
Minimum Addition Chains Generation Using Evolutionary Strategies

Mauricio Olguín-Carbajal1, Juan Carlos Herrera-Lozada1, Israel Rivera-Zárate1,
J. Felix Serrano-Talamantes1, Rodrigo Cadena-Martínez2, J. Irving Vásquez-Gómez3,4

1 Instituto Politécnico Nacional,
Centro de Innovación y Desarrollo Tecnológico en Cómputo,

Mexico

2 Universidad Tecnológica de México, Mexico

3 Instituto Politécnico Nacional, Mexico

4 Consejo Nacional de Ciencia y Tecnología, Mexico

{molguinc, jlozada, irivera}@ipn.mx, jfserranotal@gmail.com

Abstract. The calculus for a power of a number could be

a time and computational cost-consuming task. A
method for reducing this issue is welcome in all mayor
computational areas as cryptography, numerical series
and elliptic curves calculus, just to mention a few. This
paper details the development of a minimum length
addition chains generator based on an Evolutionary
Strategy, which makes fewer calls to the objective
function with respect to other proposals that also use bio-
inspirated algorithms as Particle Swarm Optimization or
a Genetic Algorithm. By using fewer calls to the objective
function, the number of calculations is lower and
consequently decreases the generation time providing
an improvement in computational cost but obtaining
competitive results.

Keywords. Minimum length, addition chains,

evolutionary strategy, computational cost reduction.

1 Introduction

In modern cryptography calculating numbers with
exponents is widely used as part of the steps of
encryption and decryption, as in the case of
asymmetric cryptography algorithms such as RSA,
El Gamal or DSA. In the case of RSA, keys of 512,
1024, 2048 or 4096 bits in length are used,
although it is currently recommended to use 2048
or 4096 bits. If RSA is used and a key length of
1024 bits is chosen, two random numbers of 512

bits must be chosen which will be named p and q.
Multiplying these numbers yields a = p.q.

The encryption key is also a randomly chosen
number such that (p-1) (q-1) and e are relative
prime numbers. In this way the decryption key d
will be obtained from e, p and q as follows:

d = e-1 mod ((p-1)(q-1)). (1)

The d and e numbers are used to build up the
private key. To encrypt a message M, it must be
divided into smaller parts than a; each block of
cipher text will be obtained by:

Ci = Mi
e mod a. (2)

To decrypt it must be used each block of text
coded Ci with:

Mi = Ci
d mod a. (3)

Efficient and fast approximations are needed
for the calculation of large exponent numbers. If,
for example, we want to obtain an exponent of xn,
the simplest method is to use n-1 multiplications of
x such that we have xn = x * x * x * x * ... * x.

If it is considered that for a symmetric key
encryption-decryption process one can have a
1024-bit e or d for each data block, then a number
of 1.79 x 10308 is available.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2751

Considering the above, we can have up to 308
consecutive multiplications per block of data to be
encrypted. While some approaches focus on the
creation of hardware that solves multiplications
more efficiently, other approaches are focused on
reducing the number of them. A method that
reduces the number of operations necessary for
the calculation of numbers with large powers is
welcome in this field, but not only here, it is also
applicable to the elliptic curves [1] as well as to the
calculation of the numerical successions of Lucas
and Fibonacci [2] and many other groups that use
element calculations in cyclic groups. Some
approximations for the reduction of multiplications
in order to obtain xn are: the binary method [3], the
m-ary method [3] or the window-based method [4].

Although these methods significantly reduce
the number of multiplications required to obtain a
power, it is possible to further reduce the number
of such multiplications by using exponential
methods based on series of additions, in which
positive integers starting at 1 and end in the
exponent n to generate it as the last member of the
series:

β = αe mod n. (4)

The set of multiplications thus obtained is called
the Addition Chain, where e is the length of the
chain, meaning e as the number of multiplications
necessary to obtain x and y defining the length of
the chain as l(e). Therefore, a small number will
reflect a smaller number of multiplications
necessary to obtain x and y as e is reduced, in the
same proportion the number of multiplications
necessary to obtain this power is reduced.

