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Abstract. Understanding the folding of proteins is one of
the most interesting research field for the Bioinformatics.
The contact maps constitute an intermediate step in the
prediction of the 3D structure of the proteins and allow to
represent folding patterns. Currently, the methods used
to predict contact maps achieve low precision results,
only about 25% of long-range (L/5) contacts are correctly
predicted, and their knowledge base is not humanly
interpretable. In this paper, we propose an easy
implementation multiple classifier for contact maps,
which is based on patterns of interaction between
secondary structures and employed decision trees as
base classifiers. This method is able to naturally reduce
the level of imbalance between contact/non-contact
classes. In addition, a set of interpretable rules are
extracted as a complement to the prediction. The
validation of method performance shows that an
average of 45% of general contacts are correctly
predicted. Moreover, a Z-score comparison of its long-
range contacts predictions (L/5) with participant methods
in CASP11 competition shows that it is competitive with
the state-of-the-art methods.

Keywords. Contact maps, folding patterns, decision
trees, long-range contacts.

1 Introduction

Proteins play a fundamental role in life, tasks such
as catalysis of biochemical reactions, structural

support, transport of nutrients, signal transmission
allow the proper functioning of living organisms [1].

Proteins can achieve several states of
conformation: amino acid sequence (1D), the local
spatial arrangement of the protein backbone
forming structural motifs (2D), folding in space (3D)
and the combination of several peptide chains
(4D). Folding is the process by which a protein
reaches its 3D structure beginning from the
primary sequence and is closely associated with
the function that they perform in the organism.

Furthermore, a miss-folding prevents proteins
from fulfilling their biological function, allowing the
development of diseases such as Alzheimer's [2],
Cancer [3], Diabetes type Il [4], among others.

Recognizing patterns in folding may be a key
factor in the discovery and development of drugs
for the treatment of such diseases.The
determination of the 3D structure by experimental
methods such as X-ray [5] and NMR [6] is
expensive and time-consuming [7].

Therefore, developing automated learning
methods to predict the structure of proteins is
critical for Dbiologist specialists. Different
computational methods are implemented to predict
protein contact maps.

In short, the main difference between these
methods that is able to influence their results, is if
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they employ similar proteins or homology in the
learning process [8]. However, predicting contact
maps with reliable accuracy is still a problem,
where the values for accuracy recorded in the
CASP competition do not exceed 25% for long-
range contacts [9].

Another problem is that most of the methods
employed are practically black boxes [10], so their
result is not easily interpreted by biologists
specialists, which makes it difficult to understand
the process of folding proteins.

In this article, we propose a multiple classifier of
easy implementation, to predict contact maps of
proteins. The main idea of the method is to
recognize patterns from interaction between
secondary structures and its inter-residual contacts
between them. For this, it uses a scheme of
multiple specialized classifiers based on decision
trees, which allow understanding the context in
which the interactions between secondary
structures occur.

In addition, as a complement of the final
prediction, it is possible to explain the result of the
prediction by means of a set of interpretable rules,
which makes it possible to elucidate the process of
folding proteins.

The article structure is as follows, firstly, in the
introduction section, a brief introduction to the
problem and to the methods of predicting contact
maps is made. In the materials and methods
section, several works related to the prediction of
contact maps and the main paradigms are
analyzed.

Next, we introduce the proposed model, the
feature coding vectors, and highlight the main
differences of the algorithm with respect to the
strategies of multiple classifiers construction. The
decision tree suitability as a base classifier is
analyzed.

And the measures used to evaluate the
performance of the method are listed. In the
analysis and discussion section, the data used for
the validation of the implemented method is
described. Subsequently, the results achieved by
our proposal are analyzed in detail. The
mechanism of interpretation and its advantages
are described. Finally, we present the conclusions
of the article and the future works.
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2 Materials and Methods

2.1 Secondary Structures Interactions and
Inter-Residues Contacts

Contact maps can be associated with different
levels of resolution such as inter-residual or
structural  (a-helix, B-sheets, coils). Both
resolutions are able to represent the spatial
constraints to which proteins are subject inside the
folding process.

But the differences rely upon their benefits,
such as the computational cost, where at the
structural level the contact maps are usually more
compact and therefore allow the use of more
complex algorithms [11]. On the other hand, at the
inter-residual level, there is a higher level of detalil
which provides strong information in the process of
3D reconstruction of the protein [12]. For the
implementation of our multiple classifier, we
assume that a contact map is a symmetric matrix
of length L, where L is the size of the protein
sequence. For these, a pair of residues is in
contact if the distance between its Cg atoms (or Cq
for Gly) is less than 8A [9].

