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Resumen. En este artículo, se presenta un método 

híbrido basado en técnicas de minería de datos y una 
búsqueda tabú aplicado en la selección y clasificación 
de genes de Microarreglos de ADN.  El método está 
dividido en dos etapas, en la primera etapa se elimina 
toda la información no relevante de la base de datos 
utilizando cinco técnicas de filtrado de datos. Con los 
subconjuntos de genes obtenidos por esta etapa, se 
realiza una nueva etapa de selección de genes 
utilizando una búsqueda tabú, para el proceso de 
clasificación de los genes seleccionados, se utilizan los 
clasificadores SVM, LDA, KNN por separado. El método 
se ha implementado para obtener un subconjunto 
pequeño de genes de alto desempeño, los resultados 
obtenidos se comparan con otros métodos reportados 
en la literatura, este método se aplica en tres bases de 
datos de dominio público.   

Palabras Clave. Microarreglos de ADN, normalización, 

filtrado de datos, selección, clasificación, 
búsqueda local. 

Exploration of DNA Microarrays Using 
Data Mining and a Taboo Search 

Abtract. In this article, we present a hybrid method 

based on data mining techniques and a taboo search 
applied in the selection and classification of DNA 
Microarray genes. The method is divided into two 
stages, in the first stage all non-relevant information in 
the database is eliminated using five data filtering 
techniques. With the subsets of genes obtained by this 
step, a new stage of gene selection is carried out using 
a taboo search, for the classification process of the 
selected genes, the SVM, LDA, KNN classifiers are used 
separately. The method has been implemented to obtain 
a small subset of high performance genes, the results 

obtained are compared with other methods reported in 
the literature, this method is applied in three databases 
of public domain. 

Keywords. DNA microarrays, normalization, data 

filtering, selection, classification, local search. 

1. Introducción 

Definir las causas por las cuales se genera una 
enfermedad se ha vuelto una tarea que involucrar 
diferentes áreas del conocimiento como la 
medicina, la biología, las matemáticas aplicadas y 
la informática, generando nuevos estudios 
basados en grandes cúmulos de información 
médica que ayudan al descubrimiento de causas 
relevantes para el comportamiento de una 
enfermedad. Uno de los métodos más utilizados 
son los datos de expresión genética obtenidos de 
la tecnología de microarreglos de ADN [1, 2], ésta 
tecnología ayuda a comprender la dinámica celular 
y sus relaciones con estados patológicos [1]. Sin 
embargo, los datos de expresión genética son 
difíciles de estudiar, ya que tienen como 
característica principal una alta dimensión debido 
a que el número de genes existentes es 
considerablemente mayor (usualmente miles), en 
comparación con la cantidad de muestras 
analizadas (usualmente menos de 100) [3]. En 
este documento, para abordar la problemática de 
obtener información relevante de los microarreglos 
de ADN, se propone un método híbrido de 
selección y clasificación para realizar una 
reducción de la dimensión de las bases de datos. 
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Primero se realiza una limpieza del microarreglo 
utilizando un pre-procesamiento de los datos, 
eliminando los genes ruidosos y generando una 
primera reducción de la base genómica.  

Después se genera una selección de un 
subconjunto de genes utilizando una heurística de 
búsqueda basada en la búsqueda tabú, para 
evaluar la calidad del subconjunto seleccionado, 
se utilizan tres métodos de clasificación, con la 
combinación de estas técnicas, se buscan los 
genes con información relevante dentro de tres 
bases de datos obtenidas de microarreglos de 
ADN de dominio público. 

2. Selección y clasificación de datos 
genómicos utilizando minería de 
datos 

La tecnología de microarreglos de ADN, se 
utilizan para la adquisición y almacenamiento de 

datos obtenidos directamente del genoma humano 
[2]. Permite manipular grandes cantidades de 
información genética, sin embargo, no toda la 
información contenida es útil, una base de datos 
obtenida de la tecnología de microarreglos de 
ADN, tiene un gran número de características que 
requieren un largo tiempo de procesamiento para 
ser analizada. Además, las bases de datos tienen 
dimensiones altas, miles de los genes son 
redundantes o contienen ruido [3]. 

