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Abstract. Regarding the problems related to
multivariate non-Gaussianity of financial time series, i.e.,
unreliable results in extraction of underlying risk factors
-via Principal Component Analysis or Factor Analysis-,
we use Independent Component Analysis (ICA) to
estimate the pervasive risk factors that explain the
returns on stocks in the Mexican Stock Exchange. The
extracted systematic risk factors are considered within a
statistical definition of the Arbitrage Pricing Theory
(APT), which is tested by means of a two-stage
econometric methodology. Using the extracted factors,
we find evidence of a suitable estimation via ICA and
some results in favor of the APT.

Keywords. Extraction techniques, underlying risk
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1 Introduction

The goal of the present paper is to determine the
statistical pervasive systematic risk factors in the
Mexican Stock Exchange by means of an
uncommon computational technique, namely,
Independent Component Analysis (ICA), in order
to detect a more reliable structure of the pervasive
factors driving the returns on equities in the

Mexican Stock Exchange (BMV for its acronym
in Spanish).

Because of its nature, ICA is designed by
assuming a linear mixture of random variables that
are not normally distributed, which is a relevant
property for the problem we are dealing with. This
technique helps to reveal a linear combination of
underlying time series; by extracting their
statistically  independent  components, the
pervasive sources of some observed parallel time
series can be explained.

ICA has been used, mainly in fields such as
signal and image processing, speech and audio
separation, biomedical signals and image analysis,
telecommunications, neurophysiology, text and
document processing, bioinformatics,
environmental issues and some
industrial applications. In relatively recent years,
studies about the applications of ICA in different
fields of Finance have been made in some
countries.

The works that we considered more relevant in
the context of our research have used ICA for
extracting the following: the underlying factors
explaining the stock returns in Japan [2], Hong
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Kong [4], Italy [9], the USA [24] and during the
crisis period [25]; the relevant factors driving the
movements from implied volatility surfaces of index
options [1]; the factors driving the movements of a
term structure on interest rates in Germany [35];
the factors driving spot rate curve movements in
the USA [3]; the factors moving the returns for real
estate investment trusts in the USA [30], and for
estimating the factor model of returns for the USA
Thrift Saving Plan Funds [37], and the factors for
pricing multiasset derivatives [26].

Moreover, some other representative studies of
ICA in Finance have used this technique for the
following purposes:

(1) to analyze the interactions between
currencies in the Foreign Exchange [36];

(2) to model the conditional higher moments risk
in international stock markets [48], the term
structure of multiple yield curves [46], and the
volatility of market price indexes [47];

(3) to manage investment portfolios [8];

(4) to allocate assets [32];

(5) to forecast financial time series [30];

(6) to compute improved portfolio risk measures
such as VaR in banking sector [6, 7];

(7) to explain the volatility of investment

funds [45];

(8 to generate an equity  sector
classification [43];

(9) to improve bank performance

evaluation [29];

(10) to produce multifactor index variance from
the SPX sector ETF returns [38];

(11) to measure the dependency between
stocks in the USA [17], and

(12) to analyze herding among hedge fund
styles [27].

As far as we are concerned, there is no study
regarding the application of the ICA in Finance
focused on Mexico. Consequently, we shall try to
fill this gap in financial literature by contributing with
the application of a novel extraction technique to
extract the underlying structure of risk factors in the
Mexican Stock Exchange.

The outline of this paper is as follows. In section
2, we briefly describe the ICA technique; in section

1 According to [44] there are two approaches to solve the BSS
problem: one based on the Independent Component Analysis and
another based on Second Order Statistics.
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3, we present an empirical study; and in section 4,
we draw the main conclusions.

2 Independent Components Analysis
2.1 ICA Basics

Despite the widespread evidence concerning the
non-Gaussianity of the returns on equities, the
most popular latent variables analysis techniques
used for extracting the pervasive factors underlying
the financial multivariate data are Principal
Component Analysis (PCA) and Factor Analysis
(FA), which assume a Gaussian distribution of the
latent factors.

ICA represents an improved extraction
technique for this kind of data, since it is based on
a multivariate non-normality approach and looks
for mutually and statistically independent
components. According to [21], statistical
independence means that not one of the
components gives any information about the
others.

Also following [10], mutually and statistically
independent can be interpreted as being of
different nature. ICA was introduced in the field of
signal processing and neural computation as a tool
to solve the problem of Blind Source Separation
(BSS) and Signal Reconstruction.

According to [40], the former concept implies
revealing hidden factors from observable
measures, where we know very little about the
original signals and their process of generation.!
The basic technique for solving this kind of problem
is ICA, which assumes that the observed variables
are the result of an unknown mixing process of
some latent original sources. Consequently, the
observed variables can be decomposed by means
of a demixing process, capable of estimating some
statistically independent components that can be
considered as reliable proxies for the original
sources that generated the observed variables
(s=y).

The main characteristic of the latent sources is
that they are assumed to be non-Gaussian and
mutually independent. They are known as the
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independent components of the multivariate
observed data.

According to [5], the formal expressions of the
mixing and demixing processes in the basic ICA
model are as follows:

Mixing process: x = As, Q)
Demixing process:y = Wx = WAs. 2

where x represents the vector of observed
variables; A, the mixing matrix; s, the vector of
original sources; y, the vector of the independent
components; and W, the demixing matrix, which
we assume as being invertible. Since we are
ignorant of both the input and output processes
and also the original sources, the ICA methodology
makes several assumptions: a) both the original
sources and the components y are non-Gaussian
and mutually independent; b) the number of
observed mixtures is equal to the number of
original sources, so the unknown mixing matrix is
square; c) if the independent components are
equal to the original sources, the mixing matrix A
will be the inverse of the demixing matrix W:

A=W 3

Under these assumptions we can estimate both
W and y from x by looking for some components
as statistically independent as possible. Thus, the
objective of ICA is to find a demixing linear
mapping W in which the components y would be
as statistically independent as possible.

