inchworm, donde realiza la agrupacioén inicial de
lecturas pertenecientes al mismo gen (clustering)
y una construccién extendida de secuencias con
base en dichos clusters; Chrysalis:
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Tabla 3. Utilizacibn maxima de memoria RAM (GB) por plataforma computacional, organismo y mdédulo de

ensamblaje de Trinity

Mosca de la Fruta

Pulga de Agua

Plataforma Computacional Inchworm Chr/Btf Inchworm Chr/Btf
W, 20.4 9.7 20.4 20.4
W, 24.4 12.8 245 24.5
H, 21.1 13.0 26.0 27.8
H, 78.3 23.3 75.7 34.3

Inchworm: Primer médulo del ensamblador. Chr/Btf: Segundo y tercer médulo del ensamblador Trinity, Chrysalis

y Butterfly respectivamente

— Es el médulo donde construye los grafos
De Bruijn con base en los clusters de
lecturas y los contigs extendidos, para
finalmente pasar al modulo; Butterfly,
donde resuelve ambigledades en los
grafos con base en la cantidad de lecturas
que respaldan la trayectoria de analisis
[15].
El moédulo Inchworm es el primero en ser
ejecutado. Posteriormente, los médulos Chrysalys
y Butterfly se ejecutan de forma alterna.

La Figura 2 muestra el uso de memoria RAM
durante los procesos de ensamblaje de novo de
transcriptoma para Mosca de la Fruta y Pulga de
Agua en las plataformas H, y W,. Se delimité con
una linea vertical intermitente la duracion del
modulo Inchworm.

Notese que el manejo de los millones de
secuencias de entrada se ven reflejadas en el
manejo de memoria por parte del ensamblador,
sobre todo en el primer médulo, Inchworm, donde
ambos organismos hicieron uso intensivo de
memoria, ~80 GB en la plataforma H, (Figura 2 a
y b). La duracion del primer médulo en las
configuraciones H, fue de ~24 minutos en
procesos de Mosca de la Fruta y ~5 minutos en
ensamblajes de Pulga de Agua. Asimismo, se
puede observar que el uso de memoria en los
modulos posteriores fue mayor en los procesos de
Pulga de Agua teniendo un pico de uso en 34.3 GB
(Tabla 3). El uso de memoria en los modulos
alternados Chrysalis y Butterfly en el caso de
Mosca de la Fruta no excedi6 los 24 GB.

El uso de memoria en las plataformas W; y W,
se vio limitado por la capacidad fisica de memoria

de las plataformas, inclusive los ensamblajes de
Mosca de la Fruta tendieron a saturar el primer
modulo (Figura 2 ¢), y se observaron picos
maximos de memoria en al menos 2 médulos al
procesar la Pulga de Agua (Figura 2 d).

En la Tabla 3 se muestra la utilizacion maxima
de memoria por configuracion, especie y médulo
de Trinity.

3.4. Repetitividad por intersecciones

Las figuras 3 y 4 muestran el resultado de
intersectar los conjuntos generados con las 5
repeticiones del ensamblaje por maquina. Las
intersecciones son los contigs comunes a los
ensamblajes que contienen exactamente las
mismas secuencias. Basta un cambio de base,
insercion o perdida entre dos contigs para que se
consideren ambos distintos y se envien al conjunto
de no intersectados. Nétese la diferencia de
escalas, y que los contigs no intersectados
constituyen menos del 5% en el caso de la Mosca
de la Fruta y menos del 30% para Pulga de Agua.

En la Tabla 4 se muestran los porcentajes de
repetividad y variabilidad por plataforma para
ambos organismos, encontrandose  mayor
repetitividad en las plataformas HPC, pero mayor
variabilidad en las plataformas con menor
memoria. Se observa también que la ganancia
maxima por variabilidad de una de las
configuraciones basadas en la estacion de trabajo,
para Mosca de la Fruta es 4.49/2.26 = 1.98 veces
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Fig. 2. Utilizacién de memoria RAM durante el ensamblaje en la plataforma H, de Mosca de la Fruta en las
configuraciones (a) y Pulga de Agua (b); ensamblaje en la plataforma W, de Mosca de la Fruta (c) y Pulga de Agua
(d). Linea vertical intermitente indica fin del médulo Inchworm
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Tabla 4. Repetitividad y Variabilidad