Existen diferentes técnicas basada en minería 
de datos (como selección y extracción de 
características), y de aprendizaje máquina [4, 5], 
que ayudan a obtener información relevante a 
través de la exploración de los microarreglos de 
ADN. La selección de características (SC), ayuda 
a explorar datos de expresión genética que 
normalmente contienen un número grande de 
genes, pero un número pequeño de muestras.  

La SC se puede ver como el proceso de 
encontrar un conjunto de genes que determinen 

 

Fig. 1. Proceso general de selección y clasificación de características 

 

Fig. 2. Proceso de selección de características utilizando el algoritmo híbrido 

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 585–597
doi: 10.13053/CyS-22-2-2528

Luis Alberto Hernández Montiel, José-Antonio León-Borges, Luis David Huerta Hernández586

ISSN 2007-9737



mejor las diferencias existentes en una muestra 
biológica [4]. Además, tiene los objetivos 
esenciales para reducir el ruido y redundancia de 
los datos, sirve para mejorar la exactitud de 
clasificación de una muestra, y los resultados 
ayudan a biólogos a que se enfoquen en los genes 
seleccionados para mejorar sus pruebas y validar 
sus hipótesis biológicas [6]. Para generar una 
selección de características efectiva se puede 
ocupar métodos basados en estadística y en 
aprendizaje máquina [4], los métodos estadísticos 
seleccionan características basándose en un 
criterio de discriminación que son relativamente 
independientes de su clasificación. Los métodos 
basados en aprendizaje máquina realizan la 
selección de variables usando como criterio de 
evaluación la estimación del error basadas en 
algún clasificador como las redes neuronales o 
clasificadores bayesianos [7, 8]. La figura 1 
muestra un proceso de selección de 
características, éstas se evalúan en caso que sean 
características relevantes y se apartan del 
conjunto original, sino, se vuelve a generar un 
nuevo subconjunto para ser evaluado, así este 
proceso se repite un número de veces. 

3. Algoritmo híbrido para la exploración 
de microarreglos de ADN 

En este documento se aborda el problema de 
selección y clasificación efectiva de genes de 
microarreglos de ADN, utilizando un método 
híbrido combinando técnicas de selección de 
características basadas en filtrado de datos como 
primera etapa de selección. En la segunda etapa 
de selección y clasificación se utiliza un método 
híbrido basado en una búsqueda tabú combinada 
con tres diferentes clasificadores, la figura 2 
muestra el método general de selección y 
clasificación de genes. 

3.1. Estandarización de los datos 

Las bases de datos obtenidas de la tecnología 
de microarreglos de ADN no son homogéneas, es 
decir, la forma en que se encuentra la información 
original tiene diferentes escalas numéricas y sigue 
diferentes distribuciones estadísticas. 

La estandarización de datos se utiliza para 
transformar los datos con diferentes distribuciones 
a una escala igual para todos los datos. En este 
experimento, los datos son estandarizados 
utilizando una normalización Min-Max, la cual está 
definida por [9]: 

𝑋’ =
 𝑋 − 𝑀𝑖𝑛(𝑋)  

𝑀𝑎𝑥(𝑋) − 𝑀𝑖𝑛(𝑋)
, (1) 

donde X es la base de datos original. Min(X) y 
Max(X) son el dato mínimo y el dato máximo 
existentes en las bases de datos, X’ es la nueva 
base de datos normalizada. 

3.2. Filtrado de datos 

Dentro de los microarreglos, existe información 
poco confiable, que puede sobre entrenar al 
clasificador y dar resultados erróneos, una de las 
formas de eliminar esta información es utilizando 
métodos de limpieza de ruido, al eliminar la 
información errónea o ruidosa se obtienen 
muestras bien etiquetadas para clasificar nuevos 
patrones dentro del microarreglo [10]. En este 
trabajo se utiliza un pre-procesamiento para 
eliminar el ruido del microarreglo de la siguiente 
forma: se genera una primera selección de 
información para cada base de datos, utilizando 
una puntuación generada por cinco métodos de 
filtrado estadístico independientes, esta 
puntuación sirve como indicador discriminatorio 
entre los genes para saber cuál de ellos contiene 
información más relevante [12]. 

