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Abstract. Sentiment analysis deals with classifying
written texts according to their polarity. Previous
research in this topic has been conducted mostly for
Latin languages, and no research has been done for
Hebrew. This is important because it turns out that the
task of text classification is extremely language-
dependent. Furthermore, the work on sentiment analysis
for English texts was mostly performed on relatively long
documents. In this work, we focus specifically on
classifying Modern Hebrew sentences according to their
polarity. We compare various Machine Learning
algorithms and techniques of classification. We added
optimizations and methods that have not previously
been used, and adjusted commonly used techniques so
they would suit a Hebrew corpus. We elaborate on the
differences in classifying short texts versus long ones
and about the uniqueness of working specifically with
Hebrew. Finally, our model achieved nearly 93%
accuracy, which is higher than accuracies achieved
previously in this field.
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1 Introduction

Sentiment analysis, also known as opinion mining,
is a type of Natural Language Processing (NLP)
used to determine the attitude of a writer towards a
certain topic, that is, to automatically classify the
given text as belonging to one of the categories
positive or negative.

Sentiment analysis started emerging in the late
1990’s, but became a more prominent field from
2000 onwards.

This is due to the rise of social media which has
caused interest in sentiment analysis. With the
rapid growth of online data, automatic sentiment
classification is important for marketing research,
and is used mainly on data generated by internet
users.

Intuitively, it seems that sentiment analysis is
very similar to the traditional topic-based
classification, where in this case the topics are
positive and negative. Surprisingly, it turns out that
sentiment categorization is more difficult and
challenging than topic-based classification, as
algorithms used for topic-based classification do
not perform as well on sentiment [1]. For example,
while topics can usually be identified with only
keywords, sentiment can be conveyed subtly,
without using explicit positive or negative words.

There are several more challenges in sentiment
analysis [2]. For example, the polarity of an opinion
could at times heavily depend on context or on
writing style. Overall, sentiment analysis is a very
domain-specific problem, and it is hard to create a
domain independent classifier.

There has been some research conducted
specifically on sentiment analysis, but most of it
concerns identifying the general polarity of entire
documents (text classification), rather than on
short text segments. Within the sentence
classification field, a portion of it concerns the
classification of different types of texts (e.g.
distinguishing between questions and responses,
etc.), thus not addressing sentiment specifically.
This is surprising, due to the rising need to classify
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short data segments such as talkbacks and tweets
according to their polarities.

In this work, we focus specifically on classifying
Modern Hebrew sentences according to their
polarity. We divide the classification process into
three phases, and in each phase we test several
methods and compare between them, in order to
find the optimal model to classify our type of
corpus. We compare various Machine Learning
algorithms and techniques of classification, and
analyze the differences of our results compared to
others’. In addition to the techniques commonly
used for English, some of which had to be adjusted
specifically for the special limitations of Hebrew,
we added a few optimizations and methods that
have not previously been used. In the model we
finally chose, we achieved nearly 93% accuracy,
which is higher than accuracies achieved
previously in this field.

2 Related Work

There are two main techniques for sentiment
classification: symbolic techniques and machine
learning (ML) techniques [3]. The ML approaches
to sentiment analysis tend to have better results
than those of the symbolic approaches [4], but their
results depend on the features selected. Among
the ML approaches, it is widely agreed that the
Support Vector Machine (SVM) algorithm
performs best.

Annett & Kondrak in [4] compare between
classification of blogs with lexical methods and ML
methods. The lexical approach used a dictionary of
pre-tagged words (using WordNet). ML methods,
including SVM, Naive bayes (NB) and Alternating
Decision Tree (ADTree), achieved 65.4%-77.5%
accuracy. The relatively high accuracy of the ML
methods proves the superiority of the approach.
The authors point out that in ML, the types of
features chosen have a strong influence on
classification accuracy, whereas in lexical
approaches, there is an upper bound of accuracy
that they could have (it is difficult to get
beyond 65%).

Regarding supervised ML methods, [5] and [1]
compare SVM'’s performances on texts with other
ML algorithms. [5] uses it for topic-based
categorization, and compares it with NB, Rocchio,
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C4.5 and k-NN. SVM consistently achieves good
performances of approximately 87%,
outperforming the other methods significantly. The
author further elaborates on the advantages of the
SVM algorithm, whose abilty to learn is
independent of the dimensionality of the feature
space, which makes it suitable for
text classification.

