
Context-Free Grammars Including Left Recursion using Recursive

miniKanren

Hirotaka Niitsuma

Okayama University, Graduate School of Natural Science and Technology, Okayama,

Japan

niitsuma@de.cs.okayama-u.ac.jp

Abstract. recursive miniKanren is logic programming

language which can deal infinite recursive data structure

and a subset of the Scheme language. We define a

pattern match macro which can use the same syntax

of the match macro of the Scheme language using

recursive miniKanren. The macro enables to write

searching sub-list with a given pattern by only few line

code. Using this property, we introduce techniques

writing context-free grammar with our match macro.

Unlike other specific paraphrasing tools, our technique

can combine logical relations of miniKanren with a

context-free grammar. We show the logical relations

resolves the ambiguity of a grammar.

Keywords. Context-free grammars, left recursion,

recursive miniKanren.

1 Introduction

miniKanren[5] is one of the major relational

logic programming languages. Prolog is also

a well-known relational programming language.

A typical Prolog implementation consists of

thousands of lines of C code. The main advantage

of miniKanren is that it consists of less than 1000

lines of Scheme code. With this advantage,

miniKanren can be easily modified. Therefore,

many dialects of miniKanren are made[3, 4, 7].

Since miniKanren is not only a subset of Prolog

but also a subset of the Scheme language,

miniKanren has properties like Lisp. For example,

miniKanren can use pattern match macros of

the Scheme language[8]. However, the pattern

match macro of miniKanren cannot use a pattern

including “. . . ” which denotes sequence. This

research introduces the extension of the match

macro which enables using a pattern including

“. . . ”. Let us call the extended match macro as

matchee .

Due to the simplicity of miniKanren, miniKanren

can not handle structures containing infinite

recursion. For example, miniKanren can not

handle Scheme code like #0 = (#0# 3). Such

recursions appear in many applications, e.g. type

inference of delayed stream, Fourier analysis

of signal processing, and context-free grammar

with left-recursion. This research shows we

can handle such infinite recursions by modifying

some functions of miniKanren. Let us call the

modified miniKanren and the original miniKanren

recursive miniKanren 1 and normal miniKanren 2,

respectively.

2 Notation

The following abbreviation is used in this paper.

The symbol ≡ is == in our program code. The

symbol ⊲ is ==> in our program code. Table 1

shows the list of the abbreviations.

3 recursive miniKanren

Consider the following execution result of the

normal miniKanren:

(run∗ (q) (≡ q ‘(,q 3)))

> ()

1https://github.com/niitsuma/

Racket-miniKanren/blob/recursive2/
2https://github.com/miniKanren/

Racket-miniKanren

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546

doi: 10.13053/CyS-22-4-3072

Table 1. Notation

abbreviation program code

≡ ==

⊲ ==>

run∗ run*

0 1 2 ... _.0 _.1 _.2 ...

matche

matche

matchee

matchee

where > denotes execution result. The normal

miniKanren estimates that there is no result

satisfying the recursive relation:

q = (q 3)

However, the above recursive relation represents

the following circular list.

q = #0 = (#0# 3)

Expanding this recursive relation gives

q = (((((. . .) 3) 3) 3) 3).

We introduce symbol ⊲ to represent such infinite

recursion. The expression

(⊲ x y)

represents the expression y. The symbol ⊲

anotates the expression y has subexpression x

which has self recursive structure. The “left hand

side” x should be a single logical variable. We

do not consider the case the “left hand side” x is

an expression including multiple logical variables.

This research does not consider such complicated

infinite structure. However we cannot find the

case this notation cannot represent relations in our

experiments. It is seem to be sufficient for many

cases that the combination of this notation based

on a single logical variable. Note that this notation

is alomost same to #0# of the circular list.

Let us show example usage of the symbol ⊲. The

expression

(⊲ z (1 z 2))

represents

(1 (1 (1 (. . .) 2) 2) 2)

where z is a logical variable. The symbol ⊲

anotates the subexpression z is self recursive.

