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Abstract. The estimation of the posterior distribution
is the core problem in topic models, unfortunately it
is intractable. There are approximation and sampling
methods proposed to solve it. However, most of them
do not have any clear theoretical guarantee of neither
quality nor rate of convergence. Online Maximum a
Posteriori Estimation (OPE) is another approach with
concise guarantee on quality and convergence rate, in
which we cast the estimation of the posterior distribution
into a non-convex optimization problem. In this paper,
we propose a more general and flexible version of
OPE, namely Generalized Online Maximum a Posteriori
Estimation (G-OPE), which not only enhances the
flexibility of OPE in different real-world situations but also
preserves key advantage theoretical characteristics of
OPE when comparing to the state-of-the-art methods.
We employ G-OPE as inference a document within large
text corpora. The experimental and theoretical results
show that our new approach performs better than OPE
and other state-of-the-art methods.

Keywords. Topic models, posterior inference, online
MAP estimation, large-scale learning, non-convex
optimization.

1 Introduction

Topic models are widely used in text processing
and Latent Dirichlet Allocation (LDA) [3] is the

core of a large family of probabilistic models.
LDA provides an efficient tool to analyze hidden
themes in data and helps us recover hidden
structures/evolution in big text collections. The key
problem in topic models is to compute the posterior
distribution of a document given other parameters.
The posterior inference problem in topic models
is to infer the topic proportion of documents and
topics which are distributions over vocabulary.
Large datasets or streaming environments contain
huge number of documents, hence the problem
of estimating topic proportion for an individual
document is especially important. The quality of
learning for LDA is determined by the quality of the
inference method being employed.

Unfortunately, solving directly a posterior distri-
bution of a document is intractable [3]. There are
two main approaches to tackle it.

One is approximating the intractable distribution
by tractable distribution, for example Variational
Bayes inference (VB) [3]. The other is a sampling
method, which draws numerous the samples from
target distribution then estimating the interesting
quality from these samples. The well-known
method is Collapsed Gibbs Sampling (CGS) [8].
There are also famous methods such as Collapsed
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Variational Bayes (CVB) [15], CVB0 [2], Stochastic
Variational Inference (SVI) [10], etc.

To our best knowledge, there are not any mat-
hematical guarantees for quality and convergence
rate in existing approaches. Therefore, in practice
we do not have any ideas about how to stop the
methods we are using but trying, observing and
retrying again to reach the best solution.

Another way to solve the posterior distribution
is to view it as an optimization problem. To
infer about topic proportion of a document is to
solve the maximum a posteriori of topic proportion
given words in this document and all topics
of corpus [16]. This optimization problem is
usually non-convex and NP-hard [14]. There is
very few theoretical contributions in non-convex
optimization literature, especially in topic models.
Online Maximum a Posteriori Estimation (OPE)
[16] which is an online version of Frank-Wolfe
algorithm [9] is a stochastic algorithm to solve such
kind of non-convex problem.

OPE is theoretically guaranteed to converge
to a local stationary point [16]. Although OPE
is easy to implement and has fast convergence
and mathematically guaranteed, it remains some
problems. The weakness of OPE is that it is
not well adaptive with different data sets because
of the uniform distribution in its operation. We
will exploit this crucial point to propose a new
and more general algorithm based on OPE.
When changing its operations, we have to retain
the advantage of the original algorithms, that is
theoretical guarantees.

Our main contribution is following:

— We propose new algorithm called Generalized
Online Maximum a Posteriori Estimation (G-
OPE) for solving posterior inference problem
in topic models. G-OPE is more general and
flexible than OPE, adapts better in different
datasets and preserves the key advantages
OPE.

— We employed G-OPE into the existing
algorithm Online-OPE [16] to learn LDA in
online settings and streaming environments.

— We conduct experiments to demonstrate that
Online-GOPE outperforms existing methods
to learn LDA.

Organization: The rest of this paper is organized
as follows. In Section 2, we introduce an overview
of posterior inference with LDA and main ideas of
existing methods. In Section 3, our new algorithm
G-OPE is proposed in details. In Section 4, we
conduct experiments with two large datasets with
state-of-the-art methods in two different measures.
Finally Section 5 is our conclusion.
Notation: Throughout the paper, we use the
following conventions and notations. Bold faces
denote vectors or matrices. xi denotes the ith

element of vector x, and Aij denotes the element
at row i and column j of matrixA. The unit simplex
in the n-dimensional Euclidean space is denoted
as ∆n = {x ∈ Rn : x ≥ 0,

∑n
k=1 xk = 1}, and its

interior is denoted as ∆n. We will work with text
collections with V dimensions (dictionary size).
Each document d will be represented as frequency
vector, d = (d1, .., dV )T , where dj represents the
frequency of term j in d. Denote nd as the length
of d, i.e., nd =

∑
j dj . The inner product of vectors

u and v is denoted as 〈u,v〉. I(x) is the indicator
function which returns 1 if x is true, and 0 otherwise
and E(X) is expectation of random variable X.