On the other hand, [1] apply the ML algorithms
specifically on sentiment classification, which they
point out to be more difficult than topic-based
categorization. They compare SVM with NB,
MaxEnt, and a human-produced baseline, on a
domain of 1400 document length movie reviews.
The ML techniques obviously outperformed the
human-produced baseline, and among the ML
techniques, NB was the worst, at 77-81%, and
SVM was the best, at 82%. For the ML techniques,
they tested several representation options of the
text vectors.

Boiy et al. in [3] did a similar comparison testing
several Machine Learning algorithms on
documents, this time between SVM to Naive Bayes
Multinomial and MaxEnt, achieving 75.85%-87.4%
accuracy. A better approach, which hasn’t been
described, achieved 90.25% accuracy.

An alternative approach was proposed by [6]. In
their work, they use a Recursive Neural Tensor
Network to classify sentence-length reviews as
being positive or negative, achieving an accuracy
of 85.4%.

Khoo et al. in [7] work on sentence classification
is closer to ours in the sense that it applied ML
algorithms specifically on sentences (as opposed
to longer texts), but it differs by the fact that it deals
with topic based categorization. In their work, the
authors check different methods of text
representation in a feature vector, and compare
feature selection methods. Their experiments
involved using different combinations of stop-
words removal, tokenization and lemmatization on
the text, and testing the methods with NB, DT and
SVM. SVM outperformed the rest with micro-F1
averaging of 0.853, and with a specific
representation technique they reached 0.883.
They then applied feature selection and concluded
that it did not change performances much for
SVM and DT.

To sum up previous achievements in sentiment
analysis; supervised methods on the document
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level (i.e., blogs, reviews, etc.) achieved
accuracies of approx. 80%, and approx. 87% on
the sentence level. When performing topic-based
categorization rather than sentiment analysis, the
accuracies were somewhat higher.

The aforementioned research and results show
clearly that one of the most important steps of text
classification is the extraction of features for the
feature vector. Some research has been
conducted to find the optimal feature vector
representation. In Section V we provide a detailed
overview of previous work done on
representational issues.

3 The Hebrew Language

One of the difficulties of sentiment analysis is
creating a language-independent classifier. The
reason for this is the grammatical and
morphological differences between languages.
Therefore, a good classifier is usually one that has
been constructed only for a specific language.
Translating the text to English, or using language-
independent classifiers would cause a great loss of
important information.

Languages that have been studied most in this
context are English and Chinese. At the present,
there is very few research on sentiment
classification for other languages. We have found
no research on sentiment in the Hebrew language.

In this context, Semitic languages, specifically
Hebrew, are much tougher languages than others.
In Hebrew, a root word can take numerous forms
depending on its context, tense, gender, and
surrounding words. Thus, the number of different
meanings and combinations a root word could
have is much larger than those in English and Latin
languages. Furthermore, Hebrew is considered to
be a highly ambiguous language (i.e., every phrase
could be interpreted in multiple different ways),
with only 40-45% of its words being unambiguous.

The causes for ambiguity are mainly the
acronyms and abbreviations used in Hebrew, and
the fact that it is an unvocalized language (all of its
letters are consonants), so words carry much
information that does not appear in the script.
Finally, the result of Modern Hebrew usage is the

1 http://iwww.zap.co.il/

need to deal with Hebrew slang, foreign terms and
many linguistic errors.

Some related work has been done in different
fields of NLP in Hebrew [8]. Works that are related
to text classification and refer to the challenges of
Hebrew include the classification of Hebrew-
Aramaic texts according to style [9]; authorship
verification, including dealing with forgers and
pseudonyms [10]; and classification of documents
according to their historical period and ethnic
origin [11].

4 The Corpus

Our corpus consists of cellphone reviews in
Modern Hebrew written by users on a price
comparison website called Zap*. The reviews are
mostly short ones, typically containing
approximately 2-5 lines. The reviews were divided
and tagged manually into 3223 sentences: 1710
positives and 1512 negatives (so a random
baseline, like Weka’s [12] ZeroR, would have an
accuracy of 53%). Various users wrote lists of
attributes they liked/disliked about their device, and
being lists more than sentences, were therefore
not included in the corpus.