The paper is organized as follows: section II is
formally defined the problem. Section III
evolutionary strategies and their implementation
are described for generating addition chains; The
experiments and results are presented in Section
IV, finally in section V we included the conclusions
and future works.

1.1 Approach to the Problem

Cruz-Cortés et al. [4] indicate that "formally an
addition chain e of length l is a sequence u of
positive integers" such that:

u0= 1, u1..., ul=e

Such that for each i > 1,

ui = uj + uk,

for some j and k that satisfy 0 ≤ j ≤ k <i.

Considering the above, if u is an addition chain,

which calculates e, then for each α ∈ [1, n-1] it is

possible to find β = αe mod n by successively
calculating α, αu1, ..., αu1-1, αe.

If l(e) is defined as the smallest valid length for
an addition chain for a positive integer e, then the
theoretical minimum number of multiplications
required to compute the modular exponentiation, is
precisely l (e), see equation 4. The problem is to
construct an addition chain for l (e) of minimum
length given an integer e. If there is more than one
sequence with the same length, then either is
acceptable. For example, <1,2,3,5> and <1,2,4,5>,
both are valid solutions when the addition chain for
the integer 5 is requested.

The optimal algorithm for the calculation of
addition chains requires less multiplication than a
binary power calculation for large exponents. The
first example where this is evident is in the
calculation of x15, where the binary method
requires 6 multiplications but an optimal addition
chain needs only 5 multiplications [4]. However,
the calculation of an addition chain is more
complex. There is not currently known method for
finding arbitrary exponents, and the problem of
finding an optimal sequence for an addition chain
has been shown to be a complete NP problem [5].

The problem of generating an optimal addition
chain has not been solved, with dynamic
programming since it is not enough to decompose
the power into smaller powers, each optimally
calculated. Since the addition chains for smaller
powers may be related each. However a proposed
solution to this problem is the use of bio-inspired
programming. This article presents the calculation
of Addition Chains using Evolutionary Strategies
(ES) due to the fast convergence of these, which
results in competitive results with a lower cost of
computation time compared to other bio-inspired
heuristics.

Computational algorithms have already been
developed to find short addition chains in both the
deterministic and stochastic parts. For the
deterministic part we can highlight: method of
factor [6], binary method [7], window method and

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2751

Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Israel Rivera-Zárate, et al.1464

sliding window [8]. Among the stochastic or non-
deterministic methods can be mentioned: Genetic
Algorithm (GA) [4, 9], Particle Swarm Optimization
(PSO) [10], Ant Colony Optimization (AC) [11],
Artificial Immune System (AIS) [12] and Genetic
Programming (GP) [13]. The aforementioned
methods have found smaller addiction chains than
deterministic methods such as the factor method
or the binary method; however, most of the above
work is focused on the processing of numbers with
small exponents. When using an ES it is proposed
to improve the time performance of a stochastic
method with respect to the aforementioned ones,
which allows obtaining chains of short addition in a
time smaller than the one used by other stochastic
bio-inspired methods.

2 Materials and Methods

ES were originally developed by a group of
students at the Technical University of Berlin
Germany starting in the 1970s, particularly by I.
Rechenberg and H. P. Schwefel [14, 15]. Currently
there are a lot of variants for the original ES [16,
17, 18]; Beyer and Schwefel make an in-depth
review of the most relevant [19]. The basic
algorithm of ES consists of 5 steps, see Algorithm
1 [14]:

1. Generation of the initial population.

2. Marriage.

3. Recombination.

4. Mutation.

5. Selection.

The following are the decisions made for the
design of the algorithm of an ES for the calculation
of addition chains.

a) Representation: In order to encode the data
of each individual, whole numbers were used
in the variables x of the ES in such a way as to
have a phenotypic and genotypic
representation of the problem. With this, each
variable x represents a possible value for the
calculation of the addition chain, so that each
variable x is a possible solution to an addition
chain for the next value, much like encodings
in an integer array for a GA (Genetic