2 Related Work

LDA [3] is the basic and famous model in
topic modeling. It models each document as a
probability distribution θd over topics, and each
topic βk as a probability distribution over words.
In Fig.1, K is number of topics, M is number of
documents in corpus, N is number of words in
each documents.

Fig. 1. Latent Dirichlet Allocation

Note that θd ∈ ∆K , βk ∈ ∆V . The generative
process for each document d is as follows:

1. Draw a topic distribution θd|α ∼ Dirichlet(α)
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2. For the nth word of d:
− draw topic index zdn|θd ∼Multinomial(θd)
− draw word wdn|zdn,β ∼Multinomial(βzdn

)

The most important problem we need to solve
in order to use LDA is to compute the posterior
distribution p(θ, z|w,α,β) of hidden variables in a
given document d. However, it is intractable. There
are many ways to handle it. Variational Bayesian
Inference [3] approximates p(zd,θd,d|β,α) by
obtaining a lower bound on the likelihood which
is adjustable by variational distributions. CVB and
CVB0 deal with p(zd, d|β,α), CGS draws samples
from p(zd,w|β,α) to estimate it. Eventually, all
methods try to estimate the topic proportion θd.

In this paper, we infer topic proportion for
a document directly by solving the Maximum a
Posteriori Estimation (MAP) of θd given all words
of this document and parameters of the model.
The MAP estimation of topic mixture for a given
document d:

θ∗ = arg max
θ∈∆K

Pr(d,θ|β,α), (1)

using Bayes’ rule, we have:

θ∗ = arg max
θ∈∆K

Pr(d|θ,β) Pr(θ|α). (2)

Under the assumption about the generative
process, problem (2) is equivalent to the following:

θ∗ = arg max
θ∈∆K

∑
j

dj log

K∑
k=1

θkβkj+(α−1)

K∑
k=1

log θk.

(3)
Within convex/concave optimization, problem (3)

is relatively well-studied. In the case of α ≥ 1, it can
easily be shown that the problem (3) is concave,
and therefore it can be solved in polynomial time.

Unfortunately, in practice of LDA, the parame-
ter α is often small, says α < 1, causing problem
(3) to be non-concave. Sontag et al. in [14] has
showed that problem (3) is NP-hard in the worst
case when parameter α < 1. Consider problem
(3) as a non-convex optimization problem, the
gradient-based methods such as Gradient Descent
(GD) and its variants are ineffective because of the
existence of saddle points and flat regions, hence
we need an effective random method to avoid

Algorithm 1 OPE: Online Maximum a Posteriori
Estimation
Input: document d and model {β,α}
Output: θ that maximizes
f(θ) =

∑
j dj log

∑K
k=1 θkβkj + (α− 1)

∑K
k=1 log θk

Initialize θ1 arbitrary in ∆K = {x ∈ RK :∑K
k=1 xk = 1, x ≥ ε > 0}

for t = 1, 2, ...T do
Pick ft uniformly from
{
∑

j dj log
∑K

k=1 θjβkj ; (α− 1)
∑K

k=1 log θk}
Ft := 2

t

∑t
h=1 fh

et := arg maxx∈∆K
〈F ′

t (θt),x〉
θt+1 := θt + et−θt

t
end for

them. OPE [16] is an efficient iterative algorithm
for solving problem (3). It is a good solution in
escaping saddle points and flat regions.

In the literature of iterative optimization algo-
rithms, in each iteration, they try to build a
tractable function that approximates true objective
function, then optimize approximating function to
reach the next point. The various algorithms
have different techniques to build their own
approximation. For example, using Jensen’s
inequality, Expectation-Maximization (EM) [5] or
Variational Inference (VI) [3] calculate the Evidence
Lower Bound (ELBO) then maximize it. Gradient
Descent constructs its quadratic approximation
in each step and minimizes the quadratic.
OPE solves the problem (3) by constructing an
approximate sequence by stochastic way and solve
it by Frank-Wolfe update formula [7].