The sentences in the corpus, being user
generated, are not necessarily syntactically and
grammatically correct or well formed. In fact, many
of them lack punctuation marks, have misspellings,
and foreign terms are spelled in various different
forms. These issues are sure to have a negative
influence on classification. In many cases, when no
period appeared to mark the end of a sentence, it
was determined by the end of line. Sentence length
could vary from (rarely) 2-3 words to long and
elaborate ones.

5 Methodology

In order to find an optimal categorization
technique, we divided the classification process
into three separate phases, and studied each of
them thoroughly. As mentioned previously, good
classifiers are usually constructed for specific
languages; therefore, we put emphasis on
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representational issues of feature extraction, it
being language-dependent, and thus of great
importance. We compare our methods with
previously used methods, and suggest upon some
of the characteristics of Hebrew sentiment
classification, with an emphasis on what makes it
unigue and different from other classification tasks.

ML text classification could be roughly divided
into three steps: choosing the input vector;
applying Feature Selection (FS); and running the
ML algorithm.

Details on these three steps are as follows:

a) Choosing the Input Vector

This deals with the representational issues of
extracting features from the text. Finding the best
way to represent a given text as an input vector is
probably one of the most important questions in
text classification. In fact, apart from choosing
which algorithm to use, most of the research in this
field deals with finding the optimal features for the
input vector.

1. Tokenization

Tokenization is the act of separating words from
symbols.  Without it, each  word-symbol
combination would be treated as a distinct feature;
this would add unnecessary features with lower
weights, and consequently reduce their power of
classification. In our experiments, we have used
the default tokenizer provided by a Hebrew POS
tagger [13].

2. Word representation-unit

A single word could appear in various forms in a
text. Therefore, it is reasonable to try to find a
method that would map all the variations of a word
to one unique representation. Notice that Hebrew
has many more inflected forms for every word,
making the problem more prominent.

In Hebrew, every word could be represented in
one of the following manners: by its root, i.e., a
sequence of three consonants, from which all
Hebrew verbs and most of its nouns are derived;
by its lemma, i.e. the base form of the word; by its
stem, i.e. the word after having its affixes removed;
or simply by using the raw terms as the features.

Thus, when all of the forms of a word are
mapped to a single unique form, the power/ranking
of that word could increase if it appears in different
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forms in a specific class. Consequently, it would
also reduce the size of the feature vector [7].
Indeed, some research report a slight increase of
accuracy when using stems/lemmas [4, 5].

However, many researchers [14, 7] claim that
stemming/lemmatizing causes some decrease in
accuracy. A unique representation of a word in the
methods proposed here could be ambiguous, and
using it would come with loss of detail in the
language, and thus causing overgeneralization.

A different approach regarding word
representation, is to add every bigram in the text
as a feature (instead of using the unigrams).
Hopefully, bigrams could capture some of the
context of the words in the sentence. [1] show that
using bigrams instead of and in addition to
unigrams doesn’t yield higher results. In fact, using
bigrams alone caused some decline in the results.

3. Negation tags

A sentence, particularly a review, typically contains
negation words that could potentially reverse the
meaning of a sentence. Unfortunately, ML Bag of
Words (BoW) techniques fail to preserve word
order, and therefore are oblivious to the fact that
certain words in a sentence are negated. An
attempt to solve this problem is to add negation
tags (a.k.a. sentiment shifters); this approach
involves tagging every word after the negation
word until the first punctuation mark.

Finding a list of Hebrew negation words is more
complicated than in other languages. This is due to
their many inflected forms, and due to the fact that
in Hebrew, the negation word could be joined with
other words in the sentence, meaning that the
negation word is not necessarily implicit.
Therefore, in addition to identifying negative words
by a predefined negation word list, we also had to
check the polarity of given words using a
POS tagger.

Adding negation tags was performed by [1], and
they report a very slight positive effect on
performance. [14] on the other hand, state that it
only hurt performances in their work.

4. Parts of Speech (POS) tagging

Adding POS tags is another way to help distinguish
a word’s meaning from similar words, thus
performing some type of sense disambiguation, as
words with a different POS tagging may be treated
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differently. However, experiments on English
corpora show that POS tags don’t affect
performances very much, and sometimes degrade
them [1].