Algorithm). For Sigma, equal values are
initially used (in a range of 0 to 1.77754).

b) Initial population: The variables initial values
are set by assigning a value of one to the first
element and two to the second element and
generating viable (valid) elements for the
algorithm by selecting a random value
between the previous values and double the
previous value for the next element. This
allows to generating valid (but not optimal)
addition chains for all the individuals of the
initial population.

c) Objective Function: The objective value (the
power to be calculated) to be generated is the
initial goal of the calculation. The objective
function has to determine this value; it must
also meet the conditions necessary for the
chain generated to be viable:

1. u0 = 1

2. u1 = e

3. u0 < u1 < u2 < ... < ul-1 < ul

4. For each k (1 < k < m) there exist two

integers i y j (not necessarily different) with

intervals 0 < i, j < k – 1 with uk = ui + uj

Conditions 1 to 4 define the addition chain; these
conditions are coded in C language, within a loop
that reviews all the genome variables of all
individuals, such that they are two nested cycles,
one to review each individual in each generation
and the revision of each individual genome within.

d) Crossover operator: The used crossover
operator consists in the selection of two
parents (P1 and P2) randomly chosen from the
population. These two parents are used to
generate two children (H1 and H2). Generated
children will compete directly between them to
find the best children. A random number is
chosen for parent P1 and then another random
number for parent P2; being careful that it is
not the same random number for both parents.
The crossover operator is different from that
established for canonical ES because of the
unique characteristics of the problem. The
main difference is that when an element is
copied, the sequence of the addition chain is
broken. So for the crossover it was chosen to

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2751

Minimum Addition Chains Generation Using Evolutionary Strategies 1465

use the Algorithm proposed by Cruz-Cortés
[4], in which the elements of an individual are
not taken for the creation of the child. Instead
they take the rules of the creation of the father
for the termination of the child from a point of
Crossing. The crossover point is selected
randomly. In the next step the first
chromosome of Parent 1 is copied from the
beginning to the crossing point. Subsequently,
the rules (not the information) of the addition
chain of the parent P2 are copied from a
position after the crossing point to the total
length of the parent P2. The components a and
b of the kth element of the addition chain of the
parent P2 are obtained and used to generate
the element k of the addition chain of the child
H1, always verifying that the value of the
generated number does not exceed the
Objective number of the addition chain. This
validation is performed in order to generate
viable addition chains. Finally, the same steps
are taken for the creation of the H2 child but
exchanging the places of the parents.

e) Mutation operator: A canonical mutation
model is used based on the change in the
sigma value of each chromosome per
individual and then uses the updated sigma to
calculate the new value of X for each gene of
the individual. Mutation is performed on all
variables (genome) of all individuals in a
population. The mutation in the ES has two
parts: the calculation of the sigma variable and
the mutation of the corresponding X variable.
The order of execution is: first the calculation
of the new sigma and then the one of X, if done
otherwise the mutation scheme does not work.

The updated sigma mutation (σ') is made from

the previous sigma (σ):

' = × e((τ' • N(0,1))+ (τ •Ni(0,1))), (4)

where:

'' corresponds to the updated sigma,

 corresponds to the previous sigma.

The exponent is calculated using the product of
a random value (Ni) with a range between zero and
one multiplied by τ (tau) added to the product of

another random number (N) by τ ' (tau prime) as
exponent of e.

Once calculated σ' we proceed to compute x'

from the current x of the genome of the individual,
where x represents a position of the vector
containing the elements forming the addition chain.
The probability of mutation of x is determined by
the initial probability of mutation (MUT_PROB) and
a random value between 0 and 100 (Mutate) that
is calculated for each x, following equation 1. The
x' value will be the element of the addition chain of
the child H1 from which the chain begins to mutate.
Due to the particular characteristics of the
generation of the addition chains it is not possible
to use a standard mutation for an ES, whereby the
calculation of the modified chain is made from the
mutated element and the later ones are calculated
based on this element. Initially a random type
variable (with a value between 0 and 7000) is
calculated. Next, the type value is used to
determine the type of addition chain to be
proposed for the CM element (Mutated Chain),
with three possible cases:

1. Generate CM with H1k-1 + H1k-1,

2. Generate CM with H1k-1 + H1k-2,

3. Generate CM with H1k-1 + H1rand,

where:

CM is the current element to be calculated from
the chain:

H1k-1 is the previous element of the son's
chain1,

H1rand is any element less than k in the chain of
the child H1.

