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Abstract. Sentiment analysis deals with classifying 

written texts according to their polarity. Previous 
research in this topic has been conducted mostly for 
Latin languages, and no research has been done for 
Hebrew. This is important because it turns out that the 
task of text classification is extremely language-
dependent. Furthermore, the work on sentiment analysis 
for English texts was mostly performed on relatively long 
documents. In this work, we focus specifically on 
classifying Modern Hebrew sentences according to their 
polarity. We compare various Machine Learning 
algorithms and techniques of classification. We added 
optimizations and methods that have not previously 
been used, and adjusted commonly used techniques so 
they would suit a Hebrew corpus. We elaborate on the 
differences in classifying short texts versus long ones 
and about the uniqueness of working specifically with 
Hebrew. Finally, our model achieved nearly 93% 
accuracy, which is higher than accuracies achieved 
previously in this field. 

Keyword. Automatic classification, machine learning, 

sentiment analysis, short Hebrew texts. 

1 Introduction 

Sentiment analysis, also known as opinion mining, 
is a type of Natural Language Processing (NLP) 
used to determine the attitude of a writer towards a 
certain topic, that is, to automatically classify the 
given text as belonging to one of the categories 
positive or negative.  

Sentiment analysis started emerging in the late 
1990’s, but became a more prominent field from 
2000 onwards.  

This is due to the rise of social media which has 
caused interest in sentiment analysis. With the 
rapid growth of online data, automatic sentiment 
classification is important for marketing research, 
and is used mainly on data generated by internet 
users. 

Intuitively, it seems that sentiment analysis is 
very similar to the traditional topic-based 
classification, where in this case the topics are 
positive and negative. Surprisingly, it turns out that 
sentiment categorization is more difficult and 
challenging than topic-based classification, as 
algorithms used for topic-based classification do 
not perform as well on sentiment [1]. For example, 
while topics can usually be identified with only 
keywords, sentiment can be conveyed subtly, 
without using explicit positive or negative words. 

There are several more challenges in sentiment 
analysis [2]. For example, the polarity of an opinion 
could at times heavily depend on context or on 
writing style. Overall, sentiment analysis is a very 
domain-specific problem, and it is hard to create a 
domain independent classifier. 

There has been some research conducted 
specifically on sentiment analysis, but most of it 
concerns identifying the general polarity of entire 
documents (text classification), rather than on 
short text segments. Within the sentence 
classification field, a portion of it concerns the 
classification of different types of texts (e.g. 
distinguishing between questions and responses, 
etc.), thus not addressing sentiment specifically. 
This is surprising, due to the rising need to classify 
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short data segments such as talkbacks and tweets 
according to their polarities. 

In this work, we focus specifically on classifying 
Modern Hebrew sentences according to their 
polarity. We divide the classification process into 
three phases, and in each phase we test several 
methods and compare between them, in order to 
find the optimal model to classify our type of 
corpus. We compare various Machine Learning 
algorithms and techniques of classification, and 
analyze the differences of our results compared to 
others’. In addition to the techniques commonly 
used for English, some of which had to be adjusted 
specifically for the special limitations of Hebrew, 
we added a few optimizations and methods that 
have not previously been used. In the model we 
finally chose, we achieved nearly 93% accuracy, 
which is higher than accuracies achieved 
previously in this field. 

2 Related Work 

There are two main techniques for sentiment 
classification: symbolic techniques and machine 
learning (ML) techniques [3]. The ML approaches 
to sentiment analysis tend to have better results 
than those of the symbolic approaches [4], but their 
results depend on the features selected. Among 
the ML approaches, it is widely agreed that the 
Support Vector Machine (SVM) algorithm 
performs best. 

Annett & Kondrak in [4] compare between 
classification of blogs with lexical methods and ML 
methods. The lexical approach used a dictionary of 
pre-tagged words (using WordNet). ML methods, 
including SVM, Naive bayes (NB) and Alternating 
Decision Tree (ADTree), achieved 65.4%-77.5% 
accuracy. The relatively high accuracy of the ML 
methods proves the superiority of the approach. 
The authors point out that in ML, the types of 
features chosen have a strong influence on 
classification accuracy, whereas in lexical 
approaches, there is an upper bound of accuracy 
that they could have (it is difficult to get 
beyond 65%). 