Mosca de la Fruta

Plataforma Repetitividad ~ Variabilidad
Computacional Ctotalpmoscasy  I(pmoscas) (%) I pmosca5) (%)
W, 26,618 25,422 95.51 1,196 4.49
W, 26,544 25,474 95.97 1,070 4.03
H, 26,286 25,693 97.74 593 2.26
H, 26,286 25,692 97.74 594 2.26
Vy 26,202 25,784 98.40 418 1.60
Vv, 26,180 25,807 98.58 373 1.42
Pulga de Agua
Plataforma Repetitividad ~ Variabilidad
Computacional Ctotal ypuigas)y  Ippuigas) (%) 1 puiga,s) (%)
Wy 60,632 47,510 78.36 13,122 21.64
W, 60,943 47,261 77.55 13,682 22.45
H, 56,617 50,590 89.35 6,027 10.65
H, 56,630 50,580 89.32 6,050 10.68
Vi 55,545 51,627 92.95 3,918 7.05
Vv, 55,176 51,783 93.85 3,393 6.15

Repetitividad: I, ;) / Ctotal g, mny. Variabilidad: I_(p_m,n) I Ctotaly, m ). Maxima Variabilidad entre plataformas W, y
W,, y maxima variabilidad entre plataformas HPC remarcadas en gris

mas que el maximo de una de las plataformas
basadas en HPC; para Pulga de Agua es
22.45/10.68 = 2.10 veces mas que el maximo de
una de las plataformas basadas en HPC.

3.5. Calidad por mapeos

De igual forma, el mapeo de los contigs de los
conjuntos no intersectados por plataforma fue
mayor para los conjuntos provenientes de las
plataformas con menor memoria (W; y W,).

Las figuras 5 y 6 muestran el mapeo por
plataforma computacional para los organismos
Mosca de la Fruta y la Pulga de Agua,
respectivamente. También, se observan en la
Tabla 5 los mapeos de contigs intersectados con
respecto a las referencias y los porcentajes que
estos representan.

La ganancia méaxima de contigs no
intersectados mapeados, para Mosca de la Fruta

es 1,186/584 = 2.03 veces mas que el maximo de
una de las plataformas basadas en HPC;
asimismo, para Pulga de Agua es 10,057/4,327 =
2.39 veces mas.

La ganancia maxima de contigs no
intersectados mapeados exclusivos, para Mosca
de la Fruta es 315/182 = 1.73 veces mas que el
maximo porcentaje de las plataformas basadas en
HPC; asimismo, para Pulga de Agua es
4,017/1,628 = 2.46 veces mas.

4. Discusion

La aproximacion inicial de los recursos
minimos computacionales para ensamblaje de
novo esta dada por los requerimientos basicos del
software ensamblador y la cantidad de datos de
entrada. El requerimiento minimo de memoria para
ensamblaje de novo de transcriptoma reportado en
el ensamblador Trinity es ~ 1GB de memoria por
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Fig. 3. Comparacion de los conjuntos de contigs intersectados I, moscq,5) ¥ 108 conjuntos de contigs no intersectados
Ipmosca,s) Obtenidos después de 5 repeticiones de ensamblajes E, mosca,s) Para el organismo Mosca de la Fruta, por
cada plataforma computacional p de la Tabla 1
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Tabla 5. Mapeos de contigs con respecto a las referencias

Mosca de la Fruta

T Tt

e M Moy Tomocasy o o Homn

W, 1,186 315 1,196 99.16 26.33

w, 1,054 312 1,070 98.50 29.15

H, 584 160 593 98.48 26.93

H, 583 182 594 98.15 30.63

Vy 409 87 418 97.85 20.81

V, 364 86 373 97.59 23.05

Pulga de Agua
T- Tont

Ccl;’*a;ﬂg::rig?‘ al Img,puiga) Iméypugay  Iwpuigas) I p;:llg(z';”(g;g)/ I p‘:zll‘;izl;lg;g)/