The intervals of type privilege the first case over
the others and privileges the second over the third,
since a random value between 0 and 7000 for type
are calculated as follows:

1. if 0 < type < 5000 then CM = H1k-1 + H1k-1,

2. if 5001 < type < 6500 then CM = H1k-1 + H1k-2,

3. if 6501 < type < 7000 then CM = H1k-1 + H1rand.

Once having the mutated element, (CM) of the
current chain, is checked to see if the calculated
value is greater than the target value, if so there is
calculated again the CM element to be minor than
or equal to the target value.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2751

Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Israel Rivera-Zárate, et al.1466

When the mutated element (CM) is verified to
be minor than or equal to the target value, CM is
integrated into the child's addition chain as the H1ik
element. Subsequently CM is compared with the
target value if CM is equal to the target value then

previous sigma (') is updated with the new sigma

value (''), otherwise it will continue with the

previous value, and the calculation is completed for
the mutation of the addition chain.

f) Selection by aptitude: The selection is
through a comparison, so that the best
individuals compare parents against parents
and children against children and the best of
each group are those who survive to the next
generation. The selection method is a bubble
method in which the best abilities rise in the list
and of the total of individuals only half survives,
in the case that the initial population is 100
individuals, after the crossing stage have 200
individuals between parents and children.
Later in the selection and generation of the
new population survives only half (top 100

individuals) which is the number of individuals
of the initial population again.

3 Results

To test the performance of the developed
algorithm, three experiments were proposed. The
first experiment consists of generating the
consecutive addition chains for the intervals (1-
512), (1-1000), (1-1024), (1-2048), (1-4096) and
verify the accumulated value of each sequence
and compare it with similar algorithms in terms of
total length, and the standard deviation for thirty
runs in each range. Second and third experiments
were composed of thirteen target numbers for
which it is known that it is difficult to calculate their
corresponding addition chain.

For experiments 1 and 2, a population size of
one hundred individuals, one thousand
generations, thirty executions for each chain, an
initial sigma of 1.7754, a mutation probability of
fifteen percent, and a cross-probability of eighty
percent.

Table 1. Statistical results for the first experiment of the ES. Calculation of addition chains for the accumulated intervals

e Є Best Avg Media Worst Stand. Dev.

(1-512) 4924 4925.56 4925 4928 1.1043

(1-1000) 10815 10820.00 10819.5 10827 2.7038

(1-1024) 11121 11127.36 11127.5 11135 3.4087

(1-2000) 24105 24118.93 24117.0 24128 7.5198

(1-2048) 24779 24790.3 24791.0 24805 6.7831

(1-4096) 54625 54653.13 54656.5 54666 12.6102

Table 2. Comparative for the accumulated results of the addition chains. The algorithms compared where AIS, GA,

PSO and GP

e Є Optimal AIS GA PSO GP ES

(1-512) 4924 4924 4924 --- 4924 4924

(1-1000) 10808 10813 10809 --- 10808 10815

(1-1024) 11115 11120 --- 11120 11115 11121

(1-2000) 24063 24108 24076 --- 24070 24105

(1-2048) 24731 24778 24748 --- 24737 24779

(1-4096) 54425 54617 54487 --- 54454 54625

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2751

Minimum Addition Chains Generation Using Evolutionary Strategies 1467

First Experiment.