Regarding supervised ML methods, [5] and [1] 
compare SVM’s performances on texts with other 
ML algorithms. [5] uses it for topic-based 
categorization, and compares it with NB, Rocchio, 

C4.5 and k-NN. SVM consistently achieves good 
performances of approximately 87%, 
outperforming the other methods significantly. The 
author further elaborates on the advantages of the 
SVM algorithm, whose ability to learn is 
independent of the dimensionality of the feature 
space, which makes it suitable for 
text classification. 

On the other hand, [1] apply the ML algorithms 
specifically on sentiment classification, which they 
point out to be more difficult than topic-based 
categorization. They compare SVM with NB, 
MaxEnt, and a human-produced baseline, on a 
domain of 1400 document length movie reviews. 
The ML techniques obviously outperformed the 
human-produced baseline, and among the ML 
techniques, NB was the worst, at 77-81%, and 
SVM was the best, at 82%. For the ML techniques, 
they tested several representation options of the 
text vectors. 

Boiy et al. in [3] did a similar comparison testing 
several Machine Learning algorithms on 
documents, this time between SVM to Naive Bayes 
Multinomial and MaxEnt, achieving 75.85%-87.4% 
accuracy. A better approach, which hasn’t been 
described, achieved 90.25% accuracy. 

An alternative approach was proposed by [6]. In 
their work, they use a Recursive Neural Tensor 
Network to classify sentence-length reviews as 
being positive or negative, achieving an accuracy 
of 85.4%. 

Khoo et al. in [7] work on sentence classification 
is closer to ours in the sense that it applied ML 
algorithms specifically on sentences (as opposed 
to longer texts), but it differs by the fact that it deals 
with topic based categorization. In their work, the 
authors check different methods of text 
representation in a feature vector, and compare 
feature selection methods. Their experiments 
involved using different combinations of stop-
words removal, tokenization and lemmatization on 
the text, and testing the methods with NB, DT and 
SVM. SVM outperformed the rest with micro-F1 
averaging of 0.853, and with a specific 
representation technique they reached 0.883. 
They then applied feature selection and concluded 
that it did not change performances much for 
SVM and DT.  

To sum up previous achievements in sentiment 
analysis; supervised methods on the document 
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level (i.e., blogs, reviews, etc.) achieved 
accuracies of approx. 80%, and approx. 87% on 
the sentence level. When performing topic-based 
categorization rather than sentiment analysis, the 
accuracies were somewhat higher. 

The aforementioned research and results show 
clearly that one of the most important steps of text 
classification is the extraction of features for the 
feature vector. Some research has been 
conducted to find the optimal feature vector 
representation. In Section V we provide a detailed 
overview of previous work done on 
representational issues. 

3 The Hebrew Language 

One of the difficulties of sentiment analysis is 
creating a language-independent classifier. The 
reason for this is the grammatical and 
morphological differences between languages. 
Therefore, a good classifier is usually one that has 
been constructed only for a specific language. 
Translating the text to English, or using language-
independent classifiers would cause a great loss of 
important information. 

Languages that have been studied most in this 
context are English and Chinese. At the present, 
there is very few research on sentiment 
classification for other languages. We have found 
no research on sentiment in the Hebrew language. 

In this context, Semitic languages, specifically 
Hebrew, are much tougher languages than others. 
In Hebrew, a root word can take numerous forms 
depending on its context, tense, gender, and 
surrounding words. Thus, the number of different 
meanings and combinations a root word could 
have is much larger than those in English and Latin 
languages. Furthermore, Hebrew is considered to 
be a highly ambiguous language (i.e., every phrase 
could be interpreted in multiple different ways), 
with only 40-45% of its words being unambiguous.  