Wy 10,057 3,831 13,122 76.64 29.19

W, 10,369 4,017 13,682 75.79 29.35

H, 4,245 1,628 6,027 70.43 27.01

H, 4,327 1,567 6,050 71.52 25.90

vV, 2,385 1,323 3,918 60.87 33.76

vV, 2,074 1,119 3,393 61.13 32.97

Imepmy/Ipmn) Y 1M my/lpmny €Xpresado en porcentaje.
Maximos entre plataformas W;, W, y en HPC remarcados en gris.

cada millén de lecturas de entrada [17]. Segun
esta estimacion, para los datos de Mosca de la
Fruta (~7.5 millones de lecturas) y Pulga de Agua
La memoria en todas las plataformas era mucho
mayor que los requerimientos minimos teoricos
para ensamblaje, para los datos en ambos
organismos, como se indicé en la Tabla 1. Con
base en los requerimientos minimos teéricos de
ensamblaje, la asignacién de memoria o0 memoria
disponible por plataforma fue calculada a mas del
doble o el triple.

En la préactica los requerimientos minimos
reales de memoria para ensamblar excedieron el
limite tedrico, utilizando més del triple de este; tal
como se observa en la Figura 2 (a y b), donde se
graficd la utilizacion de memoria en H,, y asimismo
en la Figura 2 (c y d) para W,, al ensamblar ambos
organismos. El ensamblador tiende a utilizar
cuanta memoria esté disponible para realizar sus
procesos, independientemente del parametro de
uso de memoria asignado.

Se ha reportado que el primer médulo de Trinity
es mas extensivo en el uso de memoria [15], lo
cual coincide con las gréficas de la Figura 2.
Segun la asignacién de memoria para H, el limite
de uso debié haber sido muy cercano a 64 GB,
pero éste fue excedido por mas de 11 GB en
ambos organismos (ver Tabla 3).

Caben destacar que los ensambles generados
por las plataformas V; y H;, en donde el uso de
memoria, asignado en Trinity, estaba limitado a la
misma cantidad de GB que en la plataforma W,, y
cuyos conjuntos intersecciones de contigs fueron
mayores, tuvieron mayor disponibilidad de
memoria, ya que como se demostr6 con
anterioridad, el parametro de uso de memoria del
ensamblador no fue wuna Ilimitante para la
utilizacion del recurso.

De esta manera, se puede decir que los analisis
aqui  presentados fueron realizados en
plataformas con tres cantidades distintas de
memoria 20, 24 y 128 GB, estando representadas
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escala inicia en 2x10*

las primeras dos en las plataformas de menor
memoria (W, y W,, respectivamente) y la Ultima en
las de mayor memoria (Vy, V,, H,, ¥y H,), en donde
la configuracion de memoria por parametro no fue
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conjunto de contigs de ensamblajes debido a la
disponibilidad de memoria fisica.

Se observa en la Tabla 2 que las desviaciones
estandar indican muy poca variacion en la
cantidad de contigs construidos, de 2.3 a 6.7 para
Mosca de la Fruta y de 15.08 a 39.9 para Pulga de
Agua, tendiendo a ser mayores para las
plataformas de menor memoria (W, y W,). Si se
dejase en este punto la exploracion de resultados
se encontraria que estas variaciones son muy
pequefias en comparacion con la cantidad de
contigs obtenidos. Sin embargo, el efecto que los
recursos computacionales tuvieron sobre el
conjunto de contigs es encontrado en el andlisis
del contenido de éstos.

En ambos organismos se encontr6 mayor
repetitividad en los ensamblajes procesados por
las plataformas con mayor disponibilidad de
memoria (V;, V,, H; Yy H,), 97.74% al 98.58%,
mientras que en las plataformas con menor
memoria (W, y W,) la repetitividad en Mosca de la
Fruta fue de 95.51% y 95.97%, respectivamente.
Para Pulga de Agua la repetitividad observada en
las plataformas con mayor memoria fue del
89.32% al 93.85%, mientras que la repetitividad en
las plataformas W, y W, fue 77.55% y 78.36%.
Esto puede ser observado en los conjuntos de
contigs intersectados de las Figuras 3y 4, y en la
Tabla 4.