This experiment consists of generating the
corresponding addition chains in the range of 1 to
Maximum Range and adding the total lengths of all

the obtained chains. The value obtained is the
accumulated value of all the addition chains
obtained for the defined interval. The ranges to be
calculated are: (1-512), (1-1000), (1-1024), (1-
2000), (1-2024) and (1-4096). The result is

Table 3. Result of ES for calculation of addition chains of difficult numbers with a thousand generations

Objective number
Length r

Best Avg Media Worst Stand. Dev.

11,231 18 18 18.0 18 0.0

18,287 19 19 19.0 19 0.2537

34,303 20 20 20.0 20 0.0

65,131 21 21 21.0 21 0.3051

110,591 22 22 22.0 22 0.4901

196,591 23 23 23.0 23 0.1826

357,887 24 25 24.2 25 0.5040

685,951 25 25 25.0 25 0.3457

1,176,431 26 27 26.7 27 0.4138

2,211,837 27 29 27.9 28 0.7915

4,169,527 28 29 28.8 28 0.6065

7,624,319 29 31 29.9 30 0.4842

14,143,037 30 31 30.8 31 0.5833

Table 4. ES result for hard numbers addition chains calculation using five hundred generations

Objective Length r

 Best Worst Avg Media Stand. Dev.

11,231 18 18 18.00 18 0.0

18,287 19 20 19.16 19 0.3790

34,303 20 21 20.06 20 0.2537

65,131 21 22 21.06 21 0.2537

110,591 22 23 22.50 22.5 0.5085

196,591 23 23 23.00 23 0.0

357,887 24 25 24.60 25 0.4795

685,951 25 26 25.23 25 0.4302

1,176,431 26 28 27.03 27 0.4138

2,211,837 27 29 28.20 28 0.7144

4,169,527 28 30 28.46 28 0.5713

7,624,319 29 32 30.50 31 0.7311

14,143,037 30 32 31.46 31 0.5561

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2751

Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Israel Rivera-Zárate, et al.1468

compared with other heuristic algorithms for
calculation of addition chains, see table 1 and
table 2.

In the results of the experiments we present the
target value, the best length reached, the worst,
and the average of the 30 executions, see table 3.

Second Experiment

This experiment objective is to find the minimum
addition chains for thirteen numbers, which are
known to be difficult to calculate their
corresponding chain. In this experiment the ES is
used with a stop condition of a thousand
generations to have a reference to experiment one.
The objective of this second experiment is to
compare the result of the ES with respect to other
bioinspired algorithms in the calculation of
minimum addition chains. Using difficult-to-
calculate numbers that have been used elsewhere,
see Table 3.

Third Experiment

This experiment uses the same ES parameters of
the other two experiments. Its objective is to
calculate the minimum addition chains for difficult
numbers. However, the number of generations
from one thousand was reduced to five hundred in
order to observe the behavior of the algorithm with
a stop condition of greater exigency.

The same set of thirteen hard to calculate
numbers is used for which it is known that it is
difficult to calculate its corresponding addition
chain. The results of the experiments show the
target value, the best length achieved, the worst,
and the average of the 30 executions, see table 4.

4 Discussion

In the first set of experiments it can be observed
that the ES algorithm obtains the addition chains
for all proposed numbers, and the lengths of the
chains found correspond to the best current values
[20, 21, 22]. Experiments can be compared with
the results obtained by other bio-inspired heuristics
as reported in their respective investigations. In the
case of Genetic Algorithm (GA), the data reported
by Cruz-Cortés et al.

In [4] and for a Particle Swarm Optimization
(PSO) algorithm, the data reported by Léon-Javier

et al. in [10]. In the result of the comparison it can
be seen that the minimum lengths reached by the
ES are equal to those obtained with PSO and in
some cases better than those obtained with an GA,
see Table V.

When comparing other bio-inspired algorithms
that calculate addition chains, it can be observed
that the proposed algorithm (ES) reaches the same
results, however there are some differences in the
number of evaluations that are performed to obtain
the addition chain.

Considering that the three algorithms for
generating addition chains are very similar in their
theory and implementation can be considered that
the generation of a valid addition chain has the
same computational cost per individual.