The causes for ambiguity are mainly the 
acronyms and abbreviations used in Hebrew, and 
the fact that it is an unvocalized language (all of its 
letters are consonants), so words carry much 
information that does not appear in the script. 
Finally, the result of Modern Hebrew usage is the 

 
1 http://www.zap.co.il/ 

need to deal with Hebrew slang, foreign terms and 
many linguistic errors. 

Some related work has been done in different 
fields of NLP in Hebrew [8]. Works that are related 
to text classification and refer to the challenges of 
Hebrew include the classification of Hebrew-
Aramaic texts according to style [9]; authorship 
verification, including dealing with forgers and 
pseudonyms [10]; and classification of documents 
according to their historical period and ethnic 
origin [11]. 

4 The Corpus 

Our corpus consists of cellphone reviews in 
Modern Hebrew written by users on a price 
comparison website called Zap1. The reviews are 
mostly short ones, typically containing 
approximately 2-5 lines. The reviews were divided 
and tagged manually into 3223 sentences: 1710 
positives and 1512 negatives (so a random 
baseline, like Weka’s [12] ZeroR, would have an 
accuracy of 53%). Various users wrote lists of 
attributes they liked/disliked about their device, and 
being lists more than sentences, were therefore 
not included in the corpus. 

The sentences in the corpus, being user 
generated, are not necessarily syntactically and 
grammatically correct or well formed. In fact, many 
of them lack punctuation marks, have misspellings, 
and foreign terms are spelled in various different 
forms. These issues are sure to have a negative 
influence on classification. In many cases, when no 
period appeared to mark the end of a sentence, it 
was determined by the end of line. Sentence length 
could vary from (rarely) 2-3 words to long and 
elaborate ones. 

5 Methodology 

In order to find an optimal categorization 
technique, we divided the classification process 
into three separate phases, and studied each of 
them thoroughly. As mentioned previously, good 
classifiers are usually constructed for specific 
languages; therefore, we put emphasis on 
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representational issues of feature extraction, it 
being language-dependent, and thus of great 
importance. We compare our methods with 
previously used methods, and suggest upon some 
of the characteristics of Hebrew sentiment 
classification, with an emphasis on what makes it 
unique and different from other classification tasks. 

ML text classification could be roughly divided 
into three steps: choosing the input vector; 
applying Feature Selection (FS); and running the 
ML algorithm. 

Details on these three steps are as follows: 

a) Choosing the Input Vector 

This deals with the representational issues of 
extracting features from the text. Finding the best 
way to represent a given text as an input vector is 
probably one of the most important questions in 
text classification. In fact, apart from choosing 
which algorithm to use, most of the research in this 
field deals with finding the optimal features for the 
input vector. 

1. Tokenization 

Tokenization is the act of separating words from 
symbols. Without it, each word-symbol 
combination would be treated as a distinct feature; 
this would add unnecessary features with lower 
weights, and consequently reduce their power of 
classification. In our experiments, we have used 
the default tokenizer provided by a Hebrew POS 
tagger [13]. 

2. Word representation-unit 

A single word could appear in various forms in a 
text. Therefore, it is reasonable to try to find a 
method that would map all the variations of a word 
to one unique representation. Notice that Hebrew 
has many more inflected forms for every word, 
making the problem more prominent. 

In Hebrew, every word could be represented in 
one of the following manners: by its root, i.e., a 
sequence of three consonants, from which all 
Hebrew verbs and most of its nouns are derived; 
by its lemma, i.e. the base form of the word; by its 
stem, i.e. the word after having its affixes removed; 
or simply by using the raw terms as the features. 

Thus, when all of the forms of a word are 
mapped to a single unique form, the power/ranking 
of that word could increase if it appears in different 

forms in a specific class. Consequently, it would 
also reduce the size of the feature vector [7]. 
Indeed, some research report a slight increase of 
accuracy when using stems/lemmas [4, 5]. 

However, many researchers [14, 7] claim that 
stemming/lemmatizing causes some decrease in 
accuracy. A unique representation of a word in the 
methods proposed here could be ambiguous, and 
using it would come with loss of detail in the 
language, and thus causing overgeneralization. 