This research also consider expressions have

multiple annotations using the symbol ⊲. Let us

show another example. The expression

((⊲ u ((⊲ v (1 . v)) u)))

represents

(v (v (v (. . .))))

= ((1 1 1 . . .) ((1 1 1 . . .)

((1 1 1 . . .) (. . .))))

where u and v are logical variables. Using multiple

⊲ can represent nested recursive structure.

recursive miniKanren has the mechanism of

finding the self recursive structures that the symbol

⊲ can represent. Let us show the execution result

of the recursive miniKanren:

(run∗ (q) (≡ q ‘(,q 3)))

> (⊲ 0 (0 3))

where 0 is a logical variable. Expanding this self

recursive structures gives

q = 0 = (((((. . .) 3) 3) 3) 3)

Comparing the expression using #0# with this

result, recursive miniKanren can be regarded as

an automatic detector of circular list. Let us call

the self recursive relation based on ⊲ as circular

like relation (CLR).

3.1 Extended Triangular Substitutions

Triangular substitution [1] is a fundamental

mechanism in logical programming. Extending

triangular substitution enables finding CLR.

Normal miniKanren has preprocessing occurs-

check which excludes infinite recursive rela-

tion before the main proces of the triangular

substitution. Algorithm 1 shows deltails of

occurs-check . The function occurs-check(x v s)

checks if it is self-recursive in all subtrees in

the expression tree v. When a self-recursive

subtree fund, normal miniKanren regards current

relation invalid. recursive miniKanren assigns the

annotation ⊲ about the self-recursive. Algorithm 2

shows the difference between normal miniKanren

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

Hirotaka Niitsuma1396

and recursive miniKanren. Infinite recursions

are exceptions which the occurs-check function

causes. Algorithm 2 shows that ⊲ can handle

any exceptions which the occurs-check function

causes.

Triangular substitution also has other processes

traversing all subtree in a given expression.

Traversing all subtrees including the infinite

annotation ⊲ is a complicated process. It might

be infinite loop. To avoid infinite loop, recursive

miniKanren uses on-trees macro [6] for traversing

all subtrees.

Algorithm 1 occurs-check(x v s)

Require: x is a logical variable we want to check if

it is self-recursive in the expression v.

s is a dictionary (a set of definitions) of variables

in current scope.

function OCCURS-CHECK(x v s)

expand v by substituting definitions in s

if x = v then
return true

else

for all u ∈ {all subexpressions of v} do
if OCCURS-CHECK(x u s) then

return true

return false

Algorithm 2 normal and recursive miniKanren

differecne

if OCCURS-CHECK(x v s) then

infinite recursion

if normal miniKanren then
v is regarded invalid expression

else if recursive miniKanren then
v ← (⊲ x v)

else

finite recursion

4 matchee Macro

matche macro [8] is a pattern match macro which

can describe the same pattern of the match

macro of the Scheme language inside miniKanren.

However, the matche macro can not describe an

iterative pattern including “. . . ” . matchee macro 3

is an extension of the matche macro so that the

iterative pattern can use. This macro uses “ ”

instead of “. . . ” to describe the iterate patterns. Let

us show example usage of this macro:

(run∗ (q)

(matchee

’((1 (2 3)) (10 (2 30)) (100 (2 300)))

[((,a (2 ,b)))

(≡ q ‘(,a ,b))]))

⇒

(((1 10 100) (3 30 300)))

In the above example, the match pattern describes

an iteration of the pattern (,a (2 ,b)). In this case,

the logical variables a is matched to (1,10,100) and

the logical variables b is matched to (3,30,300).

Like this example, matchee macro can describe

complicated iterative pattern by using “ ”.

matchee is especially useful finding certain

patterns from given list data. Let us consider the

following example.