Also for a secondary structures contact map,
two secondary structures are in contact if the
minimum distance between their residues is below
a threshold of 8A [13]. Previous studies have
shown that approximately 90% of the contacts
between residues are closely related to
interactions between secondary structures [14].
Other authors consider that the prediction of such
interactions can be used as an intermediate step
for the prediction of contact maps, in addition, it
constitutes a reduction of the dimension of the
problem [15].

2.2 Related Works

As aforementioned in the introduction, the
prediction of contact maps is a very complex
problem. But it is a much simpler alternative for the
prediction of protein structures since it can be
treated as a classification problem [10].

For the prediction of contact maps (abbreviated
CM), several automated learning techniques have
been used, among which are neural networks [16],
support vector machines [17], among others. But
these methods in their simple version (a single
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classifier) present difficulties facing highly
dimensioned problems, with high levels of
imbalance, characteristics present in CMs. For this
reason, most of the best-ranked methods used to
predict CM currently employ strategies based on
multiple classifiers.

In this section, we refer to different multiple
classifiers used for the prediction of inter-residual
contacts. To starting we highlight to neural
networks which have been the most used models.
Due that to they can be trained to recognize large
scale patterns of interactions between residues. In
[18] is proposed an assembly of neural networks
for the prediction of contact maps. In addition, this
method is able to specifically predict contacts
between Beta residues to improve the final result.
Another interesting method is proposed in [19] that
employs six sub-neural networks and a final
cascade to predict contacts, each subnet being
trained with independent data to improve its
coverage. But the high training costs, as well as the
correct selection of its parameters and the practical
inability to easily interpret its predictions, can be an
arduous task.

On the other hand, in [20] the authors propose
a multi-classifier based on genetic algorithms
combined with sequence’ profile information. Even,
they suggest that 41% of long-range contacts are
related to the central sequence profile (SPC). The
output of the classifier is obtained by fusing the
individual outputs of the base classifiers.

In addition, studies based on genetic algorithms
have shown that the result of their predictions can
be transformed into an interpretable set of rules. In
spite of the advantage that these methods
represent when they can describe their predictions
through rules understandable by humans. The
process of selection of parameters, the correct
operators, and the optimal functions is rigorous.

Consolidating the prediction of several well-
ranked predictors is an option used to obtain the
prediction from methods that employ different
construction mechanisms. In [21] a method is
developed to obtain the contact map by consensus
of several predictors using a logistic regression
model. On the other hand, in [22] is implemented a
method whose final prediction is the result of
evaluating the correlation between its servers
using a measure of maximum likelihood
estimation. Finally, an integer linear programming

method is applied to allocate weights to latent
servers and maximize the difference between
contacts and non-contact between residues.

The advance represented by the different
"points of view" achieved by the combination of the
results of the predictions that come from systems
that use different methods of construction, training,
and data, is biased in that it is impossible to explain
what happens in the folding process.

Finally, we focus on the decision trees, a
machine learning tools that have not been widely
used in the process of predicting contact maps of
protein structures in comparison with other
paradigms of automated learning. Actually
innovative models have made use of its benefits,
such as low sensitivity to imbalance. In [23] a
random-forest model is used for the prediction of
contact maps.

On the other hand, in [24] a reduction of the
alphabet of 20 amino acids to only 10 is proposed
and replacement sampling is used to train a
decision tree ensemble. A multi-classifier system is
developed in [25] which a decision is used for each
possible pair of amino acids interacting tree (in
total 400 base classifiers), the final CM is
calculated by a selector that recognizes that pair of
contacts is activated and predicts its interaction.

Even when these novel advances can be
explanatory with respect to their predictions. They
are unable to explain what happens at different

structural levels in the proteins folding process.

2.3 Our Model

In this article, we implement a combination strategy
of multiple classifiers to predict contact maps. This
strategy is designed to understand the context
where interactions between secondary structures
occur. To achieve that different multiple
specialized classifiers are used to recognize
patterns of interaction between secondary
structures and their inter-residues.