A different approach regarding word 
representation, is to add every bigram in the text 
as a feature (instead of using the unigrams). 
Hopefully, bigrams could capture some of the 
context of the words in the sentence. [1] show that 
using bigrams instead of and in addition to 
unigrams doesn’t yield higher results. In fact, using 
bigrams alone caused some decline in the results. 

3. Negation tags 

A sentence, particularly a review, typically contains 
negation words that could potentially reverse the 
meaning of a sentence. Unfortunately, ML Bag of 
Words (BoW) techniques fail to preserve word 
order, and therefore are oblivious to the fact that 
certain words in a sentence are negated. An 
attempt to solve this problem is to add negation 
tags (a.k.a. sentiment shifters); this approach 
involves tagging every word after the negation 
word until the first punctuation mark. 

Finding a list of Hebrew negation words is more 
complicated than in other languages. This is due to 
their many inflected forms, and due to the fact that 
in Hebrew, the negation word could be joined with 
other words in the sentence, meaning that the 
negation word is not necessarily implicit. 
Therefore, in addition to identifying negative words 
by a predefined negation word list, we also had to 
check the polarity of given words using a 
POS tagger. 

Adding negation tags was performed by [1], and 
they report a very slight positive effect on 
performance. [14] on the other hand, state that it 
only hurt performances in their work. 

4. Parts of Speech (POS) tagging 

Adding POS tags is another way to help distinguish 
a word’s meaning from similar words, thus 
performing some type of sense disambiguation, as 
words with a different POS tagging may be treated 
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differently. However, experiments on English 
corpora show that POS tags don’t affect 
performances very much, and sometimes degrade 
them [1]. 

The POS tagging could have another purpose; 
theoretically, it seems natural that sentiment would 
be expressed mainly by adjectives. Therefore, it 
would seem plausible to represent sentences with 
their adjectives only. [1] tried this technique, 
yielding relatively poor results. [3] reason this with 
the fact that adjectives only represent 
approximately 7.5% of the text in a document. 

5. Stop words removal 

Stop words are the most common words that 
appear in a text, and are there for grammatical 
reasons only, e.g., a, the, is, etc. They do not 
contribute to the sentences’ meaning, so they are 
usually removed. Not all stop-lists are suitable for 
all applications, because words that could be 
interpreted as stop-words for one application could 
turn out to be vital for sentiment. 

One way to construct a stop list is to find the 
most frequent words in the corpus. This must be 
done carefully because this list is sure to consist of 
words important for classification. In our corpus, for 
example, words like recommend, strong, works, 
satisfied, etc. appear very frequently, but they are 
certainly not stop words. 

[15] compared the performance of sentiment 
classification on tweets with and without stop 
words removal. They conclude that stop-words 
removal harms classification. [7] also report stop 
words removal to be harmful for classification; in 
fact, words in their stop-lists were in the top of the 
list of words produced by FS methods. However, 
stop-words removal is still widely used in many text 
classification experiments. 

b) Feature Selection 

Applying Feature Selection is the act of filtering out 
irrelevant or low ranking features from the feature 
vector. It must be first noted that FS should be 
applied gently, as even the lowest ranking features 
hold some relevance for classification - classifying 
using them alone provides performances that are 
better than random. Consequently, a good 
classifier would probably have a high dimensional 
feature vector, and aggressive FS could yield 
diminished results [4].  

In fact, it could be argued that SVM, with its 
suitability to high dimensional feature spaces, 
performs sufficiently without applying FS [5]. 

As the feature space in text classification could 
be very large, FS could be used to reduce high 
computational load. In practice, it is used to 
improve classification performance [7]. 

Feature selection could be applied by removing 
the least frequent words from the feature vector, or 
by removing the words with the least weight 
assigned by a linear SVM model.  