The POS tagging could have another purpose;
theoretically, it seems natural that sentiment would
be expressed mainly by adjectives. Therefore, it
would seem plausible to represent sentences with
their adjectives only. [1] tried this technique,
yielding relatively poor results. [3] reason this with
the fact that adjectives only represent
approximately 7.5% of the text in a document.

5. Stop words removal

Stop words are the most common words that
appear in a text, and are there for grammatical
reasons only, e.g., a, the, is, etc. They do not
contribute to the sentences’ meaning, so they are
usually removed. Not all stop-lists are suitable for
all applications, because words that could be
interpreted as stop-words for one application could
turn out to be vital for sentiment.

One way to construct a stop list is to find the
most frequent words in the corpus. This must be
done carefully because this list is sure to consist of
words important for classification. In our corpus, for
example, words like recommend, strong, works,
satisfied, etc. appear very frequently, but they are
certainly not stop words.

[15] compared the performance of sentiment
classification on tweets with and without stop
words removal. They conclude that stop-words
removal harms classification. [7] also report stop
words removal to be harmful for classification; in
fact, words in their stop-lists were in the top of the
list of words produced by FS methods. However,
stop-words removal is still widely used in many text
classification experiments.

b) Feature Selection

Applying Feature Selection is the act of filtering out
irrelevant or low ranking features from the feature
vector. It must be first noted that FS should be
applied gently, as even the lowest ranking features
hold some relevance for classification - classifying
using them alone provides performances that are
better than random. Consequently, a good
classifier would probably have a high dimensional
feature vector, and aggressive FS could yield
diminished results [4].

Table 1. POS Patterns from the Corpus

POS Pattern Example (translated)

Negation Adverb ‘not simple to use’

Interrogative
Negation

‘OK for whoever isn’t[...]’

Negation Adjective ‘Uncomfortable’

‘Too bad there isn’t

Existential Noun s
access [...]

“...with high color

Noun Adjective S
precision

In fact, it could be argued that SVM, with its
suitability to high dimensional feature spaces,
performs sufficiently without applying FS [5].

As the feature space in text classification could
be very large, FS could be used to reduce high
computational load. In practice, it is used to
improve classification performance [7].

Feature selection could be applied by removing
the least frequent words from the feature vector, or
by removing the words with the least weight
assigned by a linear SVM model.

Previous research report that the first method
does not significantly affect classification [1], while
the second method yields good performances.

¢) Running the ML Algorithm

For this part, we chose three algorithms: Bayesian
Logistic Regression (BLR), Voted Perceptron (VP),
and Support Vector Machines (SVMs). For BLR
and VP we used the Weka package with default
parameters. For the SVM algorithm, we used the
LIBSVM package [16] for training and testing,
using a linear kernel: K(xi, x) = xi' x. After
performing grid-search, the penalty parameter C is
set to 0.5. The results presented are 10-fold cross
validation accuracy. A similar package,
LibShortText [17] (which also implements SVM),
was tested as well; despite its suitability for short
texts, it yielded similar results.

6 Results

a) Baseline
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As a baseline experiment, we tested the
classification performance of our corpus, when
every sentence was classified according to the
number of positive and negative words appearing
in it. This seamed plausible due to the corpus’
nature as persuasive quality reviews. In this
experiment, a word was considered to be positive
if it appeared to be a synonym of one of the Hebrew
words good or excellent, taken from two Hebrew
thesauri [18] [19] and was considered to be
negative if it appeared to be a synonym of one of
the Hebrew words bad or very bad. These lists of
synonyms contained 204 and 154 phrases
respectively. The texts were tokenized
before classification.

The accuracy was 24.73%, with a very high
percentage of ties (64.78%). We repeated the
experiment, this time after lemmatizing the corpus.
This was done so conjugated polarity words would
be counted as well. Indeed, the accuracy
increased to 34.75%. However, lemmatization also
caused some over-generalization, for not only did
the percentage of correct classification increase,
but also the percentage of the sentences
incorrectly classified. The percentage of ties
decreased, but was still high, at 52.4%. This comes
to show that in many cases, explicit polarity terms
may not be enough for classification.

b) Machine Learning Techniques

The main part of this research deals with the
optimal way to represent Hebrew text. We have
experimented with various combinations of
representation techniques, and they are fully
presented in Table 4. After investigating the
different techniques in section Methodology, we
shall now elaborate on our approach and results.