Los cinco filtros que se utilizan en este estudio 
son: sumas de cuadrados entre los grupos y 
dentro de los grupos (BSS/WSS), información 
mutua, relación señal a ruido, prueba de wilcoxon 
y T-statistic. Estos filtros se utilizan por sus 
capacidades estadísticas, cada filtro prioriza un 
gen en particular y los demás filtros priorizan otros 
genes, se desea hacer un consenso de los genes 
mejores filtrados con cada uno de los métodos 
utilizados y con éste consenso trabajar por 
separado dentro del algoritmo propuesto. 

3.2.1. BSS/WSS (BW) 

La selección de genes se basa en la razón de las 
sumas de cuadrados entre los grupos (BSS) y 
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dentro de los grupos (WSS). Para el (gen) j, la 
razón está dada por [11]: 

𝐵𝑆𝑆(𝑗)

𝑊𝑆𝑆(𝑗)
=  

∑ ∑ 𝐼(𝑦𝑖 = 𝑘)(𝑥̅𝑘𝑗 – 𝑥̅.𝑗 )
2

𝑘𝑖

∑ ∑ 𝐼(𝑦𝑖 = 𝑘)(𝑥𝑖𝑗 – 𝑥̅𝑘𝑗)
2′

𝑘𝑖

 , (2) 

donde 𝑥̅.𝑗 denota el nivel medio de la expresión del 

gen j a través de todas las muestras y 𝑥̅𝑘𝑗 denota 

el nivel medio de la expresión de gen j en todas las 
muestras para la pertenencia de la clase k. 

3.2.2. Información mutua (MI) 

Sean A y B dos genes aleatorios con 
distribuciones de probabilidad diferentes y una 
distribución de probabilidad conjunta. La 
información mutua entre ambos genes I(A; B) se 
define como la entropía relativa entre la 
probabilidad conjunta y el producto de 
probabilidades [12]: 

𝐼(𝐴; 𝐵) =  ∑ ∑ 𝑃(𝑎𝑖 ,𝑏𝑗)log
𝑃(𝑎𝑖 ,𝑏𝑗)

𝑃(𝑎𝑖)𝑃(𝑏𝑗) 
,

𝑏𝑗𝑎𝑖

 (3) 

donde 𝑃(𝑎𝑖 ,𝑏𝑗) es la probabilidad conjunta de los 

genes, 𝑃(𝑎𝑖) es la probabilidad del gen A y 𝑃(𝑏𝑗) 

es la probabilidad del gen B. 

3.2.3. Relación señal a ruido (SN) 

Identifica los patrones de expresión genética 
con una diferencia máxima en la expresión media 
entre dos clases y la variación mínima de 
expresión dentro de cada clase. En este método, 
los genes son los primeros clasificados de acuerdo 
a sus niveles de expresión [13]: 

𝑆𝑁𝑅 =  |(𝜇1 − 𝜇2) (𝜎1 + 𝜎2)⁄ |, (4) 

donde 𝜇1 y 𝜇2 denotan los valores medios de 
expresión de la clase 1 y clase 2, respectivamente, 
𝜎1y 𝜎2 son las desviaciones estándar de las 
muestras en cada clase. 