Previous research report that the first method 
does not significantly affect classification [1], while 
the second method yields good performances. 

c) Running the ML Algorithm  

For this part, we chose three algorithms: Bayesian 
Logistic Regression (BLR), Voted Perceptron (VP), 
and Support Vector Machines (SVMs). For BLR 
and VP we used the Weka package with default 
parameters. For the SVM algorithm, we used the 
LIBSVM package [16] for training and testing, 
using a linear kernel: K(xi, xj) = xi

T xj. After 
performing grid-search, the penalty parameter C is 
set to 0.5. The results presented are 10-fold cross 
validation accuracy. A similar package, 
LibShortText [17] (which also implements SVM), 
was tested as well; despite its suitability for short 
texts, it yielded similar results. 

6 Results 

a) Baseline 

Table 1. POS Patterns from the Corpus 

POS Pattern Example (translated) 

Negation Adverb ‘not simple to use’ 

Interrogative 
Negation 

‘OK for whoever isn’t [...]’ 

Negation Adjective ‘Uncomfortable’ 

Existential Noun 
‘Too bad there isn’t 

access [...]’ 

Noun Adjective 
‘...with high color 

precision’ 
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As a baseline experiment, we tested the 
classification performance of our corpus, when 
every sentence was classified according to the 
number of positive and negative words appearing 
in it. This seamed plausible due to the corpus’ 
nature as persuasive quality reviews. In this 
experiment, a word was considered to be positive 
if it appeared to be a synonym of one of the Hebrew 
words good or excellent, taken from two Hebrew 
thesauri [18] [19] and was considered to be 
negative if it appeared to be a synonym of one of 
the Hebrew words bad or very bad. These lists of 
synonyms contained 204 and 154 phrases 
respectively. The texts were tokenized 
before classification. 

The accuracy was 24.73%, with a very high 
percentage of ties (64.78%). We repeated the 
experiment, this time after lemmatizing the corpus. 
This was done so conjugated polarity words would 
be counted as well. Indeed, the accuracy 
increased to 34.75%. However, lemmatization also 
caused some over-generalization, for not only did 
the percentage of correct classification increase, 
but also the percentage of the sentences 
incorrectly classified. The percentage of ties 
decreased, but was still high, at 52.4%. This comes 
to show that in many cases, explicit polarity terms 
may not be enough for classification. 

b) Machine Learning Techniques 

The main part of this research deals with the 
optimal way to represent Hebrew text. We have 
experimented with various combinations of 
representation techniques, and they are fully 
presented in Table 4. After investigating the 
different techniques in section Methodology, we 
shall now elaborate on our approach and results. 

The following results have been evaluated using 
SVM. The results of BLR were generally similar, 
but lower on average. VP yielded much 
lower results. 

Firstly, all of our experiments were implemented 
on the corpus after it has been tokenized (with a 
Hebrew POS tagger’s default tokenizer). We begin 
with the most basic representation, involving a 
binary feature vector of raw unigrams. Its 

 
2 Ktiv maleh - rules of spelling-without-Niqqud; it involves 

adding certain consonants (such as Waw and Yod) to words, to 
be used as vowels. 

performance, extremely close to 80%, as 
represented in line 4 of Table 4, shows that this 
basic representation yields reasonable results, 
with SVM generally outperforming the 
other classifiers. 

We now proceed with experiments of the various 
techniques presented in Section 5. 

1. Word representation unit 

The Hebrew root being too vague and the stem 
being extremely inaccurate, we experiment with 
representing every word in the text with its lemma 
(Table 4, line 5) rather than its raw form, yielding 
accuracy rates higher in more than 2%. We used a 
Hebrew POS-tagger to find the lemma of 
every word. 

Upon examining the influence that 
lemmatization has on classification, we found that, 
as expected, it reduces the number of features in 
the feature vector, provides a unique 
representation to groups of related words - and of 
various spellings of words - and thus gives words 
more accurate rankings. For example, without 
lemmatizing, the word the cellphone (which is a 
single word in Hebrew) and a cellphone (again, a 
single word) are treated as different words when in 
fact they are not.  

A more critical example is found with the words 
no, and not and that isn’t, (which in Hebrew are the 
same base word with different prefixes) which are 
treated as different words, and the high negative 
ranking the word no received when using 
lemmatization is distributed between the different 
variants of the word when no lemmatization is 
applied, thus reducing the influence of the word. 
Lemmatization also clustered different spelling 
forms of specific words, by converting them all to 
the ktiv maleh2 form. 