The following results have been evaluated using
SVM. The results of BLR were generally similar,
but lower on average. VP vyielded much
lower results.

Firstly, all of our experiments were implemented
on the corpus after it has been tokenized (with a
Hebrew POS tagger’s default tokenizer). We begin
with the most basic representation, involving a
binary feature vector of raw unigrams. Its

2 Ktiv maleh - rules of spelling-without-Nigqud; it involves
adding certain consonants (such as Waw and Yod) to words, to
be used as vowels.
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performance, extremely close to 80%, as
represented in line 4 of Table 4, shows that this
basic representation yields reasonable results,
with SVM  generally  outperforming the
other classifiers.

We now proceed with experiments of the various
technigues presented in Section 5.

1. Word representation unit

The Hebrew root being too vague and the stem
being extremely inaccurate, we experiment with
representing every word in the text with its lemma
(Table 4, line 5) rather than its raw form, yielding
accuracy rates higher in more than 2%. We used a
Hebrew POS-tagger to find the lemma of
every word.

Upon examining the influence  that
lemmatization has on classification, we found that,
as expected, it reduces the number of features in
the feature vector, provides a unique
representation to groups of related words - and of
various spellings of words - and thus gives words
more accurate rankings. For example, without
lemmatizing, the word the cellphone (which is a
single word in Hebrew) and a cellphone (again, a
single word) are treated as different words when in
fact they are not.

A more critical example is found with the words
no, and not and that isn’t, (which in Hebrew are the
same base word with different prefixes) which are
treated as different words, and the high negative
ranking the word no received when using
lemmatization is distributed between the different
variants of the word when no lemmatization is
applied, thus reducing the influence of the word.
Lemmatization also clustered different spelling
forms of specific words, by converting them all to
the ktiv maleh? form.

Bigrams. When using bigrams, we distinguished
between two cases; representing the text with
bigrams of words or with bigrams of lemmas. When
using bigrams + words, performances declined,
probably due to their being too many un-
generalized features. However, when using
bigrams + lemmas, performances remained the
same. Still, upon examining the weight vector, it
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seems that the bigrams served their purpose: they
‘caught’ the meaning of phrases. Thus, for
example, the word small (when using unigrams)
was ranked negatively, whereas small and
comfortable was ranked positively.

2. Negation tags

Surprisingly, negation tags proved to be effective
(Table 4, line 2); increasing performances in
approximately 2%, it seems to be significant for
classification. In fact, the word no is one of the most
frequently used words in the corpus. This comes in
contrast to previous results in English stating that
negation tags have a slight effect on performance.

Adding negation tags, however, is not a perfect
solution due to the use of implicit negation terms,
or alternatively the use of the negation term after
the description of the problem, instead of before it.
Nevertheless, adding negation tags turned out to
be very useful.

3. Thwarted expectations

One of the common problems in sentiment
analysis is the presence of thwarted expectations
sentences, that is, sentences that build up a certain
impression and then conclude with a contradicting
phrase. An example from our corpus is the
following negative sentence: ’At first the phone
looks very comfortable, but after some time flaws
start to appear.’

Using the BoW feature, a learning algorithm has
no way to understand that the words after the but
are more important than those before it. Therefore,
we tried a different, simple approach that, upon
detecting the word but (or one of its synonyms),
removes the words that appear before it, assuming
that they are irrelevant since the words after the but
contradict them. Indeed, there was a slight
increase in performance (Table 4, line 3).

4. Parts of speech

Surprisingly, adding POS tags did not have a
crucial impact on classification. Comparing Table
4’s lines 1 and 6, there is less than a 1% difference.
With all of the ambiguity problems that exist in
Hebrew, it would have seemed that adding POS
tags is a vital. However, the light impact it had
could be explained by the corpus being domain
specific, thus somewhat reducing ambiguity

concerns. Another explanation is the inaccuracy of
the POS tagger.