3.2.4. Prueba de Wilcoxon (WT) 

Para cada gen j, se necesita el supuesto que 
las observaciones xij,...,xnj sean independientes. 
Si rank(xij) denota el rango de xij en la sucesión 
xij,…,xnj, la prueba estadística para el gen j está 
dada por [14]: 

𝑊𝑗 = ∑ 𝑟𝑎𝑛𝑘(𝑥𝑖𝑗)

𝑖:𝑌𝑖=1

. (5) 

Para probar la hipótesis se utiliza  

H0: mediana(𝑋𝑗|𝑌 = 1)=mediana(𝑋𝑗|𝑌 = 2) vs   

H1: mediana(𝑋𝑗|𝑌 = 1)≠mediana(𝑋𝑗|𝑌 = 2) 

Bajo H0, W j tiene una distribución de Wilcoxon 
con grados de libertad n1 y n2. El valor descriptivo 
de la prueba (p-value) correspondiente para cada 
gen j puede ser usado como una medida 
de relevancia. 

3.2.5. T-statistic (TT) 

Cada muestra se etiqueta con {1, -1}. Para 

cada gen 𝑓𝑗 la media  𝜇𝑗
1 (𝜇𝑗

−1) y la desviación 

estándar 𝛿𝑗
1 (𝛿𝑗

−1), se calculan utilizando sólo las 

muestras etiquetadas con 1 (-1). 

Entonces una puntuación T(𝑓𝑗) pueden ser 

obtenidas por [15]: 

𝑇(𝑓𝑗) =  
|𝜇𝑗

1 − 𝜇𝑗
−1|

√(𝛿𝑗
1)

2
𝑛1⁄ + (𝛿𝑗

−1)
2

𝑛−1⁄

, 
(6) 

Algoritmo 1. 

1 Genera Solución inicial S; 

2 Evalúa Solución inicial f(S); 

3 Genera lista tabú LT; 

4 Número de Iteraciones (NI) 

5  Mientras (NI) 

6  genera Vecindario N(S); 

7  Evalúa Vecindario f(N(S)) 

8  Actualiza lista tabú LT=S 

9  
Selecciona mejor solución vecina (S' € 

N(s)) 

10   Si (S’ > S y S’ ≠ LT)   

11        S=S’ 

12   Fin. 

13  Fin 
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donde n1 (n−1), es el número de ejemplos 
etiquetados con 1 (-1). Son consideradas como los 
genes más discriminatorios aquellas con la 
puntuación alta. 

3.3. Subselección y clasificación utilizando 
una búsqueda tabú 

Después de generar una primera selección de 
genes con los métodos de filtro (etapa 1), se hará 
una nueva selección utilizando una búsqueda tabú 
combinada con diferentes clasificadores, el 
método será entrenado con los datos obtenidos 
por los filtros y se describe a continuación. 

3.3.1. Búsqueda tabú 

La búsqueda tabú (BT), es una técnica que 
utiliza una memoria, con el objetivo de guiar un 
procedimiento de búsqueda local para resolver 
problemas de optimización combinatoria con un 
alto grado de dificultad, explorando el espacio de 
soluciones más allá del óptimo local [16]. Se puede 
obtener un algoritmo BT básico mediante la 
utilización de una lista tabú. En cada iteración, la 
solución actual S es reemplazada por la mejor 
solución vecina S' que no esté prohibida por la lista 
tabú. S' Є N(s) de tal manera ∀ s'' Є N(s), f(S") ≤ 
f(s') y S' donde es el conjunto de soluciones 
prohibidas por la lista tabú. 

Note que el vecino seleccionado S' puede o no 
puede ser mejor que S. El algoritmo BT se detiene 
cuando un número fijo de iteraciones se alcanza o 
cuando todos los movimientos se han convertido 
en tabú. La principal función de la lista tabú es 
prevenir que se cicle la búsqueda [17].  EL código 
simple de una búsqueda tabú se describe 
a continuación.  

El algoritmo muestra un proceso general de 
una búsqueda tabú, actualizando la lista tabú y 
reemplazando la solución anterior por la mejor 
solución encontrada dentro del vecindario. 