Por otro lado, las plataformas con menor
memoria presentaron mayor variabilidad (ver
Tabla 4). Para Mosca de la Fruta la mayor
variabilidad observada en las plataformas de baja
memoria fue de 4.49% (en W,); en el caso de las
plataformas HPC la variabilidad méaxima fue de
2.26% (mismo porcentaje en H; y H,). Para Pulga
de Agua las plataformas de menor memoria
presentaron una variabilidad maxima de 22.45%
(en W,), mientras que para HPC fue del 10.68%
(en H,). Dadas estas variabilidades se observa
que las plataformas menores presentan
aproximadamente el doble de variabilidad en
comparacion de las plataformas de mayor
memoria, 1.98 y 2.10 veces mayor en Mosca de la
Fruta y Pulga de Agua respectivamente, de
acuerdo con el célculo de ganancia por
variabilidad entre plataformas de la seccion 2.4.1.

Las plataformas con menos memoria
produjeron mayor cantidad de combinaciones de
contigs. Sin embargo, se necesita determinar si

estas secuencias, producto de un algoritmo
computacional, tienen correspondencia a un
transcrito real.

Como se mencioné con anterioridad, la
concordancia entre ensamblajes y los
transcriptomas originales se determiné por medio
de mapeos a la referencia codificante mas préxima
de los organismos. De acuerdo con el andlisis de
resultados realizado, los mapeos de los conjuntos
de contigs no intersectados fueron mayores en los
conjuntos provenientes de plataformas con poca
memoria (Figuras 5y 6).

También se observa en la Tabla 5, que para la
Mosca de la Fruta los mapeos maximos de los
conjuntos no intersectados fueron de 99.16% para
plataformas con poca memoria (en W;), mientras
que en HPC fue de 98.48% (en H,). Para la Pulga
de Agua los mapeos maximos de los conjuntos no
intersectados fue 76.64% (en W), mientras que en
HPC fue 71.52%(en H,). Si bien los porcentajes de
mapeos son similares para ambos organismos, los
contigs no intersectados mapeados en las
plataformas de menor memoria son
aproximadamente el doble en comparacién con los
contigs mapeados en las plataformas HPC.

Para Mosca de la fruta la cantidad de contigs
mapeados fue 2.03 veces mayor en la estacion de
trabajo comparando con los mapeos maximos
para HPC; en Pulga de Agua mapearon 2.39
veces mas contigs en la estacion de trabajo
comparando con los mapeos maximos en HPC.

Se puede observar también que los
porcentajes de mapeos exclusivos provenientes
de los conjuntos no intersectados Im,,,son
similares para ambos organismos y que estos
representan la proporcion de informacion validada
generada de manera exclusiva por una plataforma
dada. Dichos contigs variaron desde el 29.15% al
30.63% en Mosca de la Fruta y del 29.35% al
33.76% en Pulga de Agua. Sin embargo, las
ganancias en informacién nueva, que se basan en
los contigs mapeados exclusivos I_m{p_m), indican
gue para Mosca de la Fruta la estacion de trabajo
obtuvo 1.73 veces mas contigs mapeados
exclusivos que las plataformas HPC; asimismo, en
Pulga de Agua se obtuvieron en la estacion de
trabajo 2.46 veces mas contigs mapeados
exclusivos en comparacion con las
plataformas HPC.
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Cabe mencionar que una referencia constituye
la mejor aproximacion disponible, en determinada
fecha, al transcriptoma de estudio. En este
contexto, se puede decir que gran porcentaje de
los contigs obtenidos en los ensamblajes de
ambos organismos corresponden a
transcritos reales.

Algunos contigs no lograron ser mapeados a
sus referencias. Sin embargo, no se puede
asegurar que dichas secuencias no tengan
correspondencia a algun transcrito, ya que las
referencias son actualizadas segun se profundice
en el conocimiento de cierto organismo. Se tiene
mayor conocimiento de las secuencias
transcriptomicas en Mosca de la Fruta que de los
transcritos de Pulga de Agua, ya que Drosophila
melanogaster es uno de los organismos modelo
mas estudiados por la comunidad cientifica. El
hecho de que los mapeos en Pulga de Agua sean
menores no significa que las secuencias no
mapeadas sean incorrectas, simplemente las
secuencias de dichos contigs pueden ser parte de
transcritos que aun no son descubiertos por falta
de conocimiento sobre la biologia molecular
del organismo.