In relevant literature we can find mainly three
estimation criteria for ICA: a) the maximization of
non-Gaussianity, b) the maximum likelihood
estimation, and c) the minimization of mutual
information. As it is expressed in [23], under some
conditions, the three approaches are essentially
equivalent or at least closely related.

The former three criteria allow for different
methods of computing the ICs, which resemble
one another in the sense that the optimization step
is done by means of an iterative algorithm. The two
main methods are: the adaptive algorithms based
on gradient methods, and the fixed-point iteration
scheme algorithm, known as fast fixed-point or
Fast-ICA algorithm.

2.2 PCA, FA, ICA and Finance

In reference to PCA and FA, [21] state that ICA is
capable of finding the underlying factor when these
techniques fail; furthermore, [39] declare that ICA
might reveal some features that otherwise would
remain hidden. In addition, PCA and FA present a
limitation that ICA overcomes. It is often believed
that PCA and FA generate independent
components; however, this is only true if the data
are multivariate normally distributed, since
uncorrelated components are also independent for
Gaussian data.

The real world data and specially the financial
time series usually are non-Gaussian. ICA will
search statistically independent components for
non-Gaussian data. Moreover, independence
represents a stronger property  than
uncorrelatedness, since the former implies the
latter but not vice versa. Therefore,
uncorrelatedness is not enough to separate the
underlying components. From a different
perspective, PCA and FA techniques use only the
covariance matrix to obtain linear decorrelated
components, i.e., they minimize second-order
statistics.

ICA uses statistics that are not considered in
the covariance matrix, i.e., they additionally
minimize  higher-order statistics containing
information not included in the covariance matrix.
Consequently, another problem related to the use
of PCA and FA on financial time series is the fact
that, in finance, probability distributions have fat
tails, and therefore the outliers can distort the
estimation of the parameters in both cases.

Conversely, ICA presents a special problem
absent in both PCA and FA: the estimated
independent components (ICs) are not explicitly
ranked as in the other methods, where the factors
are automatically ranked by their eigenvalues.
Additionally, therefore we have to apply an
algorithm able to order the ICs according to
some criteria.

In the case of financial series, on the other
hand, it is reasonable to assume that there is a set
of independent factors that underlie the observed
time series, which might be related to political,
meteorological, technical, fundamental,
macroeconomic, market, national or international
aspects, and that ICA might be an appropriate
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model to extract them. Consequently, ICA is very
suitable for use on financial time series for the
following reasons: first, ICA deals with the problem
of blind source separation or dealing with parallel
time series, like those obtained from financial
variables; secondly, ICA works with non-Gaussian
random variables, which are the ones most
commonly found in financial data; thirdly, from
statistical and financial standpoints, ICA produces
more reliable underlying components or factors,
since they are statistically independent and not
only uncorrelated. This fact contributes directly to
the aim of extracting systematic risk factors
affecting the returns on equities in a multifactor
asset-pricing  model like the  Arbitrage
Pricing Theory.

3 Empirical Study
3.1 The Data

We used four different databases formed as
follows: First, for the sake of comparison with
previous research [28], we ran our study over two
databases consisting of 291 quotations, formed on
the basis of weekly closing prices in log-returns
from 20 stocks of the Mexican Stock Exchange
over the period running from July 3, 2000 to
January 27, 2006.2 One of these two databases is
stated in returns (DBWR) and the other, in
excesses of the free-risk interest rate (DBWE).3

Besides, we also used two other daily
databases, one expressed in returns (DBDR) and
another in excesses (DBDE). The period of the
daily databases, consisting of 1410 observations
from 22 stocks, extended from July 3, 2000 to
January, 27, 2006.4

2 The criteria utilized to choose the sample of stocks for these studies
have been their inclusion in the main index of the Mexican Stock
Exchange (IPC) and a survival bias during the analyzed period. The
period considered was defined by the available information, the terms of
the IPC index’s samples and the explanatory character of this study in
the pre-crisis period. More recent periods will be used in future
researches where we will analyze the prediction potential of this
technique during other periods of time (crisis / post-crisis).

3 In consistence with our previous research [28], the riskless interest
rate is assumed to be equal to the government securities’ daily funding
interest rate published by the Bank of Mexico.

4 In the same sense, as stated in our previous research [28]: “The
number of assets and the periods considered were defined by the
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The returns were calculated using the
logarithmic returns of the stocks’ closing prices, in
accordance with the following expression:

r = In(p;) — In(Pir—1). 4)

Although ICA does not require time series being
stationary, by using the continuous logarithmic
returns analysis to compute the returns on equities
as expressed in expression 4, we already are
considering that the prices time series are not
stationary and that a difference has been done in
order to make those series stationary in mean. In
addition, as the returns are differential values, the
underlying mean and trend are discarded, and thus
the ICA algorithm is able to capture the interactions
between the different stocks at a given moment.

On the other hand, the ICA as a methodology
does not require that each time series intrinsically
be stationary. What ICA assumes is that the overall
set of time series preserve the same kind of
interactions between times series, that is, the
statistics of the observations might change, but the
interaction between them captured by the matrix W
does not change.