3.3.2. Máquina de vectores de soporte 

El clasificador máquina de vectores de soporte 
(SVM por Support Vector Machine), es una técnica 
que opera de acuerdo a un paradigma de 
aprendizaje supervisado, aprendiendo de una 
relación funcional entre los atributos (o 

características), de entrada y salida por medio de 
apariciones de ejemplos etiquetados, se utiliza 
para analizar datos y reconocer patrones, para 
metodologías estadísticas y análisis de  regresión, 
el  algoritmo de  entrenamiento SVM, construye un 
modelo que predice si un nuevo ejemplo sigue 
dentro de una categoría o de otra [13].  

Discriminan datos de clases linealmente 
separables, dibujando un hiperplano óptimo en el 
espacio del vector de características, de tal 
manera que maximice el margen de separación 
entre los ejemplos positivos y negativos [18]. Los 
clasificadores SVM funcionan de la siguiente 
forma. Dado un conjunto de muestras m 
etiquetados S= {(xi, yi) | (xi, yi) ϵ Rn x {±1}, i=1, 
2 ,..., m}, donde xi ϵ Rn, yi ϵ {+ 1} es una etiqueta 
de la muestra de xi, el hiperplano se define 
por  [19]:  

𝑓(𝑥) = ∑ 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖 ,𝑥) + 𝑏

𝑚

𝑖=1

, (7) 

donde 𝐾(𝑥𝑖 ,𝑥), es la función del núcleo y el signo 
de 𝑓(𝑥), determina a que clase pertenece. La 
construcción de un hiperplano óptimo es 
equivalente a encontrar todo el soporte de los 
vectores en 𝑎𝑖 y un sesgo en 𝑏. 

3.3.3. K-vecino más cercano 

El clasificador k-vecino más cercano (KNN por 
k-Nearest Neighbor), es un algoritmo de 
clasificación que basa su criterio de aprendizaje en 
la hipótesis de que los miembros de una población 
suelen compartir propiedades y características con 
los individuos que los rodean [14], de modo que es 
posible obtener información descriptiva de un 
individuo mediante la observación de sus vecinos 
más cercanos.  

La regla de clasificación por KNN se describe a 
continuación. Sea x1, x2 ,…, xn una muestra con 
una función f(x) de densidad desconocida. Se 
estima f(x) a partir de un elemento central de la 

muestra 𝑥 que crece hasta contener k elementos 
con una distancia euclidiana similar, donde el valor 
de k se define arbitrariamente.  

Estas observaciones son los k vecinos más 

cercanos a 𝑥. Se tiene entonces la siguiente 
condición [20]: 
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𝑓(𝑥)= 
𝑘

𝑛⁄

𝑉𝑘(𝑥)
, (8) 

donde 𝑉𝑘(𝑥), es el volumen de un elipsoide 

centrado en 𝑥, y de radio la distancia euclidiana de 

𝑥 al k-ésimo vecino más cercano. 

3.3.4. Análisis lineal discriminante (LDA) 

El clasificador basado en Análisis Lineal 
Discriminante (LDA por Lineal Discriminant 
Analysis), es una técnica de aprendizaje 
supervisado para clasificar datos. La idea central 
de LDA es obtener una proyección de los datos en 
un espacio de menor (o incluso igual), dimensión 
que los datos entrantes, con el fin de que la 
separabilidad de las clases sea la mayor posible 
[21]. LDA se acerca al problema de clasificación 
mediante la búsqueda de una matriz de 
transformación que ayude a preservar la mayor 
parte de la información que se utilice para 
discriminar entre diferentes clases.  

Lo anterior se logra mediante la 
reestructuración de los datos de alta dimensión 
proyectándolos en un espacio de pocas 
dimensiones. Para alcanzar la matriz de 

transformación óptima, dos matrices SB 

(dispersión entre las clases) y SW (dispersión 
dentro de las clases) deben ser calculadas de 
acuerdo a las siguientes ecuaciones [21]: 

𝑆𝑤= ∑ ∑ ∈
𝑥𝑖𝑘

𝑐𝑘(𝑥𝑖−𝜇𝑘)(𝑥𝑖−𝜇𝑘)𝑡 , (9) 

𝑆𝐵 =  ∑ 𝑛𝑘
𝑘

(𝜇𝑘−𝜇)(𝜇𝑘−𝜇)𝑡,  (10) 

donde nk es el número de ejemplos de 
entrenamiento para la clase k, ck es el conjunto de 
índices de los ejemplos de entrenamiento 
pertenecientes a la clase k, xi es el valor de 
expresión genética del gen i, µk es la media de la 
clase k y µ es la media resultante de las dos 
clases.  