Asimismo, se puede mencionar que las
ganancias aqui indicadas se presentaron al
trabajar en plataformas computacionales con
disponibilidad baja de memoria, pero con ~3 veces
mas que el minimo tedrico reportado[15], bajo las
condiciones de viabilidad de plataforma para el
procesamiento de conjuntos de lecturas de 7-8
millones de lecturas pareadas y con la unién sin
repeticiones de contigs provenientes de
5 ensamblajes.

Dados estos resultados, se evidencié que la
variacion de un ensamblaje esta dada en funciéon
de la disponibilidad de memoria del equipo de
coémputo; a mayor disponibilidad de memoria
menos variacibn en ensamblaje y a menor
disponibilidad de memoria mayor variacion
en ensamblaje.

Una de las principales ventajas del RNA-Seq
(secuenciacion NGS de Transcriptoma) es el
poder descubrir nuevos transcritos [6]. Tomando
esta caracteristica en cuenta y con base en los
resultados de este estudio, se sugiere el emplear
una estrategia repetitiva de ensamblaje de novo de
transcriptoma para el descubrimiento de una
mayor cantidad de transcritos.
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Dicha estrategia consiste en la obtencion de
varios ensamblajes bajo condiciones iniciales
iguales en plataformas computacionales viables
para proceso, pero con baja disponibilidad de
memoria; posteriormente, realizar la unién no
repetitiva de contigs de miltiples ensamblajes, ya
que se logra obtener conjuntos mas grandes de
contigs de alta calidad, como fue realizado en los
contigs obtenidos en las plataformas de menor
memoria W, y W, (ver Figuras 5y 6).

El efecto de memoria en otras métricas
distintas a la cantidad de contigs o su contenido no
fueron analizadas en este estudio. Diversas
métricas estadisticas buscan dar un indicativo de
la calidad de ensamblaje con respecto al
transcritptoma original, pero éstas métricas no
muestran indicios cuantitativos del desempefio del
equipo de computo o su influencia en el conjunto
de contigs.

Del mismo modo, se hubiese esperado que la
repetitividad de las plataformas V; y H, fuese muy
similar dado que tienen la misma cantidad de
memoria (128 GB); no obstante, se encontrd
mayor variacion en la plataforma H;. Esto pudiese
sugerir que, aparte de la memoria RAM disponible
para los procesos de ensamblaje, los efectos
computacionales en ensamblaje pueden ser
influidos en menor proporcién por otros recursos,
como la memoria cache del procesador (que es
menor en el nivel L3 para los procesadores de las
plataformas H, y H,). Este y otros aspectos, como
el nimero de nacleos de procesamiento, necesitan
ser estudiados para ampliar el conocimiento de los
efectos computacionales en la tarea
de ensamblaje.

5. Conclusiones

El ensamblaje de novo de transcriptoma es una
etapa clave en estudios exploratorios del
contenido de ARN. Es necesario tomar en cuenta
los efectos que la plataforma computacional tiene
sobre  este  proceso. Asi  mismo, el
aprovechamiento de las plataformas disponibles
para trabajos de investigacion prospectiva debe
ser potencializado en la etapa de ensamblaje. Un
ensamblaje varia en funcion de la disponibilidad de
memoria del equipo de computo; menor
disponibilidad de memoria origina mayor variacion
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0 combinaciones en multiples ensamblajes. Aln
mas, los contigs extra originados por dicha
variacién han mostrado tener correspondencia con
transcriptomas de referencia. Tomando ventaja de
la viabilidad de datos, disponibilidad de plataforma
y recursos computacionales y su influencia en
variabilidad del ensamblaje en funcion de la
memoria, se sugiere descubrir mayor cantidad de
contigs de calidad al realizar n repeticiones de
ensamblajes bajo las mismas
condiciones iniciales.
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