Finally, it is a fact that by averaging over longer
time intervals, such as increasing the time period
from daily to weekly to monthly, gives a time series
that increasingly has a lower discrepancy (see
[11]); however, the discrepancies at the high
values of the returns in the QQ plots with respect
to a Gaussian at the level of one month, are
compatible with the assumptions about non-
Gaussianity needed for the ICA algorithm.

available information in accordance with a survival bias criterion.
Unfortunately, since there are many gaps in the observations of several
stocks in the Mexican market, it is very difficult to build a dataset of
quotations which contains both a long number of observations and a
large number of stocks. In our case, the 20 and 22 stocks considered
represents the maximum number of shares from which we could obtain
a good enough number of observations of all of them, that allowed us to
build complete and homogeneous datasets for both periodicities (without
missing values). This fact constitutes a very important aspect for the
correct application of the extraction technique presented. In addition, we
decided to use two differently structured databases in order to test the
case of weekly and daily returns as well as a larger and a smaller number
of observations, according to the different studies found in literature.”
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Table 1. Descriptive statistics and Jarque-Bera Test. Database of weekly returns
Mean Median Std. Dev. Skewness  Kurtosis Jarque-Bera Probability
ALFAA 0.0036 0.0041 0.0619 -0.6609 7.4108 257.0801 0.0000
ARA_01 0.0049  0.0061 0.0406 -0.1335 3.5483 4.5102 0.1049
BIMBOA 0.0032 0.0019 0.0422 0.0777 4.7718 38.3563 0.0000
CIEB -0.0019  0.0004 0.0505 -0.7843 6.2150 155.1639 0.0000
COMERUBC 0.0023 0.0010 0.0454 0.1356 4.4699 27.0904 0.0000
CONTAL_O1 0.0020 0.0000 0.0438 0.0716 4.6692 34.0319 0.0000
ELEKTRA_01 0.0027  0.0033 0.0569 -0.2465 4.3674 25.6200 0.0000
FEMSAUBD 0.0024 0.0017 0.0424 -0.2520 4.7448 39.9911 0.0000
GCARSOA1 0.0034  0.0062 0.0445 -0.3802 4.3096 27.8059 0.0000
GEOB 0.0082  0.0128 0.0629 -0.2622 5.1221 57.9405 0.0000
GFINBURO 0.0025  0.0031 0.0426 -0.3496 5.3609 73.5098 0.0000
GFNORTEO 0.0069  0.0077 0.0436 0.2487 4.5283 31.3195 0.0000
GMODELOC 0.0019  0.0017 0.0321 0.3192 5.2380 65.6702 0.0000
PE_OLES 01 0.0047  0.0000 0.0674 0.3414 4.3948 29.2415 0.0000
SORIANAB 0.0007  0.0000 0.0438 -0.0533 4.7728 38.2445 0.0000
TELECOA1 0.0013  0.0025 0.0444 -0.1219 3.7457 7.4627 0.0240
TELMEXL 0.0012  0.0000 0.0334 -0.5724 7.7828 293.2540 0.0000
TLEVICPO 0.0009  0.0020 0.0475 -0.3993 5.7427 98.9405 0.0000
TVAZTCPO -0.0003 0.0000 0.0528 -0.3567 4.4700 32.3714 0.0000
WALMEXV 0.0033  0.0030 0.0398 -0.0261 4.5949 30.8752 0.0000

3.2 Methodology and Results

3.2.1 Tests for Univariate and Multivariate
Normality

It is known [21] that PCA (implicitly) and FA
(explicitly) require a normally distributed
multivariate sample in order to produce completely
reliable results, i.e., they will only produce
uncorrelated and independent components if the
sample data have no higher order statistics beyond
the variance.

Thus, if the samples do not fulfill these
conditions, we will be prompted to use a more
suitable technique such as ICA to uncover the
underlying sources in a non-Gaussian sample.
Therefore, we first tested the univariate normality

(UVN) of each individual series, since ICA requires
that not more than one of the observed signals (the
returns on equities) be non-Gaussian.

Tables 1 to 4 present the descriptive statistics
up to the fourth moment of the four databases used
in this study. We can observe that the skewness
and the kurtosis of practically all the stocks differs
from those of the Gaussian distribution.

We also carried out the Jarque-Bera test for
UVN on the four databases, rejecting the null
hypothesis of normality at 5% of probability for all
the stocks in the daily databases, but not rejecting
it for only one stock in the weekly databases that
was normally distributed. The last two columns of
the Tables 1 to 4 present the results of the Jarque-
Bera test.

We used two classical alternatives for
assessing the multivariate normality (MVN) tests:
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Table 2. Descriptive statistics and Jarque-Bera Test. Database of weekly excesses

Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera Probability
ALFAA 0.0019 0.0030 0.0620 -0.6709 7.3742 253.8279 0.0000
ARA_01 0.0032  0.0045 0.0406 -0.1423 3.5319 4.4115 0.1102
BIMBOA 0.0015 0.0002 0.0422 0.0699 4.7836 38.8079 0.0000
CIEB -0.0036  -0.0010 0.0506 -0.7874 6.1942 153.7829 0.0000
COMERUBC 0.0006 -0.0005 0.0455 0.1275 4.4335 25.7027 0.0000
CONTAL_O1 0.0004 -0.0018 0.0438 0.0597 4.6472 33.0725 0.0000
ELEKTRA_01 0.0010  0.0017 0.0569 -0.2500 4.3482 25.0695 0.0000
FEMSAUBD 0.0007 0.0003 0.0424 -0.2723 4.7356 40.1191 0.0000
GCARSOA1 0.0017  0.0052 0.0446 -0.4009 4.3393 29.5442 0.0000
GEOB 0.0065  0.0103 0.0630 -0.2847 5.1160 58.2218 0.0000
GFINBURO 0.0008  0.0015 0.0426 -0.3555 5.3354 72.2614 0.0000
GFNORTEO 0.0052  0.0062 0.0437 0.2379 4.4759 29.1582 0.0000
GMODELOC 0.0002  0.0001 0.0322 0.2873 5.2272 64.1473 0.0000
PE_OLES 01 0.0030  -0.0017 0.0675 0.3316 4.3801 28.4267 0.0000
SORIANAB -0.0009 -0.0010 0.0439 -0.0721 4.7767 38.5244 0.0000
TELECOA1 -0.0004  0.0006 0.0445 -0.1458 3.7462 7.7812 0.0204
TELMEXL -0.0005 -0.0015 0.0335 -0.6063 7.8238 299.9606 0.0000
TLEVICPO -0.0008  0.0007 0.0476 -0.4135 5.7603 100.6749 0.0000
TVAZTCPO -0.0020  -0.0009 0.0528 -0.3650 4.4637 32.4391 0.0000
WALMEXV 0.0016  0.0016 0.0399 -0.0627 4.5845 30.6314 0.0000

the Mardia [33] and the Henze-Zirkler [18] MVN
tests. Mardia’s test is based on the multivariate
skewness and kurtosis of the sample. Henze-
Zirkler's (H-Z) test considers a measure of the
distance between the characteristic function of the
MVN and the empirical one, where the computed
statistic will be lognormally distributed, if the data
is multivariate normal. Both techniques have
shown very good performance in measuring the
MVN against other classic and newer alternatives,
as [34] remark in their study.

We performed two tests following the accepted
criterion of applying more than one MVN test when
assessing this property of a sample.> Our results
with both tests reject the null hypothesis of MVN at

5 We performed both MVN tests using the Matlab scripts developed
by [41, 42].
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5% of probability for all the databases. Tables 5
and 6 present the results of Mardia’s and H-Z's
tests, respectively.

We extended this analysis by making an
experiment concerning the horizon of Mardia’s
test, i.e., we ran the test using different numbers of
observations so as to check the multivariate
normality in different scenarios. The results
showed that from 101 observations on, inclusive,
the sample is non-Gaussian according to the
three statistics.

On the basis of the foregoing results®, we cannot
accept as completely reliable the outcomes of
techniques assuming the multivariate normality of
data such as PCA and FA, thus, we are led to the

6 The fact that the results of kurtosis are positive and large, revealing
the presence of outliers, will have implications on the election of the non-
linearity in the ICA estimation.
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Table 3. Descriptive statistics and Jarque-Bera Test. Database of daily returns
Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera  Probability
ALFAA 0.0007 0.0000 0.0246 -0.1153 6.3963 680.8083 0.0000
ARA_01 0.0010 0.0000 0.0189 -0.0442 5.9361 506.9414 0.0000
BIMBOA 0.0007 0.0000 0.0187 0.3740 7.6206 1287.2010 0.0000
CIEB -0.0004 0.0000 0.0213 -0.6673 9.9616 2951.9139 0.0000
COMERUBC 0.0005 0.0000 0.0204 0.4306 6.4539 744.4508 0.0000
CONTAL_O01 0.0004 0.0000 0.0211 -0.1938 6.8047 859.2542 0.0000
ELEKTRA 01 0.0005 0.0002 0.0245 -0.1246 6.4904 719.3973 0.0000
FEMSAUBD 0.0005 0.0000 0.0175 -0.2518 7.1901 1046.3697 0.0000
GCARSOA1 0.0007 0.0000 0.0192 -0.2304 6.1817 607.2330 0.0000
GEOB 0.0017 0.0000 0.0245 -0.1054 10.2044 3051.9052 0.0000
GFINBURO 0.0005 0.0000 0.0194 0.2199 5.0447 256.9903 0.0000
GFNORTEO 0.0014 0.0000 0.0205 0.2748 6.7824 858.2517 0.0000
GMODELOC 0.0004 0.0000 0.0158 0.1737 5.6468 418.6632 0.0000
PE_OLES_01 0.0010 0.0000 0.0295 -0.3729 10.1686 3051.7488 0.0000
SORIANAB 0.0002 0.0000 0.0186 -0.0839 4.6112 154.1588 0.0000
TELECOA1 0.0003 0.0006 0.0195 -0.1156 4.7901 191.3930 0.0000
TELMEXL 0.0002 0.0000 0.0156 -0.1018 6.0378 544.6098 0.0000
TLEVICPO 0.0002 0.0006 0.0220 -0.1052 6.6617 790.3090 0.0000
TVAZTCPO -0.0001 0.0000 0.0244 -0.5064 8.0397 1552.4342 0.0000
WALMEXV 0.0007 0.0006 0.0187 0.1244 5.9440 512.8407 0.0000
CEMEXCP 0.0008 0.0000 0.0162 0.1342 4.2068 89.7969 0.0000
KIMBERA 0.0002 0.0000 0.0151 -0.5530 9.0290 2207.3787 0.0000

application of more suitable techniques like ICA. In
fact, this part of our investigation represents an
important, but in most cases ignored, aspect in
empiric studies that uses classic multivariate
techniques to extract the pervasive factors; since
in many cases the MVN is assumed but not tested,
the results and conclusions may be flawed.