Details of OPE is in Algorithm 1. The idea of
OPE is quite simple. At each iteration t, it draws a
sample function ft(θ) and builds the approximation
Ft(θ) which is the average of all previous sample
function. The most interesting idea behind OPE is
that the objective function is the sum of a likelihood
and a prior. In each step, it builds an approximate
function Ft(θ) by choosing either likelihood or
prior with equal probabilities {0.5, 0.5}. That
means when inferring about the topic proportion
of a document, we use either the evidence of
the document (likelihood) or knowledge we have
known before (prior). This behavior is very natural
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to human. However, OPE considers likelihood and
prior with the same contributions by using uniform
distribution.

In fact, when humans deal with a new sample,
one can rely on more likelihood if we have
observed enough evidences, or rely on more prior
knowledge if we have been lack of evidences.
This simple idea leads us to build a more general
and flexible version of OPE by using Bernoulli
distribution instead of uniform distribution.

3 Generalized Online Maximum a
Posteriori Estimation

In this section, we introduce our new algorithm,
namely Generalized Online Maximum a Posteriori
Estimation (G-OPE) based on OPE. OPE operates
by choosing the likelihood or prior at each step t,
then builds the approximation Ft(θ) which is the
average of all parts draw from previous steps and
current step. In G-OPE, in order to introduce the
Bernoulli distribution into the sampling step, we
need to modify the likelihood and prior so that the
approximation function Ft(θ) → f(θ) as t → ∞.
Denote:

g1(θ) =
∑
j

dj log

K∑
k=1

θkβkj ,

g2(θ) = (α− 1)

K∑
k=1

log θk,

then the true objective function f(θ) includes two
components:

f(θ) = g1(θ) + g2(θ),

where g1(θ) and g2(θ) are the log likelihood and
prior respectively.

Denote:

G1(θ) :=
g1(θ)

p
, G2(θ) :=

g2(θ)

1− p
,

where G1(θ) and G2(θ) are the adjusted likelihood
and prior respectively.

G-OPE is detailed in Algorithm 2. In Algorithm
2, f(θ) is the true objective function we need to
maximize. At tth iteration, we draw sample function

ft(θ) from set of adjusted likelihood G1(θ) and
prior G2(θ), then we build the approximate function
Ft(θ). Because G-OPE is stochastic, in theory we
consider T → ∞, where T is number of iterations
for whole algorithm.

We use Bernoulli distribution with parameter
p to replace for uniform distribution in OPE. At
tth iteration, we pick ft(θ) as Bernoulli random
variable with probability p from {G1(θ) , G2(θ)}
where:

Pr(ft(θ) = G1(θ)) = p,

Pr(ft(θ) = G2(θ)) = 1− p.

In statistic theory, as t increases (at least 20) and it
is better to choose p not close to 0 or 1. Consider t
independent Bernoulli trials with probabilities:

{Pr(fh = G1) = p , Pr(fh = G2) = 1−p} ∀h = 1, .., t,

we build a stochastic approximate sequence:

Ft :=
1

t

t∑
h=1

fh, ∀t = 1, 2, ...,T .

We find out that Ft(θ) is the average of all
sample functions drawn until current step.

So it is guaranteed to converge to f(θ) as
t → ∞, which will be shown in Theorem 1. The
Bernoulli parameter p controls how much likelihood
part and prior part contribute to the objective
function f(θ). We can utilize this point to choose
the most suitable p in each circumstance. OPE is a
special case of G-OPE when Bernoulli parameter
p is chosen equal to 0.5. So OPE is not flexible in
many datasets. G-OPE adapts well with different
datasets, we will show it in the experiment section.
In the rest of this section, we will show that G-OPE
preserves the key advantage of OPE which is the
guarantee of the quality and convergence rate.
This character is unknown for the existing methods
in posterior estimation in topic models.

Theorem 1 (Convergence of G-OPE algorithm)
Consider the objective function f(θ) in Eq.3, given
fixed d,β,α, p. For G-OPE, with probability one,
the followings hold:
1. For any θ ∈ ∆K , Ft(θ) converges to f(θ) as
t→ +∞.
2. θt converges to a local maximal/stationary point
of f(θ).
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Algorithm 2 G-OPE: Generalized Online maxi-
mum a Posteriori Estimation
Input: document d and model {β,α}, Bernoulli
parameter p ∈ (0, 1)
Output: θ that maximizes
f(θ) =

∑
j dj log

∑K
k=1 θkβkj + (α− 1)