Entonces LDA está preparada para clasificar 
nuevas muestras después de que encontró un 
valor óptimo para el vector w tal que 𝑤𝑡𝑆𝐵𝑤 es 
maximizada mientras 𝑤𝑡𝑆𝑤𝑤 es minimizada como 
se muestra en la siguiente ecuación [21]: 

𝐹(𝑤) =  
𝑤𝑡𝑆𝐵𝑤

𝑤𝑡𝑆𝑤𝑤
. (11) 

3.3.5. Procedimiento general 

En nuestro caso el algoritmo es implementado 
de la siguiente manera: 

 La búsqueda tabú se implementa de manera 
binaria, donde la solución inicial S se genera de 
forma aleatoria con una distribución uniforme.  

 En la función de costo de la búsqueda, se utiliza 
uno de los tres clasificadores descritos 
anteriormente, esto servirá para evaluar (f(s)) 
la calidad de los genes seleccionados por la 
solución inicial, el resultado obtenido por el 
clasificador es validado utilizando el método 
10-fold cross-validation.  

 Se genera el vecindario a partir de la solución 
inicial S, el cual se evalúa con la función de 
costo. Se busca dentro del vecindario la mejor 
solución S’ y se verifica si se encuentra 
prohibida por la lista tabú, si S’ es tabú, se toma 
la segunda mejor solución del vecindario, si S’ 
no es tabú, S’ se toma como la mejor solución 
del vecindario. 

 

Fig. 3. Matriz de datos de expresión genética 

Tabla 1. Descripción de los Microarreglos de ADN 

Bases  

de datos 
Genes Muestras Clases 

Leucemia [22] 7129 72 2 

Cáncer de 

Colon [23] 
2000 62 2 

Cáncer de 

Pulmón [24] 
12533 181 2 
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 La solución S’ reemplaza a la solución inicial 
(S=S’) y se genera un nuevo vecindario a partir 
de la solución S,  

 Este proceso se repite n veces hasta que S’ 
hasta que se cumplan un número de 
iteraciones. 

 La lista tabú es implementada de la siguiente 
manera.  

 Cada vez que un movimiento mv(i,j) se lleva a 
cabo, un gen es descartado y un gen es 
seleccionado, el gen seleccionado es guardado 
en la lista tabú por las siguientes k iteraciones.  

Por consecuencia, este gen no se puede volver 
a seleccionar durante el proceso. 

 El valor de k es el tiempo de permanencia que 
el gen estará dentro de la lista tabú y varía 
desde kmin a kmax.  

 La lista tabú prohíbe un nuevo gen 
seleccionado, este gen se puede retirar de la 
lista tabú (criterio de aspiración), en la siguiente 

iteración sí el coeficiente de clasificación del 
nuevo gen seleccionado es muy bajo. 

4. Experimentos y resultados 

El método propuesto se entrena con diferentes 
conjuntos de datos genómicos, se logra observar 
que el método es capaz de seleccionar genes con 
información relevante.  

En esta sección se muestran los resultados 
obtenidos por el método propuesto y se genera un 
estudio de comparación de los resultados 
obtenidos con diferentes literaturas. 

