Context-Free Grammars Including Left Recursion using Recursive
miniKanren

Hirotaka Niitsuma

Okayama University, Graduate School of Natural Science and Technology, Okayama,
Japan

niitsuma@de.cs.okayama-u.ac.jp

Abstract. recursive miniKanren is logic programming
language which can deal infinite recursive data structure
and a subset of the Scheme language. We define a
pattern match macro which can use the same syntax
of the match macro of the Scheme language using
recursive miniKanren. The macro enables to write
searching sub-list with a given pattern by only few line
code. Using this property, we introduce techniques
writing context-free grammar with our match macro.
Unlike other specific paraphrasing tools, our technique
can combine logical relations of miniKanren with a
context-free grammar. We show the logical relations
resolves the ambiguity of a grammar.

Keywords. Context-free grammars, left recursion,
recursive miniKanren.

1 Introduction

miniKanren[5] is one of the major relational
logic programming languages. Prolog is also
a well-known relational programming language.
A typical Prolog implementation consists of
thousands of lines of C code. The main advantage
of miniKanren is that it consists of less than 1000
lines of Scheme code. With this advantage,
miniKanren can be easily modified. Therefore,
many dialects of miniKanren are made[3, 4, 7].
Since miniKanren is not only a subset of Prolog
but also a subset of the Scheme language,
miniKanren has properties like Lisp. For example,
miniKanren can use pattern match macros of
the Scheme language[8]. However, the pattern
match macro of miniKanren cannot use a pattern
including “...” which denotes sequence. This
research introduces the extension of the match

macro which enables using a pattern including
“...”. Let us call the extended match macro as
match“® .

Due to the simplicity of miniKanren, miniKanren
can not handle structures containing infinite
recursion. For example, miniKanren can not
handle Scheme code like #0 = (#0# 3). Such
recursions appear in many applications, e.g. type
inference of delayed stream, Fourier analysis
of signal processing, and context-free grammar
with left-recursion. This research shows we
can handle such infinite recursions by modifying
some functions of miniKanren. Let us call the
modified miniKanren and the original miniKanren
recursive miniKanren ' and normal miniKanren 2,
respectively.

2 Notation

The following abbreviation is used in this paper.
The symbol = is == in our program code. The
symbol > is ==> in our program code. Table 1
shows the list of the abbreviations.

3 recursive miniKanren

Consider the following execution result of the
normal miniKanren:

(run* () (= q'(,9 3)))
> ()

Thttps://github.com/niitsuma/
Racket-miniKanren/blob/recursive2/

2https://github.com/miniKanren/
Racket-miniKanren

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

1396 Hirotaka Niitsuma

Table 1. Notation

abbreviation | program code
> ==>
run* runx
0 -1 -2 === _0_1_2
match® matche
match®® matchee

where > denotes execution result. The normal
miniKanren estimates that there is no result
satisfying the recursive relation:

q=1(q 3)

However, the above recursive relation represents
the following circular list.

qg=#0=(#0# 3)
Expanding this recursive relation gives
g=(((((...)3)3)3)3).

We introduce symbol > to represent such infinite
recursion. The expression

(>xy)

represents the expression y. The symbol >
anotates the expression y has subexpression x
which has self recursive structure. The “left hand
side” x should be a single logical variable. We
do not consider the case the “left hand side” x is
an expression including multiple logical variables.
This research does not consider such complicated
infinite structure. However we cannot find the
case this notation cannot represent relations in our
experiments. It is seem to be sufficient for many
cases that the combination of this notation based
on a single logical variable. Note that this notation
is alomost same to #0# of the circular list.

Let us show example usage of the symbol >. The
expression

(pz (1 z2))
represents

(1(1(1(...)2)2)2)

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

where z is a logical variable. The symbol >
anotates the subexpression z is self recursive.

This research also consider expressions have
multiple annotations using the symbol >. Let us
show another example. The expression

((cu((pv (1.v))u)))
represents

(v(v(v(...
=((111...)
((111...

where u and v are logical variables. Using multiple
> can represent nested recursive structure.

recursive miniKanren has the mechanism of
finding the self recursive structures that the symbol
> can represent. Let us show the execution result
of the recursive miniKanren:

(run*(q)(=q'(.93)))

>(>0 (-0 3))

where _ is a logical variable. Expanding this self
recursive structures gives

g=-o=(((((...)3)3)3)3)

Comparing the expression using #0# with this
result, recursive miniKanren can be regarded as
an automatic detector of circular list. Let us call
the self recursive relation based on > as circular
like relation (CLR).