Subsequently, such patterns allow to predict
and refine the interactions, which are integrated
into the final contact map, see Fig. 1.
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Fig. 2. Training scheme of a base multiple classifier used in the proposal

A construction strategy of multiple classifiers is
constituted by four levels; which are, data,
characteristics, classifiers, and the combination of
results [26]. The method implemented in this article
makes particular use of these levels to reach the
final contact map. In the first level (data), it is
common for contact prediction methods to use
information from different sources such as multiple
alignments [27], sequence profile [20].

For our modeling of the problem, a set of
proteins with known secondary structure are
extracted from the PDB (if not known the
secondary structure can be calculated by a 2D
predictor). Then, a selector process is applied to
create disjoint datasets for each type of interaction
between secondary structures (a-a, a/g, a+@3, B-B,
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a-coll, coil-a, B-coil). This selector process ensures
that the problem will be divided in sub-problems,
then each multiple base classifier specializes in
one sub-problem problem. In this way, it is possible
to learn specific patterns for each type of
interaction, which eventually results in specific
rules to describe the folding which is novel for the
prediction of contact maps.

At level two (characteristics), two different sets
of descriptive features are used to create the
training instances, (a) to describe the interactions
between secondary structures and (b) to describe
the inter-residual contacts that belong to
such interactions.

Then with these instances the training sets are
created (8 for interactions between secondary
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structures and 8 for inter-residual contacts). In
addition, each training set for a specific multiple
classifier pass through a sampling process explain
in Fig. 2. This process ensures the diversity in the
multiple classifier. Level three (classifiers), with the
data sets previously created, each pair of multiple
classifiers specialized in predicting and coding (or
refining) of interaction are trained. he combined
fashion to predict all referring to the interaction
combines advantages of both structural and inter-
residual steps such as the first is better detecting
non-local interactions [15]. On the other hand, the
second conveys strong information of the 3D
model [12].

Finally, at level four (combination), there are
different ways to combine the individual predictions
of the base classifiers (in our case multiple
classifiers). Where, in our proposal happen several
operations, first, it is predicted if there is contact
between secondary structures, this decision is
taken by means majority vote of the multiple
classifier dedicated to this task. Subsequently, the
process of refinement occurs, where it is predicted
that a pair of amino acids may be in contact within
the interaction, also by means majority vote. Once
interactions between secondary structures are
predicted and refined, they are integrated into the
final contact map, to do this we opted for a
combination method [28], due to each pair of
multiple classifiers dedicated to predict and refine
the interactions know a part of the problem.

2.3 Training of a Base Multiple Classifier

Each of the multiple base classifiers employed in
the proposal applies this training process, see Fig.
2. The intent of this process is; (1) to deal with one
of the major challenges in the prediction problem
of protein contact maps which is to solve the cost
of predicting the positive class which is at least
1/60 with respect to negative class. And (2),
guarantee the diversity of the base classifiers,
which is a characteristic that must be met by all
multiple classifiers.

To achieve these two objectives, a pre-
processing of the total data set was applied, which
was divided into negative and positive cases (non-
contact and contact class respectively).
Subsequently, the negative cases were divided
into K partitions by means sampling with

replacement, where K is the number of classifiers
in the specialized multiple classifiers (K is set by
the user), finally, the positive cases are replicated
into each of these K partitions.

In the state-of-the-art of contact maps, some
methods are trained in a balanced fashion with
50% positives and 50% negatives [29] or
introducing a probability factor to reduce the
training set [19], that looks for reducing the learning
cycles. In our case, we don’t reduce any positive
instance from the training set because they are
considering as restrictions. Furthermore, with
respect to the sampling with replacement which is
a procedure considered a key strength of some of
the best classifiers in nowadays [30], combined
with the fashion way that we treated the positive
cases contributes to our multiple classifiers to
know different combinations of the search space
always focusing on the positive cases.

2.4 Encoding Features for Secondary
Structures Interactions

In the state-of-the-art, the prediction of interaction
between secondary structures has been treated as
a classification problem [13]. In this article, to
model the interaction of two structures, we coding
each secondary structure to simplified as a unique
entity (or item, Helix, Sheet or Coil), to this way we
can assign attributes such as physical and
chemical properties.

Then we propose an encoding vector based on
several sets of features to describe the context
where the interaction takes place. Given a pair of
secondary structures, the output of the multiple
classifier used to predict their interaction is Contact
or Non-Contact. The training vector used as input
for the multiple classifier contains a total of 206
mixed features.