Further expanding the usage of POS tags, we
experimented on finding whether any specific POS
patterns that could indicate on sentiment repeated
themselves throughout the corpus. Technically, we
extracted bigrams and their POS tags, discarding
the words to which the tags belonged, for the
feature vector. A similar method has been used by
[20] to classify between subjective and objective
sentences, and yielded precision of 70%-80%. In
our case, accuracy rates are slightly lower, at 68%,
and at 69% when applying FS. However, the
classifier did in fact find some interesting POS
patterns; several of the features ranking highest
are shown in Table 1. Apart from helping
classification, these attributes come to show that it
does not only matter what is said in the sentence,
but also how it is said. For example, various writers
wrote their reviews in the form of 'The <product> is
OK for whoever needs it only for...” etc., which
brought up the Interrogative Negation feature.

5. Adjectives

Adding adjectives alone to the feature vector
yielded surprisingly low results (74%), showing that
sentiment, even on products, isn’t necessarily
expressed using adjectives (Table 4, line 7). As we
have mentioned before, the word no, for example,
which obviously isn’t an adjective, turned out to be
an important negative feature.

6. Stop words

Removing stop words is commonly applied
before classification. As shown in Table 4 lines 11
and 12, removing stop words has a negligible, but
slightly harmful effect on predictions. Out of a list
of around 60 stop words, more than half turned out
to be ranked between 0.1 and 0.6, meaning that
they could, in fact, be quite significant. Among the
highest ranking stop words are and therefore, if
and but, which puts into question the liability of a
manually constructed stop-list.

It should be noted that stop-word removal in
Hebrew is slightly different and perhaps less
necessary than it is in English, because typical
English stop words such as a, and or the either do
not exist in Hebrew or are represented by prefixes
(and are not removed with stop-lists).
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7. Feature selection

We now first apply FS according to the weight of
the words, removing features that ranked less than
0.1. The results were drastic: performance jumped
from 79.9% without FS (Table 4, line 4) to 86.5%
with it (Table 4, line 10). This contradicts previous
works that show that SVM is not very sensitive to
FS [7, 5]. This could be due to the amount of noise
that exists in the corpus. To check this type of FS
further, we tried removing features with heavier
weights; that is, removing features that ranked less
than 0.2, 0.3, etc., with jumps of 0.1. It turns out
that once features of higher rankings are removed,
the classification accuracy starts to decline.

Another form of FS, which is in fact quite
common, is the removal of infrequent words from
the feature vector. We tried this, removing words
that appeared less than 4 times in the corpus. It
turned out to be slightly harmful. We then
experimented with a new method that essentially
applies some form of feature selection. The
method we propose attempts to find an important
part of the sentence, and use it alone
for classification.

Initially, the corpus was tagged manually as
follows: a unique symbol was placed around the
object of the sentence - that is, around the phrase
(usually a single word) that the writer was referring
to. As some figures of speech allow the writer to
omit the object of the sentence, not all sentences
suited our needs and we used a subset of 3046
sentences, out of 3223 in the original corpus.

Once the object of the sentence is determined,
a window size is chosen; thus, the only part of the
sentence that the classifier uses is the window size
surrounding both sides of the object.

Assuming that the words surrounding the object
hold most importance, this method should yield
reasonable results.

We’'ll take the following sentence as an example:
‘The sound quality is excellent, the best I've heard
on mobile devices, especially when you hear music
with headphones, because there is an option for
Dolby Surround.’

Placing a unique symbol around the object:
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Table 2. Feature Selection using various windows
sizes

WiSnicZigw Sentence Remaining Content
0 ‘<obj> sound quality </obj>’
1 ‘The <obj> sound quality </obj> is’
5 ‘The <obj> sound quality </obj> is
excellent’

Table 3. Accuracies according to window size

Window Size Accuracy
0 61.88%
1 72.88%
2 77.97%
3 80.56%
4 83.39%
5 86.01%
(no window) 88.49%

'The <obj> sound quality </obj> is excellent, the
best I've heard on mobile devices, especially when
you hear music with headphones, because there is
an option for Dolby Surround.’

Examples of various window sizes are in Table
2. Results vary according to the chosen window
size, and are shown in Table 3.

As we assumed, most results perform well - and
increase in performance as the window size
expands. Surprisingly, a window size of zero
performed better than random; indeed, even the
object of a sentence implies its sentiment, as the
advantages and disadvantages of cellphones are
usually common.

Using the whole sentence vyielded 88.49%
accuracy (Table 4, line 1). Using other portions of
the sentences for classification did not perform as
well as when using the window.