(run∗ (q)

(matchee

’(1 2 3)

[(,x . ,r)

(≡ q ‘(,x ,r))]))

⇒

’((() (1 2 3)) ((1) (2 3)) ((1 2) (3)) ((1 2 3) ()))

In this example, all possible sub-lists which can

match to the given pattern are enumerated. The

match pattern describes all possible sub-lists which

can divide given input ’(1 2 3). The possible

divisions are

() and (1 2 3), (1) and (2 3), (1 2) and (3), (1 2

3) and (). The macro successfully finds all possible

patterns. This example shows the match pattern

(,x . ,r) can use to search all possible sub-list.

This teqnique is useful search sub-sentence with

some given patterns like context-free grammar.

matchee macro can use in both of normal

miniKanren and recursive miniKanren. And

matchee macro can use as original matche

3https://github.com/niitsuma/

Racket-miniKanren/blob/recursive2/matchee.scm

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546

doi: 10.13053/CyS-22-4-3072

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1397

macro[8] . matchee gives the same results of

original matche macro[8] as like the following

example.

(run∗ (q)

(matchee

’(1 2 3)

[(,x . ,r) (≡ q ‘(,x ,r))]))

⇒ ’((1 (2 3)))

5 Context-Free Grammar with Left
Recursion

Let us consider the following sentence example [2]

for context-free grammar analysis.

“I shot an elephant in my pajamas.”

This sentence can be analyzed by using the flowing

context-free grammar.

S → NP VP

PP → P NP

NP → Det N

NP → Det N PP

VP → V NP

VP → VP PP

N → ’elephant’|’pajamas’

V → ’shot’

P → ’in’

Here, the nonterminal S stands for sentence,

NP for noun phrase, VP for verbphrase, Det

for determiner, PP for prepositional phrase, N

for Noun, V for Verb , and P for preposition.

Note that the highlighted part has left recursion.

This grammar is left recursive in the rules for

NP. Usually, left recursion causes an infinite loop

when analyzing a sentence. To avoid the infinite

loop, a grammar including left recursion requires

special treatments. For example, preprocessing to

eliminate the left recursion can avoid the infinite

loop [9].

The example sentence can be analyzed in two

ways [2] as shown in Figure 1

To find both two results, we need an algorithm

with a backtracking mechanism based on top-down

search.

recursive miniKanren can deal left recursion

without special treatments. And can find both

two results with a backtracking mechanism.

Using matchee macro, the grammar including left

recursion can write as the following

(define (cfg sent tree)

(matchee

sent

[((NP . ,x)(VP . ,y))

(≡ tree ‘(S (NP . ,x)(VP . ,y)))]

[(,pre (P . ,x)(NP . ,y) . ,post)

(fresh (t)

(appendo pre ‘((PP (P . ,x)(NP . ,y)) . ,post) t)

(cfg t tree))]

[(,pre (Det . ,x)(N . ,y) . ,post)

(fresh (t)

(appendo pre ‘((NP (Det . ,x)(N . ,y)) . ,post) t)

(cfg t tree))]

[(,pre (Det . ,x)(N . ,y)(PP . ,z) . ,post)

(fresh (t)

(appendo pre ‘((NP (Det . ,x)(N . ,y)(PP . ,z))

. ,post) t)

(cfg t tree))]

[(,pre (V . ,x)(NP . ,y) . ,post)

(fresh (t)

(appendo pre ‘((VP (V . ,x)(NP . ,y)) . ,post) t)

(cfg t tree))]

[(,pre (VP . ,x)(PP . ,y) . ,post)

(fresh (t)

(appendo pre ‘((VP (VP . ,x)(PP . ,y)) . ,post) t)

(cfg t tree))]

))

Note that the matchee macro enables the grammar

rule to almost directory write down the grammar

rules as match patterns.

The grammar rule can apply to a sentence as the

following way.