In addition, the assumption done in the ICA
models, is that the third and fourth moments differ
significantly ~ from the values of a
Gaussian distribution.

In addition, the tests of normality are based on
checking this assumption. In particular the non-

7We used the Matlab package developed by [19] to estimate the ICA
model using the ICASSO methodology. At the same time the ICASSO

linearities used for the implementation of the
experiments in this paper, guaranteed the
presence of high order interactions from the Taylor
expansion, and therefore the presence of moments
of all orders.

3.2.2 Estimation of the ICA Model

In order to estimate the ICA model in expression
(2), we used the ICASSO methodology [20], which
is based on the FastICA algorithm [22]7. According
to the foregoing authors, the FastICA algorithm is
based on a fixed-point iteration scheme for finding
the local extrema of the objective functions. The

software uses the FastiCA Matlab package by [13] to estimate the
FastICA algorithm.
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Table 4. Descriptive statistics and Jarque-Bera Test. Database of daily excesses

Mean Median Std. Dev. Skewness Kurtosis Jarque-Bera Probability
ALFAA 0.0005 -0.0001 0.0246 -0.1215 6.3955 680.8189 0.0000
ARA_01 0.0008 -0.0002 0.0189 -0.0495 5.9402 508.4618 0.0000
BIMBOA 0.0004 -0.0002 0.0187 0.3744 7.6211 1287.5568 0.0000
CIEB -0.0006 -0.0002 0.0213 -0.6697 9.9707 2960.0790 0.0000
COMERUBC 0.0003 -0.0002 0.0204 0.4273 6.4467 740.8504 0.0000
CONTAL_01 0.0002 -0.0002 0.0211 -0.1962 6.7999 857.3613 0.0000
ELEKTRA 01 0.0003 0.0000 0.0245 -0.1266 6.4854 717.4653 0.0000
FEMSAUBD 0.0002 -0.0002 0.0175 -0.2567 7.2068 1055.2038 0.0000
GCARSOA1 0.0005 -0.0001 0.0192 -0.2365 6.1774 606.2876 0.0000
GEOB 0.0015 -0.0001 0.0245 -0.1144 10.1975 3046.6028 0.0000
GFINBURO 0.0003 -0.0002 0.0193 0.2208 5.0571 260.0685 0.0000
GFNORTEO 0.0012 -0.0001 0.0205 0.2716 6.7766 855.2821 0.0000
GMODELOC 0.0001 -0.0002 0.0158 0.1670 5.6406 416.2018 0.0000
PE_OLES_01 0.0008 -0.0002 0.0295 -0.3695 10.1326 3020.9541 0.0000
SORIANAB -0.0001 -0.0002 0.0186 -0.0883 4.6225 156.4975 0.0000
TELECOA1 0.0000 0.0005 0.0195 -0.1242 4.7890 191.6613 0.0000
TELMEXL 0.0000 -0.0002 0.0156 -0.1130 6.0560 551.6562 0.0000
TLEVICPO -0.0001 0.0004 0.0220 -0.1122 6.6667 792.8200 0.0000
TVAZTCPO -0.0003 -0.0002 0.0244 -0.5083 8.0248 1544.0783 0.0000
WALMEXV 0.0004 0.0004 0.0187 0.1142 5.9465 513.1155 0.0000
CEMEXCP 0.0006 -0.0002 0.0161 0.1316 4.2152 90.8231 0.0000
KIMBERA 0.0000 -0.0002 0.0151 -0.5621 9.0350 2213.9756 0.0000

basic iteration for the vector w for each IC obtained
by this method is:

weE{zg(w'z)} — E{g’(“’Tz)}w. (5)

where the nonlinearity g can be almost any smooth
function such as:

91(») = tanh(a;y). (6)
9:(y) = y exp(=y?/2). ()
g:(y) = y3. ®)

8 According to [21], nonlinearity than (aiy) is optimal for super-
Gaussian fat-tail distributions; y® performs better for sub-Gaussian thin-
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and g’ is the derivative of g(.).8

The final vector gives one of the ICs as a linear
combination in y = w'z. The specific resulting
algorithm depends both on the estimation principle
used and the approach selected to estimate
several numbers of ICs, i.e., the nonlinearity and
the decorrelation method chosen. In [21], the
authors state that by setting the options,
nonlinearity tanh (hyperbolic tangent) and
symmetric approach, one can obtain a good
estimation of the ICA model; this would be

tail ones; and y exp(+y%2) is recommended for highly super-Gaussian
distributions or when robustness is very important.
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Table 5. Mardia Test for Multivariate Normality

DBWR DBWE DBDR DBDE

Multivariate Skewness (Ms) 3305.50 3297.10 6659.40 6666.30
p-value 0.00 0.00 0.00 0.00
Multivariate Skewnes corrected (Msc) 3342.80 3334.40 6674.80 6681.70
p-value 0.00 0.00 0.00 0.00
Multivariate Kurtosis (Mk) 37.83 37.71 141.05 141.16
p-value 0.00 0.00 0.00 0.00
Notes:

DBWR = Database of weekly returns. DBWE = Database of weekly excesses. DBDR= Database of daily returns.
DBDE= Database of daily excesses. Ho = Multivariate Normality. p-value lower than 0.05 = Rejection of the Ho.