Bigrams. When using bigrams, we distinguished 
between two cases; representing the text with 
bigrams of words or with bigrams of lemmas. When 
using bigrams + words, performances declined, 
probably due to their being too many un-
generalized features. However, when using 
bigrams + lemmas, performances remained the 
same. Still, upon examining the weight vector, it 
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seems that the bigrams served their purpose: they 
‘caught’ the meaning of phrases. Thus, for 
example, the word small (when using unigrams) 
was ranked negatively, whereas small and 
comfortable was ranked positively. 

2. Negation tags 

Surprisingly, negation tags proved to be effective 
(Table 4, line 2); increasing performances in 
approximately 2%, it seems to be significant for 
classification. In fact, the word no is one of the most 
frequently used words in the corpus. This comes in 
contrast to previous results in English stating that 
negation tags have a slight effect on performance. 

Adding negation tags, however, is not a perfect 
solution due to the use of implicit negation terms, 
or alternatively the use of the negation term after 
the description of the problem, instead of before it. 
Nevertheless, adding negation tags turned out to 
be very useful. 

3. Thwarted expectations 

One of the common problems in sentiment 
analysis is the presence of thwarted expectations 
sentences, that is, sentences that build up a certain 
impression and then conclude with a contradicting 
phrase. An example from our corpus is the 
following negative sentence: ’At first the phone 
looks very comfortable, but after some time flaws 
start to appear.’ 

Using the BoW feature, a learning algorithm has 
no way to understand that the words after the but 
are more important than those before it. Therefore, 
we tried a different, simple approach that, upon 
detecting the word but (or one of its synonyms), 
removes the words that appear before it, assuming 
that they are irrelevant since the words after the but 
contradict them. Indeed, there was a slight 
increase in performance (Table 4, line 3). 

4. Parts of speech 

Surprisingly, adding POS tags did not have a 
crucial impact on classification. Comparing Table 
4’s lines 1 and 6, there is less than a 1% difference. 
With all of the ambiguity problems that exist in 
Hebrew, it would have seemed that adding POS 
tags is a vital. However, the light impact it had 
could be explained by the corpus being domain 
specific, thus somewhat reducing ambiguity 

concerns. Another explanation is the inaccuracy of 
the POS tagger. 

Further expanding the usage of POS tags, we 
experimented on finding whether any specific POS 
patterns that could indicate on sentiment repeated 
themselves throughout the corpus. Technically, we 
extracted bigrams and their POS tags, discarding 
the words to which the tags belonged, for the 
feature vector. A similar method has been used by 
[20] to classify between subjective and objective 
sentences, and yielded precision of 70%-80%. In 
our case, accuracy rates are slightly lower, at 68%, 
and at 69% when applying FS. However, the 
classifier did in fact find some interesting POS 
patterns; several of the features ranking highest 
are shown in Table 1. Apart from helping 
classification, these attributes come to show that it 
does not only matter what is said in the sentence, 
but also how it is said. For example, various writers 
wrote their reviews in the form of ’The <product> is 
OK for whoever needs it only for...’ etc., which 
brought up the Interrogative Negation feature. 

5. Adjectives 

Adding adjectives alone to the feature vector 
yielded surprisingly low results (74%), showing that 
sentiment, even on products, isn’t necessarily 
expressed using adjectives (Table 4, line 7). As we 
have mentioned before, the word no, for example, 
which obviously isn’t an adjective, turned out to be 
an important negative feature. 

6. Stop words 

Removing stop words is commonly applied 
before classification. As shown in Table 4 lines 11 
and 12, removing stop words has a negligible, but 
slightly harmful effect on predictions. Out of a list 
of around 60 stop words, more than half turned out 
to be ranked between 0.1 and 0.6, meaning that 
they could, in fact, be quite significant. Among the 
highest ranking stop words are and therefore, if 
and but, which puts into question the liability of a 
manually constructed stop-list. 