Where, the traits extracted from a structure are
in total 34 and are described as follows;
Hydrophobicity distribution two inputs (number of
hydrophobic residues, non-hydrophobic), Polarity
distribution four inputs (number of polar, non-polar,
acid, basic residues), Charge distribution five
inputs (number of atoms of hydrogen, nitrogen,
oxygen, sulfur, carbon) Size distribution two inputs
(number of big, small residues), Residues
frequency 20 inputs (one for each amino acid),
length of the secondary structure in residues (one
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Table 1. Description of the attributes used in the residue-encoding vector. Each interaction between considered

residues have a set of these attributes

Features Description Type Entries
For each residue (i, j) and its neighborhoods (window 5 residues)
Hydrophobicity (Hydrophobic, Hydrophilic). Nominal 1
Polarity (Polar, No-Polar, Acid-, Basic+). Nominal
Organic compound (Aromatic, Aliphatic, Unknown Nominal
Organic compound).
Subtotal of features for a window 33
Subtotal of features for the two 66
windows
For the interaction between (i, j) with the opposite residue’s neighborhoods
Residue itoj-1...5andj+1.....5 H-H , NH-NH, ?-? Nominal 10
Residue itoj-1...5andj+1.....5 P-P, A-A, B-B, NP-NP, ? =? Nominal 10
Residue ito j-1...5and j+1.....5 Ar-Ar, Al-Al, UC-UC, ? -? Nominal 10
Residue jtoi-1...5and i+1.....5 H-H, H-NH, NH-NH. Nominal 10
Residue jtoi-1...5and i+1.....5 P-P, A—A, B-B, NP-NP, ? -? Nominal 10
Residue jtoi-1...5and i+1.....5 Ar-Ar, Al-Al, UC-UC, ? -? Nominal 10
Subtotal of features for an interaction 60
Total features for the two target residues and their neighborhoods 126
Separation Number of residues between the Numeric 1
target residues
Contact Class Class (Contact o Non-Contact) Nominal 1
Total of features 128

Legend. Hydrophobic (H), Hydrophilic (NH), Polar (P), No-Polar (NP), Acid- (A), Basic+ (B), Aromatic (Ar), Aliphatic
(Al), Unknown Organic compound (UC), Different type (?—?)

input). A total of 204 features are computed to
overall interaction (the two structures and their
neighborhood, +1 structures). Finally, we add two
inputs more, one for the Separation between
structures (number of intermediate structures) and
other for the interaction Class (Contact or Non-
Contact).

2.5 Encoding Features for Inter-Residuals
Interactions

The contact between two residues (i and j) within
the polypeptide sequence may be conditioned by
various physical and chemical properties related to
the context of the residues [31]. We use a features
vector to encode these properties, where a total of
128 inputs are computed to analyze each pair of
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residues and their neighborhood (it5 and j5).
These features are summarized in Table 1.

2.6 Decision Trees

In our model, we use decision trees to predict
patterns of secondary structures interaction and
inter-residual interactions within each multiple
specialized classifier, specifically the C4.5 [32]
(with C=0.25 and M=4) algorithm implemented in
Weka [33]. Even we experimentally prove other
tree-based method, but we select the
aforementioned by it “simplicity” and also in some
research is used to predict inter-residues contact
[32]. Overall, this paradigm was selected firstly,
require relatively little effort from users for data
preparation, we do not need (mandatory) to worry
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about normalizing the data. They are not sensitive
to outliers since the splitting happens based on the
proportion of samples within the split ranges and
not on absolute values. In addition, they can
handle categorical and numeric attributes which is
important, because we employed a mixed feature
vector as input to the multiple classifiers [34].

On other hand, decision trees without proper
pruning or limiting its growth, they tend to over-fit
the training data, making them weak predictors. So
this disadvantage is considered by some authors,
an advantage, where an unstable tool, combined
into an ensemble, they can create some of the best
binary classifiers [35]. To conclude one of the most
interesting characteristics that incite us to opt to
use decision trees in our model was that, they
could generate rules helping experts to formalize
their knowledge, in our case these rules form part
of an interpretation mechanism of the protein
folding process.

2.7 Evaluation Measures

One of the challenges present in the prediction of
contact maps of protein structures is the cost of
predicting the positive class (contact) with respect
to the negative class (non-contact), due to
imbalance that is present between classes where
is devote to find 1 contact of each 60 non-contacts
[36]. For that reason, it is a demand to use metrics
that give an unbiased idea of the performance of
the methods with respect to the positive class. This
implies that it is necessary to use measures that
reflect the performance of the methods in that
class, penalizing the negative class.