(remove-duplicates

(run∗ (q) (cfg

’((NP I) (V shot) (Det an) (N elephant)

(P in) (Det my) (N pajamas)))’

q))

⇒ ’(

(S (NP I)

(VP

(VP (V shot)

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

Hirotaka Niitsuma1398

S

NP

I

VP

VP

V

shot

NP

Det

an

N

elephant

PP

P

in

NP

Det

my

N

pajamas

S

NP

I

VP

VP

V

shot

NP

Det

an

N

elephant

PP

P

in

NP

Det

my

N

pajamas

Fig. 1. Structures of the example sentence

(NP (Det an)

(N elephant)))

(PP (P in)

(NP (Det my)

(N pajamas)))))

(S (NP I)

(VP (V shot)

(NP (Det an)

(N elephant)

(PP (P in)

(NP (Det my)

(N pajamas))))))

)

The desgired both two results are successfully

extracted. Here, remove-duplicates is required

because of this simple implementation extracts

same results more than once. However, it is better

than missing to find possible results. Recall the

principal advantage of the miniKanren is it consists

of under 1000 lines of Scheme code. recusive

miniKanren is also consists of under 1000 lines

of Scheme code. Using more than 1000 lines of

Scheme code can remove remove-duplicates.

The matchee macro also can use in normal

miniKanren. The above code can run with normal

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546

doi: 10.13053/CyS-22-4-3072

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1399

miniKanren. However, normal miniKanren can

not find these phased results, because of the left

recursion.

5.1 Adding Logical Relation

recursive miniKanren is not a paraphrasing tool but

computer language. It can add various relations as

the language sentences. Let us consider adding

rule; a single NP can not contain “elephant” and

“pajamas” simultaneously. This rule can describe

by adding few lines to the match pattern in the cfg

function as the following

(define (cfg sent tree)

(matchee

sent

. . .

[(,pre (Det . ,x)(N . ,y)(PP . ,z) . ,post)

(fresh (t)

(excludee

(fresh ()

(containo ’elephant ‘(,x ,y ,z))

(containo ’pajamas ‘(,x ,y ,z)))

(appendo pre ‘((NP (Det . ,x)(N . ,y)(PP . ,z))

. ,post) t)

(cfg t tree)))]

. . .

Using this rule successfully excludes the phased

results represents “elephant wearing pajama”.

Here, excludee is a macro represents excluding

a special case given in the first argument from

current results:

(define-syntax excludee
(syntax-rules ()

((pred b . . .)

(condu

[pred fail]

[alwayso b . . .]))))

containo is a function giving a decision whether the

list tree given in the secound argument contains the

element given in the first argument:

(define containo

(lambda (x l)

(conde

((fresh (a)

(caro l a)

(≡ a x)))

((fresh (c d)

(conso c d l)

(conde

[(containo x c)]

[(containo x d)]

))))))

As like the above example, miniKanren can

describe various conditions with a context-free

grammar. The example code for this context-free

grammar is in our repository. 4.

5.2 Expanding Context-Free Grammar

Our proposed technique can use to not only

phase sentence also generate sentence. With the

grammar rule cfg described with mcathee macro,

just running following search program generates

possible sentence which can keep the grammar

rule.

(remove-duplicates

(run 20 (q)

(fresh (x)

(cfg x q)

)))

⇒

(

(S (NP . 0) (VP . 1))

(S (NP (Det . 0) (N . 1)) (VP . 2))

(S (NP (Det . 0) (N . 1) (PP . 2)) (VP . .3))

(S (NP . 0) (VP (V . 1) (NP . 2)))

(S (NP . 0) (VP (VP . 1) (PP . 2)))

(S (NP (Det . 0) (N . 1) (PP (P . 2) (NP . .3)))

(VP . .4))

. . .

)

4https://github.com/niitsuma/

Racket-miniKanren/blob/recursive2/

context-free-grammar.scm

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

Hirotaka Niitsuma1400

5.3 Indirect Left Recursion

Our proposed technique also works for indirect left

recursion. Let us consider the following grammar

including indirect left recursion5 .

A → C d

B → C e

C → A | B | f

This grammar rule can be described as the

follwoing match pattern.