Table 5. Comparison of three algorithms for calculating

addition chains. Final length of each addition chain for
each problem is shown

Objective
number

Length r

ES GA PSO

11,231 18 18 18

18,287 19 19 19

34,303 20 20 20

65,131 21 21 21

110,591 22 22 22

196,591 23 23 23

357,887 24 25 24

685,951 25 25 25

1,176,431 26 27 26

2,211,837 27 28 27

4,169,527 28 29 28

7,624,319 29 30 29

14,143,037 30 31 30

Table 6. Comparison of three algorithms for calculating

chains. Total calls to the target function are shown

Algorithm
Individuals/

particles
Generations Total

PSO 30 10000 300,000

GA 100 1000 100,000

ES 100 500 50,000

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2751

Minimum Addition Chains Generation Using Evolutionary Strategies 1469

If we take as a measure the number of
individuals multiplied by the number of iterations /
generations we have a measure of comparison.
The results can be seen in Table 6 where it is
observed that ES occupies a smaller number of
calculations than those using an Genetic Algorithm
(GA) or a Particle Swarm Optimization (PSO)
algorithm, see Table VI.

Finally, it should be noted that the addition
chains generated are different from those obtained
by other algorithms and yet they also have
minimum lengths compared to those currently
found, see Table 7.

5 Conclusions

The algorithm of Evolutionary Strategies for the
creation of minimum length addition chains has a
competitive performance with respect to the length
reached by other heuristic proposals.

Nevertheless, the present development it
obtains in a number of operations smaller than any
of the previous proposals. It is clear that using an
ES can have an optimization in time with respect
to the other algorithms. This is due to the fast
convergence which characterizes the ES.

Table 7. Result of chains obtained for difficult exponents and their associated lengths

Exponent

e = c(r)
Addition chain Length

11231
1- 2- 3- 4- 7- 14- 28- 56- 84- 168- 252- 504- 588- 1176- 2352- 3528-
7056- 10584- 11172

18

18287
1- 2- 4- 8- 9- 18- 19- 38- 76- 152- 304- 608- 912- 1824- 3648- 7296-
10944- 18240- 18278- 18287

19

34303
1- 2- 3- 6- 8- 14- 28- 56- 112- 168- 336- 504- 1008- 2016- 4032- 8064-
16128- 32256- 34272- 34300- 34303

20

65131
1- 2- 3- 6- 8- 14- 28- 56- 112- 224- 448- 896- 1792- 3584- 3612- 7224-
14448- 21672- 43344- 65016- 65128- 65131

21

110591
1- 2- 3- 4- 8- 11- 19- 38- 76- 152- 228- 380- 760- 1140- 2280- 4560-
9120- 18240- 36480- 54720- 109440- 110580- 110591

22

196591
1- 2- 3- 6- 7- 14- 28- 56- 84- 168- 336- 504- 1008- 1512- 3024- 6048-
12096- 24192- 48384- 96768- 193536- 196560- 196588- 196591

23

357887
1- 2- 3- 5- 10- 15- 30- 45- 90- 180- 360- 720- 1440- 2880- 5760- 11520-
23040- 46080- 69120- 115200- 230400- 345600- 357120- 357840-
357885- 357887

24

685951
1- 2- 3- 5- 7- 14- 28- 42- 84- 126- 252- 504- 1008- 2016- 4032- 8064-
12096- 20160- 40320- 80640- 161280- 322560- 645120- 685440-
685944- 685951

25

1176431
1- 2- 3- 6- 9- 18- 27- 54- 108- 216- 432- 864- 865- 919- 1838- 3676-
7352- 14704- 29408- 58816- 117632- 235264- 470528- 705792-
1176320- 1176428- 1176431

26

2211837
1- 2- 4- 5- 9- 18- 36- 54- 59- 118- 127- 254- 508- 1016- 2032- 4064-
8128- 16256- 32512- 65024- 130048- 260096- 520192- 1040384-
2080768- 2210816- 2211832- 2211837