 

Fig. 5. Tasa de clasificación obtenida por el algoritmo 

híbrido para la base de datos de cáncer de colon 

Tabla 2. Parámetros utilizados por la búsqueda tabú 

Parámetros 

Solución inicial 300 

Tamaño de la lista tabú 7 

Criterios de aspiración si 

Número de iteraciones 1000 

 

 

Fig. 4. Tasa de clasificación obtenida por el algoritmo 
híbrido para la base de datos de leucemia 
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4.1. Microarreglos de ADN 

Los microarreglos de ADN, son una 
herramienta que permite realizar diversos análisis 
genéticos basados en la miniaturización de 
procesos biológicos, su funcionamiento se basa en 
la capacidad que tienen las moléculas 
complementarias de ADN de hibridar entre sí, 
utilizando pequeñas cantidades de ADN 
correspondientes a diversos genes cuya expresión 
se desea medir [1]. Los microarreglos de ADN 
tiene forma de una matriz de datos donde las filas 
representa los genes y las columnas representan 
las muestras. 

Cada celda dentro de ésta matriz, es un valor 
de expresión genética que representa la 
intensidad del gen correspondiente a cada una de 
las muestras. Lo anterior se observar en la figura 
3 donde x representa el dato genómico, ng 
(número de gen, filas) los genes dentro de la matriz 

y nm (número de muestras, columnas) las 
muestras dentro de la matriz. 

En éste trabajo, se utilizan tres microarreglos 
de ADN descritos en la tabla 1.  

4.2. Parámetros 

El algoritmo híbrido ha sido implementado en 
Matlab (Versión 7.11.0). Los parámetros más 
confiables con los cuales fue entrenada la 
búsqueda tabú para las tres bases de datos se 
muestran en la tabla 2.  

4.3. Resultados 

En el protocolo experimental, los cinco 
métodos de filtrado de datos funcionan como una 
etapa de pre-selección generando una reducción 
significativa de las tres bases genómicas, 
descartando los genes ruidosos y genes 
redundantes y obteniendo como resultado los 
nuevos subconjuntos con información relevante, 

Tabla 3. Tasas de clasificación obtenidas por el algoritmo híbrido  

AUTORES 
Leucemia Colon Pulmón 

%(Ng) %(Ng) %(Ng) 

Luo et al. [25] 71.39 (5) 80.07(7) -- 

Yu et al. [26] 96.8(10) 88.6(10) 94.7(10) 

Cho et al. [29] 95.9(25) 87.7(25) -- 

Hernández et al. [17] 92.52(6) 87.00(8) -- 

Filippone et al. [27] 94.7(13) 80.6(21) -- 

Li et al. [28] 95.1(21) 88.7(16) -- 

    

Bonilla et al. [33] 99.5(3) 90.5(3) 96.0(3) 

Tan et al. [34] 91.1 95.1 93.2 

Yue et al.[35] 83.8(100) 85.4(100) -- 

Pang et al. [31] 94.1(35) 83.8(23) 91.2(34) 

Li et al. [32] 97.1(20) 83.5(20) -- 

Zhang et al.  [30] 100(30) 90.3(30) 100(30) 

González [54] 99.62(3) 89.19 (5) 99.89(7) 

Tabú-SVM 98.00(4) 95.90(3) 97.94(3) 

Tabú-LDA 98.00(2) 93.77(2) 97.17(3) 

Tabú-KNN 98.00(2) 94.77(3) 97.72(3) 
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que se utilizan en la siguiente etapa para entrenar 
la búsqueda tabú y los clasificadores. En esta 
nueva etapa se genera una selección de genes 
dentro los nuevos subconjuntos, eliminando los 
genes menos informativos y seleccionando los 
genes que logran entrenar mejor al clasificador. 
Así se obtiene un subconjunto mínimo de genes 
con una tasa de desempeño alta. 

La figura 4 (leucemia), 5 (cáncer de colon) y 6 
(cáncer de pulmón), muestran la comparación de 
las tasas de clasificación que se han obtenido al 
entrenar el algoritmo tabú combinado con cada 
uno de los clasificadores (SVM, LDA, KNN).  