∑K
k=1 log θk

Initialize θ1 arbitrary in ∆K

g1(θ) =
∑

j dj log
∑K

k=1 θkβkj

g2(θ) = (α− 1)
∑K

k=1 log θk

G1(θ) :=
g1(θ)

p
, G2(θ) :=

g2(θ)

1− p
for t = 1, 2, ...,T do

Pick ft as Bernoulli distribution from
{G1(θ), G2(θ)} where

Pr(ft(θ) = G1(θ)) = p ,

Pr(ft(θ) = G2(θ)) = 1− p

Ft(θ) := 1
t

∑t
h=1 fh(θ)

et := arg maxx∈∆K
〈F ′

t (θt),x〉
θt+1 := θt + et−θt

t
end for

Proof: Before the proof, we remind some
notations: B(n, p) is binomial distribution with
parameters n and p (Bernoulli distribution is a
special case of the binomial distribution with n =
1), N(µ, σ2) is normal distribution. E(X) and
D(X) are expectation and variance of random
variable X respectively.

We find out that problem 3 is the constrained
optimization problem with the objective function
f(θ) is non-convex. The criterion used for the
convergence analysis is importance in non-convex
optimization. For unconstrained problems, the
gradient norm ‖∇f(θ)‖ is typically used to
measure convergence, because ‖∇f(θ)‖ →
0 captures convergence to a stationary point.
However, this criterion can not be used for
constrained problems. Instead, we use the
”Frank-Wolfe gap” criterion in [13].

Denoted:

g1(θ) =
∑
j

dj log

K∑
k=1

θkβkj ,

g2(θ) = (α− 1)

K∑
k=1

log θk,

and

G1(θ) :=
g1(θ)

p
, G2(θ) :=

g2(θ)

1− p
,

so, f(θ) = g1(θ) + g2(θ) = p.G1(θ) + (1− p)G2(θ).

Pick ft follows the Bernoulli distribution from
{G1(θ),G2(θ)} where:

Pr(ft = G1(θ)) = p , Pr(ft = G2(θ)) = 1− p.

Let at and bt be the number of times that we have
already picked G1(θ) and G2(θ) respectively after
t iterations.

We find that at + bt = t or bt = t − at. We have
at ∼ B(t, p) and E(at) = t.p , D(at) = t.p.(1− p).

We have:

Ft =
1

t
(atG1 + btG2),

Ft − f =
at − t.p

t
(G1 −G2) =

St

t
(G1 −G2), (4)

F ′t − f ′ =
at − t.p

t
(G′1 −G′2) =

St

t
(G′1 −G′2),

where St = at − t.p.
We have:

E(St) = 0 , D(St) = tp(1− p),

then St → N(0, tp(1− p)) when t→∞.
So St/t→ 0 as t→∞ with probability one. From

(4), we conclude that the Ft → f as t → +∞ with
probability one.

Consider:

〈F ′t (θt),
et − θt

t
〉 =

= 〈F ′t (θt)− f ′(θt),
et − θt

t
〉+ 〈f ′(θt),

et − θt
t
〉

=
St

t2
〈G

′

1(θt)−G
′

2(θt), et − θt〉+ 〈f ′(θt),
et − θt

t
〉.
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Note that g1(θ), g2(θ) are Lipschitz continuous
on ∆K . Hence there exists a constant L such that:

〈f ′(z), y−z〉 ≤ f(y)−f(z)+L‖y−z‖2 ∀y, z ∈ ∆K .

We have:

〈f ′(θt),
et − θt

t
〉 = 〈f ′(θt),θt+1 − θt〉

≤ f(θt+1)− f(θt) + L‖θt+1 − θt‖2

= f(θt+1)− f(θt) +
L

t2
‖et − θt‖2.

Since et and θt belong to ∆K then |〈G′1(θt) −
G′2(θt), et−θt〉| and ‖et−θt‖2 are bounded above
for any t.

Therefore, there exits a constant c1 > 0 such
that:

〈F ′t (θt),
et − θt

t
〉 ≤ c1

|St|
t2

+ f(θt+1)− f(θt) +
c1L

t2
.