27

4169527
1- 2- 4- 6- 12- 24- 48- 96- 144- 240- 241- 385- 625- 1010- 2020- 4040-
8080- 16160- 32320- 64640- 129280- 258560- 517120- 1034240-
2068480- 4136960- 4169280- 4169521- 4169527

28

7624319
1- 2- 4- 5- 9- 18- 36- 41- 82- 164- 246- 492- 984- 1968- 3936- 7872-
15744- 15785- 31570- 47355- 94710- 189420- 378840- 568260- 947100-
1894200- 3788400- 7576800- 7624155- 7624319

29

14143037
1- 2- 3- 6- 12- 18- 30- 31- 62- 124- 248- 496- 992- 1023- 2046- 4092-
8184- 12276- 24552- 36828- 73656- 147312- 220968- 441936- 883872-
1767744- 3535488- 7070976- 14141952- 14142975- 14143037

30

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2751

Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Israel Rivera-Zárate, et al.1470

However this reduces the scanning ability of the
algorithm which affects the quality of the proposed
solutions. The above motivates to propose
improvements to the algorithm developed. On the
one hand a proposal can be mentioned in the
aspect of the mutation used and change to another
scheme that provides greater diversity. On the
other hand, considering the exploration capacity, it
is possible to propose another algorithm that
maintains a fast convergence without losing this
premise, like the Differential Evolution algorithm
that has proven to be successful in this type of
problems.

Acknowledgements

The authors thank the Instituto Politécnico
Nacional (IPN) and the National Council of Science
and Technology of Mexico (CONACyT) for the
support provided for the realization of this project.

References

1. Lenstra, H. W. (1986). Factoring integers with
elliptic curves. Report 86-18, Mathematisch
Instituut, Universiteit van Amsterdam.

2. Williams, H. C. (1982). A p+l method of factoring.
Math. Comp, Vol. 39, No. 159, pp. 225–234. DOI:
10.1090/S0025-5718-1982-0658227-7.

3. Gordon, D. M. (1998). A survey of fast
exponentiation methods. Journal of Algorithms, Vol.
27, No. 1, pp. 129–146.

4. Cruz-Cortés, N., Rodríguez-Henríquez, F.,
Juárez-Morales, R., & Coello-Coello, C. A.
(2005). Finding Optimal Addition Chains Using a
Genetic Algorithm Approach. In: Hao, Y., Liu, J.,
Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L., Ma,
J., Jiao, Y.-C. (eds.). CIS´05, Part I. Springer,

Lecture Notes in Artificial Intelligence, Vol. 3801, pp.
208–215. DOI:10.1007/ 11596448_30.

5. Downey, P., Leong, B., & Sethi, R. (1981).
Computing sequences with addition chains. SIAM J.
Computing, Vol. 10, No. 3, pp. 638–646. DOI:
10.1137/0210047.

6. Kaya-Koc, C. (1994). High-speed RSA
implementation. Technical Report, RSA
Laboratories, Redwood City, CA.

7. Kruijssen, S. V. D. (2007). Addition chains, efficient
computing of powers. Bachelor Proyect,
Amsterdam, pp. 13–50.

8. Kunihiro, N. & Yamamoto, H. (1998). Window and

extended window methods for addition chain and
addition-subtraction chain. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., pp. 72–81.

9. Osorio-Hernández, L. G., Mezura-Montes, E.,
Cruz-Cortés, N., & Rodríguez-Henríquez, F.
(2009). An improved genetic algorithm able to find

minimal length addition chains for small exponents.
Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 1–6.

10. León-Javier, A., Cruz-Cortés, N., Moreno-
Armendáriz, M. A., & Orantes-Jiménez, S. (2009).

Finding minimal addition chains with a particle
swarm optimization algorithm. Lecture Notes in
Computer Science, Springer, 5845, pp. 680–691.
DOI: 10.1007/978-3-642-05258-3_60.