(define (cfg sent tree)

(matchee

sent

[((A . ,x)) (≡ tree ‘(A . ,x))]

[((B . ,x)) (≡ tree ‘(B . ,x))]

[((C . ,x)) (≡ tree ‘(C . ,x))]

[(,pre (C . ,x) d . ,post)

(fresh (t1)

(appendo pre ‘((A (C . ,x) d) . ,post) t1)

(cfg t1 tree))]

[(,pre (C . ,x) e . ,post)

(fresh (t1)

(appendo pre ‘((B (C . ,x) e) . ,post) t1)

(cfg t1 tree))]

[(,pre (A . ,x) . ,post)

(fresh (t1)

(appendo pre ‘((C (A . ,x)) . ,post) t1)

(cfg t1 tree))]

[(,pre (B . ,x) . ,post)

(fresh (t1)

(appendo pre ‘((C (B . ,x)) . ,post) t1)

(cfg t1 tree))]

[(,pre f . ,post)

(fresh (t1)

(appendo pre ‘((C f) . ,post) t1)

(cfg t1 tree))]

))

The phase result for ’(f d e) is given by running the

following code

(remove-duplicates (run∗ (q) (cfg ’(f d e) q))))

⇒

((B (C (A (C f) d)) e) (C (B (C (A (C f) d)) e)))

5This example grammar takes from
http://stackoverflow.com/questions/15999916/step-by-step-
elimination-of-this-indirect-left-recursion

This result shows our technique works for the

indirect left recursion. Note that run∗ sentence

is used for this phase procedure. run∗ sentence

causes an infinete loop when executes for infinite

recursive structure. However recursive miniKanren

find and remove the indirect infinite recursive

structure automatically. Running this code finishes

in finite time.

6 Conclusion

matchee macro can describe a context-free

grammar as just write down the grammar rules

as match patterns in the matchee sentence.

recursive miniKanren can handle left recursions

of the grammar without special treatments. This

technique can easily combine various logical

statements to a context-free grammar.

References

1. Baader, F. & Snyder, W. (1999). Unification theory.

2. Bird, S., Klein, E., & Loper, E. (2009). Natural

Language Processing with Python. O’Reilly Media.

3. Byrd, W. E. (2010). Relational programming in

minikanren: techniques, applications, and implemen-

tations. Ph.D. thesis, Indiana University.

4. Byrd, W. E., Holk, E., & Friedman, D. P. (2012).

minikanren, live and untagged quine generation

via relational interpreters. Proceedings of the 2012

Workshop on Scheme and Functional Programming.

5. Friedman, D. P., Byrd, W. E., & Kiselyov, O. (2005).

The Reasoned Schemer. MIT Press, Cambridge, MA.

6. Graham, P. (1993). On LISP: Advanced Techniques

for Common LISP. Prentice Hall.

7. Hemann, J. & Friedman, D. P. (2013). microkanren:

A minimal functional core for relational programming.

Proceedings of the 2013 Workshop on Scheme and

Functional Programming.

8. Keep, A. W., Adams, M. D., Kuper, L., Byrd,

W. E., & Friedman, D. P. (2009). A pattern matcher

for miniKanren or how to get into trouble with CPS

macros. Scheme ’09: Proceedings of the 2009

Scheme and Functional Programming Workshop,

number CPSLO-CSC-09-03 in California Polytechnic

State University Technical Report, pp. 37–45.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546

doi: 10.13053/CyS-22-4-3072

Context-Free Grammars Including Left Recursion using Recursive miniKanren 1401

9. Moore, R. C. (2000). Removing left recursion

from context-free grammars. Proceedings of the

1st North American Chapter of the Association

for Computational Linguistics Conference, NAACL

2000, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 249–255.

Article received on 14/12/2017; accepted on 15/02/2018.
Corresponding author is Hirotaka Niitsuma.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1395–1402
ISSN 1405-5546
doi: 10.13053/CyS-22-4-3072

Hirotaka Niitsuma1402

	reglas de autor.pdf
	CyS_20_No_3_2016-papel
	R_1_Ingles
	R_2_Español
	costos