(5)
Summing both sides of (5) for all t, we have:

t∑
h=1

1

h
〈F ′h(θh), eh − θh〉 ≤

≤
t∑

h=1

c1
|Sh|
h2

+ f(θt+1)− f(θ1) +

t∑
h=1

c1L

h2
. (6)

As t→ +∞, f(θt)→ f(θ∗) due to the continuity
of f(θ). As a result, (6) implies:

+∞∑
h=1

1

h
〈F ′h(θh), eh − θh〉 ≤

≤
+∞∑
h=1

c1
|Sh|
h2

+ f(θ∗)− f(θ1) +

+∞∑
h=1

c1L

h2
. (7)

Note that Sh = O(
√
h log h) [6], and hence∑∞

h=1 c1
|Sh|
h2 converges in probability one. More-

over, the term
∑+∞

h=1
1
h2 is bounded.

So
∑+∞

h=1
1
h 〈F

′
h(θh), eh − θh〉 is bounded above.

Because et = arg maxx∈∆K
〈F ′

t (θt),x〉, so
〈F ′t (θt), et − θt〉 ≥ 0.

If exists t0 > 0, c3 > 0 such as 〈F ′t (θt), et −
θt〉 ≥ c3∀t > t0 then

∑∞
t=1

1
t 〈F

′
t (θt), et − θt〉 >∑∞

t=1
c3
t . And because

∑∞
t=1

1
t is not bounded

above, so
∑+∞

h=1
1
h 〈F

′
h(θh), eh − θh〉 → ∞, which

contradicts with the clause we claimed. Therefore:

〈F ′t (θt), et − θt〉 → 0 as t→∞.

〈F ′t (θt), et − θt〉 =

= 〈f ′(θt) +
St

t
(G′1(θt)−G′2(θt)), et − θt〉

= 〈f ′(θt), et − θt〉+ 〈St

t
(G′1(θt)−G′2(θt)), et − θt〉 .

Since St

t → 0, then 〈f ′(θt), et − θt〉 → 0. Apply
Frank-Wolfe gap criterion, θ∗ is stationary/local
maximum of f , which completes the proof.

Besides, in the non-convex optimization field, the
idea of how to build the approximate function in
G-OPE can be utilized in the case of objective
function f which is the sum of two parts f =
g + h. In each step, choose g or h in Bernoulli
distribution with parameter p, and adjust p to adapt
with different circumstance. Randomness can help
algorithms jump out of local minimum/maximum.

Therefore, to design new stochastic algorithms,
we begin with a deterministic version, add a
sequence of approximation in the G-OPE style,
working with each approximation at each iteration
by deterministic update formula. This is an open
idea for our future works.

4 Experiments

In this section, we will investigate the performance
of G-OPE in real world datasets. G-OPE can
play as the core inference step when learning
LDA, we will investigate the performance of G-OPE
through the performance of Online-OPE [16] when
changing its core inference method. So we derived
Online-GOPE.

We conducted two experiments. The first one
is the effect of parameter p in G-OPE when
learning LDA and the second is in comparison
Online-GOPE with the current state-of-the-art
methods.
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4.1 Datasets and Settings

The datasets for our investigation are New York
Times and Pubmed1. These are very large
datasets. The number of documents is large and
the size of vocabulary is large also. Details of
datasets are presented in Table 1.

To evaluate the performance of learning methods
in LDA, we used Log Predictive Probability (LPP)
and Normalized Pointwise Mutual Information
(NPMI) measures. These measures is commonly
used in topic models. Predictive Probability [10]
measures the predictiveness and generalization of
a model to new data, while NPMI [1, 4] evaluates
semantics quality of an individual topic in these
models.

Some common parameters is set as follows: the
number of topics is K = 100, the hyper-parameters
in LDA model is α = 1

K = 0.01, η = 1
K = 0.01. For

each inference method, the number of iterations
is T = 50. We compare the online learning
algorithms together and the mini-batch size is S =
|Ct| = 5000. For the other state-of-the-art methods,
the forgetting rateκ = 0.9, we fixed τ = 1. These
chosen parameters is best for online learning LDA
in many previous works.

As algorithms we compares are stochastic, so to
avoid randomness, we run each method five times,
and report the average results.

The script of experiments is that: for the first
experiment, we run Online-GOPE with different
values of parameter p then choose the best one. In
the second experiment, we compare Online-GOPE
obtained with the best parameter p to some
methods in learning LDA such as VB, CVB, CGS,
OPE.

4.2 The Effect of Bernoulli Parameter p

In this experiment, we investigate how important
the value of parameter p is. Because p ∈ (0, 1),
and p is good if it is not close to 0 and 1. So
we choose p respectively in {0.1, 0.15, ..., 0.9}, then
run Online-GOPE in two datasets. We report the
performance of Online-GOPE in Fig.2 and Fig.3.
We can easly observe that p affects very much in
the performance in terms of both measures. In

1The datasets were taken from http://archive.ics.uci.edu/ml/

Fig.2, Online-GOPE reaches the best performance
on New York Times for LPP measure at p = 0.35
and for NPMI measure at p = 0.75. In Fig.3,
Online-GOPE reaches the best performance on
Pubmed for LPP measure at p = 0.4, for NPMI
measure at p = 0.45.