3.1 Extended Triangular Substitutions

Triangular substitution [1] is a fundamental
mechanism in logical programming. Extending
triangular substitution enables finding CLR.
Normal miniKanren has preprocessing occurs-
check which excludes infinite recursive rela-
tion before the main proces of the triangular
substitution. Algorithm 1 shows deltails of
occurs-check. The function occurs-check(x v s)
checks if it is self-recursive in all subtrees in
the expression tree v. When a self-recursive
subtree fund, normal miniKanren regards current
relation invalid. recursive miniKanren assigns the
annotation > about the self-recursive. Algorithm 2
shows the difference between normal miniKanren

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1397

and recursive miniKanren. Infinite recursions
are exceptions which the occurs-check function
causes. Algorithm 2 shows that > can handle
any exceptions which the occurs-check function
causes.

Triangular substitution also has other processes
traversing all subtree in a given expression.
Traversing all subtrees including the infinite
annotation > is a complicated process. It might
be infinite loop. To avoid infinite loop, recursive
miniKanren uses on-trees macro [6] for traversing
all subtrees.

Algorithm 1 occurs-check(x v s)

Require: =z is a logical variable we want to check if
it is self-recursive in the expression v.
s is a dictionary (a set of definitions) of variables
in current scope.
function OCCURS-CHECK(Xx v S)
expand v by substituting definitions in s
if + = v then
return true
else
for all u € {all subexpressions of v} do
if OCCURS-CHECK(x u s) then
return true
return false

Algorithm 2 normal and recursive miniKanren
differecne
if OCCURS-CHECK(x v s) then
infinite recursion
if normal miniKanren then
v is regarded invalid expression
else if recursive miniKanren then
v 4 (> X V)
else
finite recursion

4 matchee Macro

match® macro [8] is a pattern match macro which
can describe the same pattern of the match
macro of the Scheme language inside miniKanren.
However, the match® macro can not describe an

iterative pattern including “...” . match®® macro 3
is an extension of the match® macro so that the
iterative pattern can use. This macro uses “__"
instead of “...” to describe the iterate patterns. Let
us show example usage of this macro:

(run* (q)
(match®®

'((1(23)) (10 (2 30)) (100 (2 300)))
[((a(2.b))
(=q'(a.b)l)

=
(1 10 100) (3 30 300)))

In the above example, the match pattern describes
an iteration of the pattern (,a (2 ,b)). In this case,
the logical variables ais matched to (1,10,100) and
the logical variables b is matched to (3,30,300).
Like this example, match®® macro can describe
complicated iterative pattern by using “___".

match®® is especially useful finding certain
patterns from given list data. Let us consider the
following example.

(run* (q)
(match®®

'(123)
[(x —..r)
=q ‘(x.,nN))

=

(0 (123))((1) (23)) ((12) (3)) (123) ()

In this example, all possible sub-lists which can
match to the given pattern are enumerated. The
match pattern describes all possible sub-lists which
can divide given input (1 2 3). The possible
divisions are
(and (123), (1)and (23), (12)and (3), (12
3) and (). The macro successfully finds all possible
patterns. This example shows the match pattern
(,x ——_ . ,r) can use to search all possible sub-list.
This tegnique is useful search sub-sentence with
some given patterns like context-free grammar.
matchee macro can use in both of normal
miniKanren and recursive miniKanren. And
matchee macro can use as original matche

Shttps://github.com/niitsuma/
Racket-miniKanren/blob/recursive2/matchee.scm

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

1398 Hirotaka Niitsuma

macro[8] . matchee gives the same results of
original matche macro[8] as like the following
example.

(run* (q)
(match®®

'123)
[(x..r) (=q (x.nN))

= ((1(23))

5 Context-Free Grammar with Left
Recursion

Let us consider the following sentence example [2]
for context-free grammar analysis.

“I shot an elephant in my pajamas.”

This sentence can be analyzed by using the flowing
context-free grammar.

S — NPVP
PP — PNP
NP — DetN
NP — DetNPP
VP — VNP
VP — VPPP
N — ’elephant’|pajamas’
V. — ’shot
P — i

Here, the nonterminal S stands for sentence,
NP for noun phrase, VP for verbphrase, Det
for determiner, PP for prepositional phrase, N
for Noun, V for Verb , and P for preposition.
Note that the highlighted part has left recursion.
This grammar is left recursive in the rules for
NP. Usually, left recursion causes an infinite loop
when analyzing a sentence. To avoid the infinite
loop, a grammar including left recursion requires
special treatments. For example, preprocessing to
eliminate the left recursion can avoid the infinite
loop [9].

The example sentence can be analyzed in two
ways [2] as shown in Figure 1

To find both two results, we need an algorithm
with a backtracking mechanism based on top-down
search.