Measures such as Precision and Sensitivity (or
Recall) are commonly used in this case. In
addition, can be used F-measure (or Fm) [37]
which establishes a balance between the precision
and the sensitivity, providing a general idea of the
prediction in function of the negative class. The Z-
score is calculated by means the analysis of how
well the predictions carried out by the predictive
model are distributed [9], and it is a quality index of
the of the predictions made by the proposed
method based on precision Eq.1:

1 http://www.predictioncenter.org/caspll/targetlist.cgi

Inter-residues

o+f o/p all-a all-p
Proteins grouped by SCOP classification

Fig. 3. Imbalance level (ratio) between contact/ non-
contact classes

X —
Z — score = & H’ 1)

where X is a value of the set of prediction values,
M and o are the mean and the standard deviation
for the set of predictions.

2.8 Datasets

In the prediction problem of protein contact maps,
the data sets are composed of proteins of known
structure, downloaded from the PDB [38]. In
addition, with the intention that the predictive
model is trained with various data, the selected
proteins have a similarity level of less than 30%.
Our model was subjected to internal and external
validation, for the internal validation of the model
we created a set of proteins (IVS), which were
divided into eight subgroups according to their
SCOP classification (4) [39] and for the length of
their sequence (4), see complementary materials.

For the external validation of the implemented
method, firstly, a training set was created with 30%
of each subgroup of IVS proteins, and as a test set
we used the set of target proteins of CASP11,
which can be downloaded from the official
competition page?.

One of the challenges faced by the methods of
contact maps prediction is the imbalance between
classes. The Fig. 3 shows the imbalance index in
the sets of proteins used in the experiment before

being divided by sequence length.
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Table 2. Experimental performance of the proposed algorith
in proteins with different sequence lengths

m predicting interactions between secondary structures

. Ls <100 100 < Ls <200 100 = Ls < 200 300<Ls<400 A
Predictor v
Stages a+ of all- all- o+ a/f all- all- o+ a/f all- all- o+ o/f all- all- ¥g

B B a B B a B B a B B a B
Pp o o0 06 06 07 07 07 07 07 07 0,7 07 0,7 07 08 0,7 0,7
73 90 9 5 6 7 3 0 4 4 7 7 4 2 0 1 5
Secondary s o O O6 06 07 08 07 07 07 07 0,7 08 0,7 07 08 0,7 0,7
interactions 74 89 8 6 8 0 5 2 7 7 9 0 8 5 3 4 7
F o o0 06 06 07 07 07 07 07 07 0,7 07 0,7 07 08 0,7 0,7
m 72 88 7 5 6 8 3 1 5 5 8 8 5 3 1 2 5
P o0 O 01 05 04 05 02 04 04 04 04 05 04 04 04 04 04
41 49 5 1 9 2 3 3 3 2 5 2 6 5 2
Inter-residues s o 0 02 03 03 03 03 03 03 03 03 03 0,2 0,2 03 0,2 0,3
interactions 31 32 1 2 4 7 4 1 5 4 5 8 9 9 6 8 2
F o o0 01 03 03 04 02 03 03 03 03 04 03 03 03 0,3 03
m 33 38 6 8 9 2 7 5 8 7 6 4 4 3 9 4 5

Legend. The precision (P), Sensitivity (S) and Harmonic

mean (Fm). Stratification of the sequence by length

(Ls<100, 100<Ls<200, 200<Ls<300, 300<Ls<400). Prediction of the secondary structure interaction, prediction of

the inter-residues interactions

Fig. 3 shows the unbalance index (ratio), where
the highest value is 15. As a reference, some
studies show that this may be 60 (1/60 for contact
/ non-contact), [40]. One of the advantages of the
proposed method is the natural ability to reduce the
imbalance between inter-residues since the data
used for training the classifiers employed to predict
inter-residual interactions only use information
from the structures that make contact, discarding
all possible non-contact within structures that do
not make contact.