This method obviously did not improve
classification; however, it proved that the words
surrounding the object are significant for
classification. This fact could be used when there
are concerns for the computational load of the
corpus, or when sentences tend to be
exceptionally long.
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Table 4. Results

Unigram/ Word/ Neg. ‘buts’ a SVM BLR a
Bigram lemma tags tags FS ACC?2 ACC? VP ACC
. 88.49
1. Unigram word True  False True % 87.10% 81.67%
. 81.91
2. Unigram word True  False False % 81.81% 79.27%
. 82.35
3. Unigram word True True False % 80.93% 78.69%
. 79.93
4, Unigram word False False False % 78.17% 76.22%
5.  Unigram lemma True  False True 84.46 82.90% 80.45%
6.  Unigram + POS word True  False True %2'30 87.79% 81.64%
7. Unigram word True  False True 7419 73910 72.26%
(adjectives only) %
8. ggf’aﬁm lemma  True False True  91.9%  92.37% 86.13%
Unigram 91.19 o 0
9. Bigram + POS lemma True  False True % 92.58% 86.32%
. 86.47
10.  Unigram word False False True % 83.97% 79.15%
11. gvc;?ram With — word  True False Tue 5999 ggoaw  81.80%
12, Unigram - With s True  False True 88.95 86.70% 82.61%

sw?)

%

Comparison of results using three machine learning algorithms and various vector representations.
aList of abbreviations for this table: Acc - accuracy; FS - feature selection (specifically referring to the removal of weights under 0.1);

sw - stop words.

c) Best results

Combining both unigrams and bigrams seems to
be a natural choice, as spoken language is made
of both individual words and phrases (phrases that
are longer than 2 words are usually abbreviated
when written).

Indeed, the best feature representations
involved the combination of bigrams and unigrams
with lemmas, with POS tags (Table 4, line 9) and
without (Table 4, line 8) (binary vector, weight FS),
yielding 91% and nearly 92% accuracy
(respectively). It should be noted that in these two
cases, Bayesian Logistic Regression gave slightly
higher results than the other algorithms; 92.6% and
92.4% (respectively) which are exceptionally high.

7 Conclusion

We have presented a set of experiments on
sentence classification by sentiment, on reviews
written in Hebrew. Sentiment analysis has been
widely performed on texts, but far less on
sentences, and none has been performed on the
Hebrew language. Here we showed unique
characteristics of classifying Hebrew texts by
polarity, with an emphasis on the fact that the texts
are considered to be short.

It is generally believed that when classifying
sentences, one should be very careful not to lose
any piece of their precious and scarce information.
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Here, on the other hand, the results implied that the

feature vectors had much noise in them;
lemmatization and FS, which independently
reduce the feature vector size, caused

improvements in classification, when previous
works show that they do not influence classification
much (at least when using SVMs). This could in
fact be a side effect of working with Modern
Hebrew - the inflected words, the various spelling
forms of them, etc. could all be causes of
unnecessary features.

Another result that stood out was the fact that
despite previous work claiming it is unnecessary,
and despite its inaccuracy in our corpus - adding
negation tags (in a method we designed
specifically for Hebrew) improved classification. In
fact, negation expressions were very dominant
among the words of the corpus (which of course
isn't skewed). This, too, could be a result of
working with a Hebrew corpus; it shows the
different language structure of Hebrew, and
perhaps shows a cultural difference between
Hebrew writers to the writers of Latin languages.

Regarding additional results that seem to be
language specific, stop words removal might not
be as necessary as in other languages, as it seems
that many words that would be considered to be
stop words in Latin languages either do not exist in
Hebrew, or exist as prefixes (and are therefore not
removed with stop-lists).

Finally, it should be noted that while SVMs are
considered to be the best classification methods,
and indeed they vyielded the highest results,
Bayesian Logistic Regression vyielded results
almost as high (on average slightly lower). The
highest results were achieved by Bayesian Logistic
Regression, at nearly 93%, when previous
somewhat similar works achieved a maximum of
85%-88%.

In addition, we introduced two new methods:
adding tags that attempted to solve the problem of
thwarted expectations in a sentence, which
improved classification, and adding a window size
which determined the part of the sentence to
classify; this method yielded reasonable results
and significantly reduced computational load.
Furthermore, it provided us an insight on the
structure of the sentences classified, which could
be useful when classifying exceptionally
long sentences.
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	costos