Table 6. Henze-Zirkler Test for Multivariate Normality

DBWR DBWE DBDR DBDE
Henze-Zirkler's Statistic 1.05 1.05 1.22 1.22
p-value 0.00 0.00 0.00 0.00

Notes:

DBWR = Database of weekly returns. DBWE = Database of weekly excesses. DBDR= Database of daily returns.
DBDE= Database of daily excesses. HO = Multivariate Normality. p-value lower than 0.05 = Rejection of the HO.

equivalent to performing the three estimation
approaches at the same time.

In addition, the positive kurtosis obtained in the
multivariate normality tests leads us to use the
hyperbolic tangent function.

Furthermore, as reported in [14], the best trade-
off for estimating the ICA model, from statistical
performance and computational load perspectives,
is represented by the FastICA algorithm with
symmetric orthogonalization and tanh nonlinearity
estimation. In our study we followed these
specifications.

The election of the ideal number of ICs to
estimate still represents an unsolved problem.

Although in ICA literature we can find diverse
criteria to determine this number, in most cases it
is actually chosen by trial and error without any
theoretical basis. One alternative is to reduce the
number of dimensions in the whitening pre-

9 The criteria adopted were the same used in our previous research
[28]: “the arithmetic mean of the eigenvalues, the percentage oOf
explained variance, the exclusion of the components or factors
explaining a small amount of variance, the scree plot, the unretained
eigenvalue contrast (Q statistic), the likelihood ratio contrast, Akaike’s

processing stage, considering some criteria from
among those used in PCA or FA, and to estimate
the same number of ICs. For the sake of
comparison with our previous study, we use the
same test window, which ranges from two to
nine components.®

As stated by [20], one problem that the ICA
estimation presents is that the reliability of the
estimated ICs is not known since the results are
stochastic, i.e., they might be dissimilar in different
runs of the algorithm.

Thus, the results of a single run of the FastICA
algorithm could not be completely trusted and an
additional analysis of the reliability of the
estimation should be performed. In this context,
reliability has two aspects the algorithmic and the
statistical. According to the former authors,
ICASSO methodology represents an alternative
for dealing with this problem, since it ensures the

information criterion (AIC), the Bayesian information criterion (BIC), and
the maximum number of components feasible to estimate in each
technique.”
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algorithmic and statistical stability and reliability of
the estimated components by running the FastiICA
algorithm many times, using different initial
conditions and/or a differently bootstrapped
data set.

Following [20], ICASSO first runs the FastICA
algorithm M times on data set X = [xq,X,, ... Xy],
composed of N samples of k vectors; then,
ICASSO forms clusters with the ICs produced in
each run according to their similarity. Mutual
similarities between estimates are computed,
using the absolute value of their linear correlation
coefficient as the measure of similarity:

Oij = |Tij|- 9)

These elements form the similarity matrix, which
can be obtained by:

R = WIWT, (10)

where, ¥ is the covariance matrix of dataset x, and
W is the estimates of demixing matrices W; from
eachruni = 1,2,...,M gathered in a single matrix:

W = [W/W] .. .WI]. (11)

According to [19], reliable estimates of ICs
correspond to tight clusters, since they
agglomerate estimates generated by many runs of
the algorithm which are similar, even when the
initial values and datasets for the estimation have
been changed. Conversely, estimates which do not
belong to any cluster are considered unreliable
estimates. The centrotype of each cluster is
considered a more reliable estimate than that
generated by any single run.

Besides the previously declared parameters for
FastICA, there are some additional parameters to
set when using ICASSO, such as the resampling
mode, number of resampling cycles (M) and
number of clusters (L). In order to ensure both
statistical and algorithmic reliability, in our study we
used both resampling modes, i.e., each time the
dataset was bootstrapped and the initial conditions
of the algorithm were randomized. We used the
default number of resampling cycles fixed by the
software, i.e., 30, and we set the number of
clusters according to the number of ICs (m)
estimated in each experiment in order to obtain
squared mixing (A) and demixing (W) matrices.
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The demixing matrix (W) computed by ICASSO
corresponds to the centrotypes of each cluster as
well, representing a more reliable estimate than
that produced by a single run of FastICA; however,
they are not strictly orthogonalized. In the context
of our research where we need to obtain
orthogonalized ICs, we will have to make an
orthogonalization procedure in a later step.

Consequently, we first took the demixing matrix
(W) produced by ICASSO, then we computed the
mixing matrix:

A=W (12)

and the matrix of independent components or
sources:

S =WX. (13)

3.2.3 Ranking and Orthogonalization of the
Independent Components

The ICA model does a decomposition by means of
a criterion related to statistical independence,
which does not allow to order in a natural way the
components and thus the residual. The criterion
presented in this section is one criterion that has
sense in the application at hand. In contrast with
the case of linear regression or PCA, where the
driving noise is easy to identify, because it is a
residual obtained after the components of
maximum variance are determined, in the case of
ICA such an interpretation will not be natural.
Because of this, in the literature about ICA it is not
clearly specified the difference between the
components and the residual, and therefore the
results are usually presented as a complete
projection in the space statistically independent
components.

Then, next we ordered the independent
components in terms of their explained variability
by means of the criterion proposed by [12]. This
criterion ranks the ICs according to the amount of
variance of the stocks that explains each one of
them, thus we obtain a ranked matrix of
independent components (S"), as well as sorted
mixing (A" and demixing matrices (W").