3 Results and Discussion
3.1 Internal Validation

For the internal validation, the IVS data set and a
cross-validation method (5x2) were used. In order
to analyze the performance according to the
domain application, the results are divided by
SCOP classification of the proteins and by the
length of the sequence. Table 2Table shows the
average of the two executions for the metrics
Precision, Sensitivity, and Fm.
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Table 2 shows the performance achieved by
the method for the prediction of interactions
between secondary structures and for the coding
of residues that interact within these interactions.
When analyzing the predictive capacity of
interactions between secondary structures, the
method achieves an average accuracy of 75%,
with a maximum of 90% in a/f proteins. When we
consider the SCOP classification of proteins, in
general, our proposal performs better on a/ and
all-a proteins, with a general average per group of
78% and 75%, respectively.

This suggests that the method is able to better
interpret patterns of interaction between secondary
structures in a-helix-dominated proteins. When we
take into account the length of the sequence, the
method reaches similar accuracy for all groups
with an average of 76%. This is important since the
method is not affected by increasing the sequence
length, this due to the capacity to recognize local
and non-local interactions.

When we analyze the Fm, we can verify the
good performance of the method where the
general average for this metric is 75%, which
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suggests the good balance between Precision and
Sensitivity in terms of the prediction of interactions
between secondary structures. Secondary
structures interaction patterns differ with the
topology of the protein [11], the performance of the
implemented method shows that specializing can
be a good way of dealing with this problem. Also,
the unbiased prediction for local and non-local
interactions can contribute to the prediction of long-
range contacts.

The prediction of interactions between
secondary structures is a crucial step for which our
proposal obtains good results. The next step is to
code such interactions by predicting inter-residual
contacts. First, the general inter-residual prediction
capacity (for the entire sequence) of the
implemented method was analyzed. Where we
take into account the SCOP classification, the best
performance is reached in all-B proteins, with 49%
accuracy (a state-of-art average standard [10]).

Several studies suggest that methods of
predicting residues contact are able to learn better,
patterns of inter-residual interaction from B-sheet
structures [18], which is interesting for us since our
method behaves similar to algorithms state-of-the-
art (for this possibility), in addition, in these protein
group our method reaches a maximum of 55%
accuracy. Whereas, the worst performance in
terms of precision for the prediction of inter-
residual contacts is achieved in the set of all-a
proteins, averaging 31%. Also, when the sequence
length is taken into account, the performance
achieved by the method is practically similar with
an average of 43%, for the groups. Behavior that
confirms that the sequence length does not affect
the performance of the method.

As we can see, there is a difference between
the contribution of the prediction at both the
structural and inter-residual levels. Where at the
inter-residual level it is difficult to the methods to
understand that some parts of the context for some
residues are feasibilities, for others are restrictions.
Definitely, this drawback is better handled by the
structural prediction level.

However, the method for all the inter residues
contacts in the sequence performs practically
similar for the entire domain of application.

Precision in long range contacts

Oall-o Oall-p Do+p Oo/B
0,20

0,15
0,10
0.05

0,00
Top5 L/10 L/5

Fig. 4. Precision achieved by the method for long-
range contacts (Top5, L/10, L/5, where L is the length
of the sequence)

3.1.1 Long-Range Contacts

Long-range contacts occur in a separation
between residues of more than 24 residues in
length. This type of contact is considered too
complex to predict because inter-residual contacts
decrease with increasing sequence separation,
which implies a low number of patterns to
recognize. To analyze the predictive capacity of
the method implemented, we selected the results
obtained in the internal validation for groups of
proteins grouped by their SCOP classification and
with a sequence length between 300 and 400
amino acids. Fig. 4 shows the precision results.

As Fig. 4 shows the method achieves a
maximum precision value in 16% approximately.
And we can note that best behaves is in Top5 long-
range contacts. Even for Top5, the performance is
similar for all-a and all-§ protein groups. As we can
observe in this figure, the precision values still low
with respect to the precision values achieved for
the all sequence contacts (Table 2), but the
capacity of the method of having a similar behaves
at least for all-a and all-p top5 contacts is a key-
view of the generalization capability of our
algorithm.

3.2 External Validation

In this analysis, we compare the long-range
contact prediction capacity of our method with
state-of-the-art well-ranked algorithms
participating in the CASP11 competition. Taking
into account the results presented by the official
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Fig. 5. Comparison of the proposed method with the CASP11 algorithms, the blue and orange bar are de precision
and Z-score for the methods. The algorithm identification below in the y-axis is the ID related to the method’s name.

Our method is labeled as SSlcm

page competition, see complementary materials.
Fig. 5 shows the precision and Z-score values for
all the algorithms plus our method (SSicm), in
addition, with the intention to highlight the relation
of both measures the results are sorted by the
average of these metrics.