It should be noted that stop-word removal in 
Hebrew is slightly different and perhaps less 
necessary than it is in English, because typical 
English stop words such as a, and or the either do 
not exist in Hebrew or are represented by prefixes 
(and are not removed with stop-lists). 
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7. Feature selection 

We now first apply FS according to the weight of 
the words, removing features that ranked less than 
0.1. The results were drastic: performance jumped 
from 79.9% without FS (Table 4, line 4) to 86.5% 
with it (Table 4, line 10). This contradicts previous 
works that show that SVM is not very sensitive to 
FS [7, 5]. This could be due to the amount of noise 
that exists in the corpus. To check this type of FS 
further, we tried removing features with heavier 
weights; that is, removing features that ranked less 
than 0.2, 0.3, etc., with jumps of 0.1. It turns out 
that once features of higher rankings are removed, 
the classification accuracy starts to decline. 

Another form of FS, which is in fact quite 
common, is the removal of infrequent words from 
the feature vector. We tried this, removing words 
that appeared less than 4 times in the corpus. It 
turned out to be slightly harmful. We then 
experimented with a new method that essentially 
applies some form of feature selection. The 
method we propose attempts to find an important 
part of the sentence, and use it alone 
for classification. 

Initially, the corpus was tagged manually as 
follows: a unique symbol was placed around the 
object of the sentence - that is, around the phrase 
(usually a single word) that the writer was referring 
to. As some figures of speech allow the writer to 
omit the object of the sentence, not all sentences 
suited our needs and we used a subset of 3046 
sentences, out of 3223 in the original corpus. 

Once the object of the sentence is determined, 
a window size is chosen; thus, the only part of the 
sentence that the classifier uses is the window size 
surrounding both sides of the object.  

Assuming that the words surrounding the object 
hold most importance, this method should yield 
reasonable results. 

We’ll take the following sentence as an example: 
‘The sound quality is excellent, the best I’ve heard 
on mobile devices, especially when you hear music 
with headphones, because there is an option for 
Dolby Surround.’ 

Placing a unique symbol around the object: 

’The <obj> sound quality </obj> is excellent, the 
best I’ve heard on mobile devices, especially when 
you hear music with headphones, because there is 
an option for Dolby Surround.’ 

Examples of various window sizes are in Table 
2. Results vary according to the chosen window 
size, and are shown in Table 3. 

As we assumed, most results perform well - and 
increase in performance as the window size 
expands. Surprisingly, a window size of zero 
performed better than random; indeed, even the 
object of a sentence implies its sentiment, as the 
advantages and disadvantages of cellphones are 
usually common. 

Using the whole sentence yielded 88.49% 
accuracy (Table 4, line 1). Using other portions of 
the sentences for classification did not perform as 
well as when using the window. 

This method obviously did not improve 
classification; however, it proved that the words 
surrounding the object are significant for 
classification. This fact could be used when there 
are concerns for the computational load of the 
corpus, or when sentences tend to be 
exceptionally long. 

Table 2. Feature Selection using various windows 

sizes 

Window 
Size 

Sentence Remaining Content 

0 ‘<obj> sound quality </obj>’ 

1 ‘The <obj> sound quality </obj> is’ 

2 
‘The <obj> sound quality </obj> is 
excellent’ 

Table 3. Accuracies according to window size 

Window Size Accuracy 

0 61.88% 

1 72.88% 

2 77.97% 

3 80.56% 

4 83.39% 

5 86.01% 

(no window) 88.49% 
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c) Best results 

Combining both unigrams and bigrams seems to 
be a natural choice, as spoken language is made 
of both individual words and phrases (phrases that 
are longer than 2 words are usually abbreviated 
when written).  

Indeed, the best feature representations 
involved the combination of bigrams and unigrams 
with lemmas, with POS tags (Table 4, line 9) and 
without (Table 4, line 8) (binary vector, weight FS), 
yielding 91% and nearly 92% accuracy 
(respectively). It should be noted that in these two 
cases, Bayesian Logistic Regression gave slightly 
higher results than the other algorithms; 92.6% and 
92.4% (respectively) which are exceptionally high. 