Finally, we orthogonalized the matrix of ICs by
means of the following process of transformation:

V=2x ((Sr * ST)—1)1/2, (14)
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Note: Logarithmic returns of the first five stocks observed in each database and their respective reconstructions using the
estimated ICA model. Stock symbols of the stocks presented appear above each line plots.

Fig. 1. Line plots of the observed and reproduced stocks

SO =V=xST, (15)

where V is a transformation matrix to decorrelate
the matrix of sorted independent components, and
S° represents the matrix of orthogonalized ICs.

3.2.4 Extraction of Underlying Systematic Risk
Factors Via ICA

In each one of the four databases, we computed
eight multifactor models in order to extract a
window from two to nine independent components.
Then, we proceeded to reconstruct the original
variables according to the generation process of
expression (1), including the inverse of the
transformation matrix V in order to orthogonalize

the mixing matrix A as well:
X=S8%VtxA"), (16)

The reproduced values were very similar to the
observed series for greater part of the equities in

10 As in our previous paper [28], the rest of the estimations when we
extract 2, 3, 4, 5, 6, 7 and 8 components showed similar behavior. The
observed results are typical.

all the datasets, which indicates that the generative
multifactor model performed by ICA was effective.
However, stocks such as GMODELO, CEMEX,
SORIANA and GCARSO were not very well
reconstructed, especially in the cases of daily
returns and excesses, due to the high volatility they
presented during the studied period. To save
space, we only present the line plots for the first
five stocks appearing in the returns and excesses
observed and reproduced from each database.

Figures 1 to 4 present the results of the case
when we extracted nine underlying factors; the
reconstruction performance is evident.l® An
interesting fact of the ICA algorithm is that it
captures the global interaction between stocks,
independently of the non-stationarity of the joint
behavior. That is, the required assumption in the
model is that there are independent sources that
are mixed by a matrix W.

If the matrix does not change, the ICA algorithm
will give an estimation, and therefore, given that
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the matrix does not change, it will impute the
components of volatility to some of the non-
observable factors.

3.2.5 Independence Test

In order to test the independence of the computed
ICs, we ran the Hilbert-Schmidt Independence
Criterion (HSIC) test [15]*, which tests whether
random variables X and Y are independent based
on a sample of observed pairs (X Yi). The results
of our independence tests confirmed the statistical
independence, between each pair of components
estimated from the weekly and daily databases.

3.2.6 Econometric Contrast

We carried out an econometric contrast under a
statistical approach to the Arbitrage Pricing Theory
(APT) using the underlying systematic risk factors
extracted via ICA. The APT’s pricing equation is
expressed as follows:

ER) =2+ Pri+ A Pat oty

B a7

In the same outline that in [28], Ao represents the
riskless interest rate, A the risk premium for each
kind of systematic risk factor, and S« the exposures
to each type of systematic risk. We tested the
former expression by way of an average cross-
section methodology estimating the coefficients by
ordinary least squares (OLS) in the following
regression model:

Ri=2g+ A B+ Ay Bt -+ A B (18)
+ 6.

We used again the two-stage methodology for
the econometric contrast of the APT used in our
aforementioned study [28], which is explained as
follows: In the first stage, we estimated the betas
to be used in expression 18 from the scores of the
extracted factor. In the second stage, we estimated
the lambdas. In the first stage we estimated the
betas by regressing the factor scores obtained by
ICA as a cross-section on the returns and
excesses. In order to improve the efficiency of the
parameter  estimates and to eliminate
autocorrelation in the error terms of the
regressions, we used weighted least squares

11 We performed HSIC test using the Matlab script developed by [16].
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(WLS) to estimate the entire system of equations
at the same time.

The results of the regressions in the four
databases were very good, producing, in almost all
cases, statistically significant parameters, high
values of the R? coefficients and results in the
Durbin-Watson test of autocorrelation, which lead
us to the non-rejection of the null hypothesis of no-
autocorrelation. In the second stage we estimated
the lambdas or risk premia in expression 17 by
regressing the betas obtained in the first stage as
a cross-section on the average returns and
excesses, using ordinary least squares (OLS).

In order to avoid the econometric problems of
heteroskedasticity and autocorrelation in the
residuals of the model estimated through OLS, we
corrected it by means of the Newey-West
heteroskedasticity and autocorrelation consistent
covariance estimates (HEC). Additionally, we
verified the normality in the residuals by carrying
out the Jarque-Bera test of normality.

In order to accept the APT pricing model, we
require the statistical significance of at least one
parameter lambda different from Ao, and the
equality of the independent term to its theoretic
value, i.e., the average returns, in the models
expressed in returns:

AO = Ro, (19)

and zero, in the models expressed in excesses of
the riskless interest rate:

/10 = 0. (20)

We used Wald’'s test to confirm these
equalities.

In Table 7, we present a summary of the results
of the econometric contrast for the four databases.
In general, the results of the explanation power, the
adjusted R-squared (R?), the statistical
significance of the multivariate test (F), and the
Jarque-Bera normality test of the residuals are very
good in almost all the contrasted models. The
univariate tests for the individual statistical
significance of the parameters (statistic t) priced
from one to five factors exclusive of Ao in the
weekly and daily databases, thus giving evidence
in favor of the APT in 27 models.
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Table 7. Summary of the Econometric Contrast

Ao A A2 As A As Ae A As As R¥ Asig F w J
/ Mot ALD -B
Database
of weekly

returns.