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

recursive miniKanren can deal left recursion
without special treatments. And can find both
two results with a backtracking mechanism.
Using match®® macro, the grammar including left
recursion can write as the following

(define (cfg sent tree)
(match®®

sent

[(NP .. x)(VP..y))
(= tree (S (NP . ,.x)(VP . ,y))]

[pre __ (P . ,x)(NP . ,y) . ,post)

(fresh (1)
(appendo pre ‘((PP (P . ,x)(NP . ,y)) . ,post) t)
(cfg t tree))]

[(,pre ___ (Det . ,x)(N . .y) . ,post)

(fresh (1)
(appendo pre ‘(NP (Det . ,x)(N . ,y)) . ,post) t)
(cfg t tree))]

[(,pre ___ (Det . ,x)(N . ,y)(PP . ,z) . ,post)

(fresh (1)

(appendo pre ‘(NP (Det . ,x)(N . ,y)(PP . ,z))
. ,post) t)

(cfg t tree))]

[pre _ (V. ,x)(NP . ,y) ., ,post)

(fresh (1)
(appendo pre (VP (V. ,x)(NP . ,y)) . ,post) t)
(cfg t tree))]

[(,pre ——— (VP . x)(PP ..y) . ,post)

(fresh (f)
(appendo pre (VP (VP . ,x)(PP . ,y)) . ,post) t)
(cfg t tree))]

)

Note that the match®® macro enables the grammar
rule to almost directory write down the grammar
rules as match patterns.

The grammar rule can apply to a sentence as the
following way.

(remove-duplicates
(run* (q) (cfg
"((NP 1) (V shot) (Det an) (N elephant)
(P in) (Det my) (N pajamas)))’
a))

=
(S (NP)
(VP
(VP (V shot)

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1399

NP VP
‘ /\
/
VP PP
/\ /\
\Y; NP P NP

/\
shot Det N in Det N

my pajamas

an elephant

/\
/\
shot i /l\

et

an e/ephant P NP

‘ /\
in Det N

my pajamas

Fig. 1. Structures of the example sentence

(NP (Det an))
(PP (Pin)(N elephant))) The desgired both two results_ are spccessf_ully
(NP (Det my) extracted. Here, remove-dup//cates_ls required
(N pajamas))))) because of this simple implementation extracts
same results more than once. However, it is better
than missing to find possible results. Recall the
(S (NP) principal advantage of the miniKanren is it consi_sts
(VP (V shot) of under 1000 lines of Scheme code. recusive

(NP (Det an)
(N elephant)
(PP (P in)
(NP (Det my)
(N pajamas))))))

miniKanren is also consists of under 1000 lines
of Scheme code. Using more than 1000 lines of
Scheme code can remove remove-duplicates.

The match®® macro also can use in normal
miniKanren. The above code can run with normal

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

1400 Hirotaka Niitsuma

miniKanren. However, normal miniKanren can
not find these phased results, because of the left
recursion.

5.1 Adding Logical Relation

recursive miniKanren is not a paraphrasing tool but
computer language. It can add various relations as
the language sentences. Let us consider adding
rule; a single NP can not contain “elephant” and
“pajamas” simultaneously. This rule can describe
by adding few lines to the match pattern in the cfg
function as the following

(define (cfg sent tree)
(match®®
sent

[(,pore ___ (Det . ,x
(fresh (1)
(excludee
(fresh ()
(containo ’elephant ‘(,x ,y ,2))
(containo ’pajamas ‘(,x ,y ,2)))
(appendo pre ‘(NP (Det . ,x)(N . ,y)(PP . ,z))
. ,post) t)
(cfg t tree)))]

YN . y)(PP . ,z) . post)

Using this rule successfully excludes the phased
results represents “elephant wearing pajama’.
Here, excludee is a macro represents excluding
a special case given in the first argument from
current results:

(define-syntax excludee
(syntax-rules ()
((_predb...)
(condu
[pred fail]
[alwayso b ...]))))

containo is a function giving a decision whether the
list tree given in the secound argument contains the
element given in the first argument:

(define containo
(lambda (x /)
(conde
((fresh (a)
(caro I a)

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

V/GA
o
=
Q
S
e}
>
2

As like the above example, miniKanren can
describe various conditions with a context-free
grammar. The example code for this context-free
grammar is in our repository. 4

5.2 Expanding Context-Free Grammar

Our proposed technique can use to not only
phase sentence also generate sentence. With the
grammar rule cfg described with mcathee macro,
just running following search program generates
possible sentence which can keep the grammar
rule.