This results support our idea about the
contributions of likelihood part and prior part of
topic proportion inference for a document. The
different dataset has the suitable value of p. If
we want to get the best performance on the
generalization or on semantics quality of topics, we
have different p to choose. Therefore G-OPE is
very flexible in the real world dataset.

The good values of p depend on how much
likelihood part and prior part possess in total. The
likelihood depends on the length of the documents.
In our datasets, the average length of a document
in New York Times is 329 while the average length
of a document in Pubmed is 65. That explains why
we have different best values of p for each dataset.

4.3 Comparison of G-OPE with Novel
Algorithms

In this experiment, we compare Online-GOPE
with the best value of p in previous experiment
to the original Online-OPE and other methods:
Online-VB, Online-CVB, Online-CGS. All of these
algorithms try to learn the topics over the words β
or variational parameters λ. The difference among
these algorithms is the inner inference procedures.

The results is shown in Fig.4 and 5. With suitable
parameter p, we obtained G-OPE which was better
than OPE, VB, CVB, and CGS on LPP measure.
For NPMI measure, all algorithms perform the
same, but G-OPE is one of the tops.

This results show that Online-GOPE performs
better than not only original OPE, but also the
current novel methods. G-OPE works well because
of the right choose of controlled parameter p.
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Table 1. Two data sets for our experiments

Data sets No.Documents No.Terms No.Train No.Test
New York Times 300000 141444 290000 10000

Pubmed 330000 100000 320000 10000
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Fig. 2. Online-GOPE with different values of p on New York Times
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Fig. 3. Online-GOPE with different values of p on Pubmed

5 Conclusion

We have discussed how posterior inference for
individual texts in topic models can be done

efficiently with our method. In theory, G-OPE
remains the guarantee on quality and convergence
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Fig. 4. Online-GOPE compares with Online-OPE, Online-VB, Online-CVB and Online-CGS on New York Times dataset.
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Fig. 5. Online-GOPE compares with Online-OPE, Online-VB, Online-CVB and Online-CGS on Pubmed dataset. Higher
is better

rate of original OPE algorithm, which is the most
important character among existing state-of-the-art
inference methods. In practice, the parameter p of
Bernoulli distribution in our method is a flexible way
to deal with different datasets.

Besides, the spiritual idea in building approxima-
tion functions from G-OPE can be easily extended
to a wide class of maximum a posteriori estimation
or non-convex problems. By exploiting G-OPE
carefully, we have derived an efficient method
Online-GOPE for learning LDA from data streams
or large corpora. As a result, it is the good
candidate to help us to work with text streams and
big data.

6 Predictive Probability

Predictive Probability shows the predictiveness
and generalization of a model M on new data.

We followed the procedure in [12] to compute
this measurement. For each document in a testing
dataset, we divided randomly into two disjoint parts
wobs and who with a ratio of 80:20. We next did
inference for wobs to get an estimate of E(θobs).
Then we approximated the predictive probability
as:

Pr(who|wobs,M) '
∏

(w∈who)

K∑
k=1

E(θobsk )E(βkw),
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LogPredictiveProbability = log
Pr(who|wobs,M)

|who|
,

where M is the model to be measured. We
estimated E(βk) ∝ λk for the learning methods
which maintain a variational distribution (λ) over
topics. Log Predictive Probability was averaged
from 5 random splits, each was on 1000
documents.

7 NPMI

NPMI measurement helps us to see the coherence
or semantic quality of individual topics. According
to [11], NPMI agrees well with human evaluation
on interpretability of topic models. For each topic
t, we take the set {w1,w2, . . . ,wn} of top n terms
with highest probabilities. We then computed:

NPMI(t) =
2

n(n− 1)

n∑
j=2

j−1∑
i=1

log
P (wj ,wi)

P (wj)P (wi)

− logP (wj ,wi)
,

where P (wi,wj) is the probability that terms wi and
wj appear together in a document. We estimated
those probabilities from the training data. In our
experiments, we chose top n = 10 terms for each
topic. Overall, NPMI of a model with K topics is
averaged as:

NPMI =
1

K

K∑
t=1

NPMI(t).
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	costos