Model with . . . 5.7 0.0 « o o
2 betas 8% 0%

Model with 0.0 ) . 0.0 46. 33. c . o
3 betas 0530 1665 78% 33%

Model with 0.0 . - - 46. 50. < . o
4 betas 0546 0.01492 0.01219 58% 00%

Model with 0.0 . ) ) ) c . o

5 betas 0.01770

Model with
7 betas

Model with . - . .
9 betas 0557 0.01158 51% 11%

Database of weekly

excesses.
Model with . . 0 17. 0.0 « o o
2 betas 81% 0%
Model with 0.0 . . 37 33. < . o
3 betas 0376 21% 33%
Model with 0.0 . - 45. 50. < . o
4 betas 0341 0.01774 25% 00%
Model with . . . - 0.0 . o o
5 betas 29.79% 0%
Model with 0.0 . 0 39. 16. < . o
6 betas 0249 81% 67%
Model with . . . 31 14. . o o
7 betas 0.00499 63% 29%
Model with . . . . . 0 . . - 9.3 12. . o o
8 betas 0.01046 4% 50%
Model with 0.0 . - . . 0.0 . 0.0 - 0.0 63. 55. c . o
9 betas 0450 0.01257 1049 1246 0.01057 0941 49% 56%
Database

of daily

returns.

Model with
2 betas

Model with R
4 betas 0.00262

Model with 0.0 -
0290 0.00162

6 betas
Model with . . 0 ) 0.0 . 0.0 . 40. 28. c o o
7 betas 0288 0118 22% 57%
Model with 0.0 0.0 0.0 . 0.0 . . . 56. 50. < . o
8 betas 0131 0243 0329 0281 08% 00%
Model with . . - . . 0.0 . 0 . 69. 33. c o o
9 betas 0.00353 0287 01 62% 33%
Database

of daily

excesses
Model with . . . - 0.0 « o o
2 betas 1.91% 0%
Model with . . 0.0 34 33. c o o
3 betas 0318 55% 33%
Model with . . ) 50 25. < o o
4 betas 53% 00%
Model with . 0 - 39 20. < o o
5 betas 0.00289 87% 00%
Model with . . . . 0.0 36. 16. c o o
6 betas 0309 25% 67%
Model with . . 0.0 ) . . - 45. 28. c o o
7 betas 0222 0.00287 30% 57%
Model with . - . . 0.0 . 0.0 44. 37. < o o
8 betas 0.00197 0096 0283 95% 50%
Model with . 0.0 - 0.0 . - . . 0.00 0.0 78. 66. c o o
9 betas 0300 0.00183 0250 0.00076 2742 0109 98% 67%

Notes: (1) The level of statistical significance used in all the tests was 5%. (2) Empty circles mean that the required results in the different tests were fulfilled, whereas filled circles represent that those tests
were not passed according to the different null hypotheses posed in each one of them. (3) A: Estimated coefficients. Ho: A; = 0. Numeric value of the coefficient = Rejection of Ho. Parameter significant. e =
Not rejection of Ho. Parameter not significant. (4) R?: Adjusted R-squared = Explanatory capacity of the model. (5) Asiq / Awt : Ratio number of significant lambdas / total number of lambdas in the model. (6) F:
Global statistical significance of the model. Ho = A1 = A; = ... = A = 0. o = Rejection of Ho. Model globally significant. e = Not rejection of Ho. Model globally not significant. (7) Wald: Wald's test for coefficient
restrictions. Databases in returns: Ho: Ao = Average riskless interest rate. Databases in excesses: Ho: Ao = 0. o = Not rejection of Ho. The independent term is equal to its theoretic value. ® = Rejection of Ho.
The independent term is not equal to its theoretic value. (8) J-B: Jarque Bera's test for normality of the residuals. Ho = Normality. o = Not rejection of Ho. The residuals are normally distributed. e = Rejection
of Ho. The residuals are not normally distributed.
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Nevertheless, only four models fulfilled both the
statistical significance of the parameters and the
equality of the independent term to its theoretic
value, in addition to the fulfilment of normality in
the residuals.

The referred models appear marked in Table 7,
where we used the same methodology of
presentation and analysis of the results as in our
preceding paper [28].

4 Conclusions

Our results showed that the data of the Mexican
Stock Exchange used in the study presented
univariate and multivariate non-Gaussianity,
revealing that classic techniques such as PCA and
FA will produce a biased estimation of the betas.

This discovery led us directly to the use of
techniques more suitable for non-Gaussian series
such as ICA, which, by using the ICASSO
methodology, produces a more reliable and
realistic estimation of the underlying generative
multifactor model of returns on equities than those
produced by PCA and FA, since this methodology
is capable of extracting the underlying systematic
risk factors from non-Gaussian financial time
series, and solves the problem that the regular ICA
model estimation presents.

Regarding the results of our empirical study, on
one hand, the reconstruction of the observed
signals, by means of a reduced number of factors
with respect to the original variables with our
estimated ICA model was suitable. On the other
hand, our econometric contrast of the APT in the
stocks and periods used in this study produced
signals in favor of the APT, revealing from 1to 5
factors priced in the statistically significant models.

Compared with the results of our previous study
[28] and given the univariate and multivariate non-
gaussianity of the financial time series used in both
studies, we find that from a theoretical standpoint,
the underlying systematic factors extracted using
ICA would represent a more reliable estimation
than that produced by PCA and FA. Nevertheless,
from an empirical stance, in general, both the
reconstruction of the observed data and the results
of the econometric contrast of the APT were
similar. Further research will be needed in order to
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compare the performance of these extraction
techniques in this context.
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