7 Conclusion 

We have presented a set of experiments on 
sentence classification by sentiment, on reviews 
written in Hebrew. Sentiment analysis has been 
widely performed on texts, but far less on 
sentences, and none has been performed on the 
Hebrew language. Here we showed unique 
characteristics of classifying Hebrew texts by 
polarity, with an emphasis on the fact that the texts 
are considered to be short. 

It is generally believed that when classifying 
sentences, one should be very careful not to lose 
any piece of their precious and scarce information. 

Table 4. Results 

 

 Unigram/ 

Bigram 

Word/ 

lemma 

Neg. 
tags 

‘buts’ 
tags 

 
FSa 

SVM 
ACCa 

BLR 
ACCa 

VP ACCa 

1. Unigram word True False 
 

True 
88.49
% 

87.10% 81.67% 

2. Unigram word True False 
 

False 
81.91
% 

81.81% 79.27% 

3. Unigram word True True 
 

False 
82.35
% 

80.93% 78.69% 

4. Unigram word False False 
 

False 
79.93
% 

78.17% 76.22% 

5. Unigram lemma True False  True 84.46
% 

82.90% 80.45% 

6. Unigram + POS word True False 
 

True 
89.30
% 

87.79% 81.64% 

7. 
Unigram 
(adjectives only) 

word True False 
 

True 
74.19
% 

73.91% 72.26% 

8. 
Unigram + 
Bigram 

lemma True False 
 

True 91.9% 92.37% 86.13% 

9. 
Unigram + 
Bigram + POS 

lemma True False 
 

True 
91.19
% 

92.58% 86.32% 

10. Unigram word False False 
 

True 
86.47
% 

83.97% 79.15% 

11. 
Unigram (with 
swa) 

word True False 
 

True 
88.89
% 

88.03% 81.80% 

12. 
Unigram (with 
swa) 

lemma True False 
 

True 
88.95
% 

86.70% 82.61% 

Comparison of results using three machine learning algorithms and various vector representations. 
aList of abbreviations for this table: Acc - accuracy; FS - feature selection (specifically referring to the removal of weights under 0.1); 
sw - stop words. 
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Here, on the other hand, the results implied that the 
feature vectors had much noise in them; 
lemmatization and FS, which independently 
reduce the feature vector size, caused 
improvements in classification, when previous 
works show that they do not influence classification 
much (at least when using SVMs). This could in 
fact be a side effect of working with Modern 
Hebrew - the inflected words, the various spelling 
forms of them, etc. could all be causes of 
unnecessary features. 

Another result that stood out was the fact that 
despite previous work claiming it is unnecessary, 
and despite its inaccuracy in our corpus - adding 
negation tags (in a method we designed 
specifically for Hebrew) improved classification. In 
fact, negation expressions were very dominant 
among the words of the corpus (which of course 
isn’t skewed). This, too, could be a result of 
working with a Hebrew corpus; it shows the 
different language structure of Hebrew, and 
perhaps shows a cultural difference between 
Hebrew writers to the writers of Latin languages. 

Regarding additional results that seem to be 
language specific, stop words removal might not 
be as necessary as in other languages, as it seems 
that many words that would be considered to be 
stop words in Latin languages either do not exist in 
Hebrew, or exist as prefixes (and are therefore not 
removed with stop-lists). 

Finally, it should be noted that while SVMs are 
considered to be the best classification methods, 
and indeed they yielded the highest results, 
Bayesian Logistic Regression yielded results 
almost as high (on average slightly lower). The 
highest results were achieved by Bayesian Logistic 
Regression, at nearly 93%, when previous 
somewhat similar works achieved a maximum of 
85%-88%. 

In addition, we introduced two new methods: 
adding tags that attempted to solve the problem of 
thwarted expectations in a sentence, which 
improved classification, and adding a window size 
which determined the part of the sentence to 
classify; this method yielded reasonable results 
and significantly reduced computational load. 
Furthermore, it provided us an insight on the 
structure of the sentences classified, which could 
be useful when classifying exceptionally 
long sentences. 
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