11. Nedjah, N. & Macedo, M. L. (2006). Towards

Minimal Addiction Chains Using Ant Colony
Optimization. Journal of Mathematical Modelling
and Algorithms, Vol. 5, No. 4, pp. 525–543. DOI:
10.1007/s10852-005-9024-z.

12. Cruz-Cortés, N., Rodríguez-Henríquez, F., &
Coello-Coello, C. A. (2008). An artificial immune

system heuristic for generating short addition
chains. IEEE Transactions on Evolutionary
Computation, Vol. 12, No. 1, pp. 1–24. DOI:
10.1109/TEVC.2007.906082.

13. Domínguez-Isidro, S. & Mezura-Montes, E.
(2011). Evolutionary Programming Algorithm to
Find Minimal Addition Chains. Proceedings of the
1er. Congreso Internacional de Ingeniería
Electrónica, Instrumentación y Computación.

14. Rechenberg, I. (1971). Evolutionsstrategie:

Optimierung technischer Systeme nach
Prinzipiender biologischen Evolution. Frommann-
Holzboog, Vol. 15, de Reihe Problemata.

15. Chwefel, H. P. (1975). Evolutionsstrategie und
numerische Optimierung. Dissertation, Technische
Universit Berlin.

16. Correia, M. B. (2013). A Study of Redundancy and

Neutrality in Evolutionary Optimization. Evolutionary
Computation, Vol. 21, No. 3, pp. 413–443. DOI:
10.1162/EVCO_a_00090.

17. Yang, L. & Qing-Lan, J. (2012). The application of

improved evolutionary strategy algorithm in
optimization. Machine Learning and Cybernetics
(ICMLC´12), International Conference on, pp.
1212–1217. DOI: 10.1109/ICMLC.2012.6359528.

18. Zubanovic, D., Hidic, A., Hajdarevic, A., Nosovic,
N., & Konjicija, S. (2014). Performance analysis of

parallel master-slave Evolutionary strategies (μ,λ)
model python implementation for CPU and GPU.
37th International Convention on Information and
Communication Technology, Electronics and

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546

doi: 10.13053/CyS-22-4-2751

Minimum Addition Chains Generation Using Evolutionary Strategies 1471

https://doi.org/10.1137/0210047
https://doi.org/10.1109/TEVC.2007.906082
https://doi.org/10.1109/ICMLC.2012.6359528

Microelectronics (MIPRO´14), pp. 1609–1613. DOI:
10.1109/MIPRO.2014.6859822.

19. Beyer, H. & Schwefel, H., (2002). Evolution
strategies, a comprehensive introduction. Natural

Computing Series, Springer Heidelberg, Vol. 1, No.
1, pp. 3–52. DOI: 10.1023/A:1015059928466.

20. Rodriguez-Cristerna, A. & Torres-Jimenez, J.
(2013). A Genetic Algorithm for the Problem of
Minimal Brauer Chains. Recent Advances on Hybrid
Intelligent Systems, Springer Heidelberg. DOI:
10.1007/978-3-642-35323-9_2.

21. Flammenkamp, A. (2016). Shortest Addition
Chains. wwwhomes.uni-bielefeld.de/achim_chain.
html.

22. Domínguez-Isidro, S., Mezura-Montes, E., &
Osorio-Hernández, L. G. (2015). Evolutionary

programming for the length minimization of addition
chains. Engineering Applications of Artificial
Intelligence, Vol. 37, pp. 125–134. DOI:10.1016/
j.engappai.2014.09.003.

Article received on 07/07/2017; accepted on 24/05/2018.
Corresponding author is Mauricio Olguín Carbajal.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1463–1472
ISSN 1405-5546
doi: 10.13053/CyS-22-4-2751

Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Israel Rivera-Zárate, et al.1472

https://doi.org/10.1109/MIPRO.2014.6859822
https://doi.org/10.1016/j.engappai.2014.09.003

	reglas de autor.pdf
	CyS_20_No_3_2016-papel
	R_1_Ingles
	R_2_Español
	costos