(remove-duplicates

(run 20 (q)
(fresh (x)
(cfg x q)
)
=
(
(S (NP . o) (VP . 1))
(S(NP(Det 20) (N .-))(VP -2))
(S(NP (Det o) (N. 1) (PP . .5)) (VP ._3))
(S (NP .) (VP (V. 1) (NP . 1))
(S (NP .) (VP (VP . 1) (PP . 3)))
(S(NP (Det o) (N. 1) (PP (P L) (NP . _.3))
(-4)

4https://github.com/niitsuma/
Racket-miniKanren/blob/recursive2/
context-free-grammar.scm

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1401

5.3 Indirect Left Recursion

Our proposed technique also works for indirect left
recursion. Let us consider the following grammar
including indirect left recursion® .

A — Cd
B — Ce
C - A|BJf

This grammar rule can be described as the
follwoing match pattern.

(define (cfg sent tree)

(match®e

sent

[((A.,x)) (= tree ‘(A . ,x))]
[((B.,x)) (=tree'(B. ,x))]]

[
[(,pre ___(C . ,x) d .,post)
fresh (t7)
(appendo pre ‘((A (C . ,x) d) . ,post) t1)
(cfg t1 tree))]
[(,pre __(C . ,x) e . ,post)
(fresh (t7)
(appendo pre ‘((B (C . ,x) e) . ,post) t1)
(cfg t1 tree))]
[(,ore --- (A . ,x) . ,post)
(fresh (t7)
(appendo pre ‘((C (A . ,x)) . ,post) t1)
(cfg t1 tree))]
[(,pre .__ (B . ,x) .,post)
(fresh (t1)
(appendo pre ‘((C (B . ,x)) . ,post) t1)
(cfg t1 tree))]
[(,pre ___f . ,post)
(fresh (t17)
(appendo pre ‘((C f) . ,post) t1)
(cfg t1 tree))]
))

The phase result for ’(f d e) is given by running the
following code

(B

((C.,x)) (= tree (C
(

(

(remove-duplicates (run* (q) (cfg’(fde)q))))
=
((B(C(A(CH)d))e) (C(B(C(A(CT)d) e))

5This example grammar takes from
http://stackoverflow.com/questions/15999916/step-by-step-
elimination-of-this-indirect-left-recursion

This result shows our technique works for the
indirect left recursion. Note that run* sentence
is used for this phase procedure. run* sentence
causes an infinete loop when executes for infinite
recursive structure. However recursive minikKanren
find and remove the indirect infinite recursive
structure automatically. Running this code finishes
in finite time.

6 Conclusion

match®® macro can describe a context-free
grammar as just write down the grammar rules
as match patterns in the match®® sentence.
recursive miniKanren can handle left recursions
of the grammar without special treatments. This
technique can easily combine various logical
statements to a context-free grammar.

References

1. Baader, F. & Snyder, W. (1999). Unification theory.

2. Bird, S., Klein, E., & Loper, E. (2009). Natural
Language Processing with Python. O’Reilly Media.

3. Byrd, W. E. (2010). Relational programming in
minikanren: techniques, applications, and implemen-
tations. Ph.D. thesis, Indiana University.

4. Byrd, W. E., Holk, E., & Friedman, D. P. (2012).
minikanren, live and untagged quine generation
via relational interpreters. Proceedings of the 2012
Workshop on Scheme and Functional Programming.

5. Friedman, D. P., Byrd, W. E., & Kiselyov, O. (2005).
The Reasoned Schemer. MIT Press, Cambridge, MA.

6. Graham, P. (1993). On LISP: Advanced Techniques
for Common LISP. Prentice Hall.

7. Hemann, J. & Friedman, D. P. (2013). microkanren:
A minimal functional core for relational programming.
Proceedings of the 2013 Workshop on Scheme and
Functional Programming.

8. Keep, A. W., Adams, M. D., Kuper, L., Byrd,
W. E., & Friedman, D. P. (2009). A pattern matcher
for miniKanren or how to get into trouble with CPS
macros. Scheme ’'09: Proceedings of the 2009
Scheme and Functional Programming Workshop,
number CPSLO-CSC-09-03 in California Polytechnic
State University Technical Report, pp. 37-45.

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402

ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

1402 Hirotaka Niitsuma

9. Moore, R. C. (2000). Removing left recursion Stroudsburg, PA, USA, pp. 249-255.
from context-free grammars. Proceedings of the
1st North American Chapter of the Association
for Computational Linguistics Conference, NAACL Article received on 14/12/2017: accepted on 15/02/2018.
2000, Association for Computational Linguistics, Corresponding author is Hirotaka Niitsuma.

Computacion y Sistemas, Vol. 22, No. 4, 2018, pp. 1395-1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

	reglas de autor.pdf
	CyS_20_No_3_2016-papel
	R_1_Ingles
	R_2_Español
	costos