As we can appreciate in Fig. 5, our method
SSlecm does not achieve the best precision results,
but even we note that our precision value is better
than the values obtained by five well-known
methods such as Distill (a method that consist in
set of servers), eThread, nns, raghavagps-paaint
or FoDTcm (which integrates a forest of decision
trees). Whereas, in terms of Z-score our predictor
have one of the highest results, overcome the
majority of the methods. This means that our
method can assign contacts with a high reliability.
Taking into account the relation both metrics, we
are ranked in the top-10, which suggests that the
method can be competitive with some of the best
methods of the state-of-the-art present in this
competition.

3.3 Prediction Interpretation Mechanism

Understand the protein folding process is
fundamental to Bioinformatics research field.

In this sense, our model can provide a set of
rules (if-then-else) resulting from their prediction

process. These rules describe the of proteins
folding at different levels by means integrating the
rules generated by both, the predictor of the
secondary structure interaction and the inter-
residual interaction, a small sample of these rules
in shown in Fig. 6.

In the shown rules we can highlight
characteristics of the interactions between
secondary structures such as: the sub-sequence
(SubSeq) existing between two secondary
structures where elements such as the Small coils
are important, as well as the separation between
structures (Separation < 4).

Also, particularities of inter-residual interactions
such as properties that the neighborhood of the
target residues. In addition, threshold values for
the residues belonging to the sub-sequence that is
formed between i and j. At the end, these rules can
be used in the developing drugs process as
properties or requirements to be met [41], or as
restrictions on the reconstruction of unknown or
damaged proteins [42].

The mechanism employed to convert this set of
rules in an interpretable expression is the same
proposed in previous research [25]. Given the
large volume of rules, it would be difficult to inspect
them manually; therefore, it is possible to extract
global statistics from the complete set of rules. In
this sense, the rules were sorted by confidence
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(1) IF (2Dj[frrr)] = 0.037 AND SubSeq [fismall cois)] > 0 AND 2Dj[faLa)] < 0.79 AND SubSeq [fismall sheets)] <
1) AND (RRg,j) != Polar AND Separation = 1 AND Subseq[fser)] < 0.22 AND Subseq([frrg)] < 0.70 AND

RRrs) = Hydrophobic) THEN Contac (25.0)

(2) IF (2Dj[fasp)] = 0.25 AND SubSeq [f(ig coiis)] < 2 AND 2Dj[fHis)] < 0.37 AND SubSeq [f(small sheets)] < 1)
AND (RRg, jiuy = Acid AND Subseq[fryr) > 0.19 AND Subseq[frre) < 0.77 AND RRqi4, j = Hydrophobic
AND Subseq[fLuy < 0.72) THEN Contact (14.0/1.0)

(3) IF (2Dj[feLy)] = 0.50 AND ubSeq [fismail Helix] > 2) AND Separation < 4 AND (RRg, j) '= Non-Polar AND
Subseq[fasp) > 0.25 AND Subseq([foLe) < 0.23 AND RRi2, j) = Polar AND Subseq[fLy) < 0.60) THEN

Contact (62.0/7.0)
ELSE Non-Contact (12.0)

Fig. 6. Example of the rule

level (top-down). Therefore, the most important
rules must appear on the top. These rules became
as easier and interpretable clues of the protein-
folding process for the prediction of
unknown structures.

4 Conclusions

After decades of intense research, the prediction of
protein’ contact maps still is a complicated problem
which demands a deeper effort for researchers. In
this article, we implement a novel model that
employed decision trees and two steps (prediction
and refining) of specialized context prediction to
achieve the final contact map. In the first step
intended to predict the secondary structure
interaction, the method shows its suitability with an
average precision of 75% and its capacity
suitability for non-local interactions. Then in the
second step, refining these interactions, the
method was able to differentiate contact of non-
contact with average 45% of precision for all the
protein. Also, a comparison with algorithm
participant in the CASP11 competition our method
shows that is competitive with the state-of-the-art.
An advantage of the model proposed is a
mechanism to interpret the prediction which is
useful to understand the protein folding process. In
addition, the methods naturally reduce the
imbalance between inter-residues classes.

5 Futures Works

Improve the prediction of long-range contacts, and
the integration of new features to better understand

the specific contact patterns for the different types
of interaction between secondary structures.
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