La tabla 3, muestra la mejor tasa de 
clasificación obtenida por el método propuesto y la 
comparación con diferentes métodos reportados 
en la literatura. La tabla se divide de la siguiente 
forma: en la primera columna, se muestran los 
autores con los que se han comparado los 
resultados obtenidos, el resto de las columnas 

muestran las tasas de clasificación (%) y el 
número de genes (Ng), que fueron obtenidos por 
los métodos propuestos para las tres bases de 
datos. Los resultados obtenidos se han 
comparado con los autores mostrados en la tabla 
3. Cabe mencionar que algunos autores presentan 
un modelo basado en algún tipo de metaheurística 
como un algoritmo genético o se basan en 
búsquedas locales y otros clasifican basándose en 
técnicas de aprendizaje máquina. 

En tabla 3 al comparar las tasas de clasificación 
obtenidas por nuestro método para las tres bases 
de datos, se aprecia que el método es muy 
competitivo en relación con algunos de los autores 
con los que se han comparado. 

Por ejemplo, Zhang et al. [30] obtuvo el 100% 
de clasificación seleccionando un subconjunto de 
30 genes para Leucemia, Bonilla-Huerta et al. [33], 
obtuvo 90.5% de clasificación seleccionando un 
subconjunto de 3 genes para Cáncer de Colon, 
Zhang et al. [30], obtuvo el 100% seleccionando 
un subconjunto de 30 genes para Cáncer de 
Pulmón.  

Los mejores resultados obtenidos para las 
bases de datos son: 

Para Leucemia la tasa de clasificación más alta 

fue de 98% seleccionando un subconjunto de 2 
genes, en Cáncer de Colon la tasa de clasificación 
más alta fue de 95.90% seleccionando un 
subconjunto de 3 genes y Cáncer de Pulmón la 
tasa de clasificación más alta fue 97.94% 
seleccionando un subconjunto de 3 genes. 

En cada una de las tres bases de datos existen 
genes informativos que entrenan al clasificador de 
manera eficiente, una forma de verificar si los 
genes seleccionados pueden ayudar en el 
diagnóstico de una enfermedad es revisando en la 
literatura si estos genes han sido reportados por 
algún autor, de modo que podemos encontrar una 
interpretación biológica de los genes 
seleccionados.  

La base de datos de leucemia y de cáncer de 
colon, han sido estudiadas ampliamente, permite 
encontrar la mayoría de genes relevantes 
reportados por diferentes autores. Por otra parte, 
la base de datos de cáncer de pulmón no ha sido 
estudiado ampliamente, consecuentemente 
surgen dudas para la comparación de los 
resultados con los genes reportados. A 
continuación, se muestran los genes 

 

Fig. 6. Tasa de clasificación obtenida por el algoritmo 

híbrido para la base de datos de cáncer de pulmón 
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seleccionados y reportados por diferentes autores 
obteniendo así una interpretación biológica 
más confiable: 

En nuestro trabajo encontramos el gen 4847 
(Zyxin) como el más relevante dentro de la base 
de datos de leucemia, este gen fue seleccionado 
por los tres métodos utilizados Tabú-(SVM, LDA, 
KNN). El gen ha sido reportado por [15, 22, 36, 
[37], [38], indicando que tiene un rol importante 
dentro de la clasificación de leucemia, debido a su 
nivel de expresión logra identificar dos tipos de 
leucemia aguda y así ser clasificado o etiquetado 
en la clase Leucemia Mieloide Aguda o Leucemia 
Linfoblastica Aguda. Otros genes encontrados 
para leucemia son 1882 (CST3 Cystatin C amyloid 
angiopathy and cerebral hemorrhage) 2020 (FAH 
Fumarylacetoacetate) y el gen 760 (CYSTATIN A). 
Los dos primeros fueron encontrados por dos de 
los tres métodos propuestos Tabú-(SVM, KNN) y 
Tabú-(SVM, LDA) respectivamente y el último 
seleccionado por el método (Tabú-SVM). Los tres 
genes han sido reportados en [15, 29, 37, 38, 39, 

40, 41]. Para la base de datos de cáncer de colon 

cada uno de los métodos ha logrado identificar de 
dos a tres genes relevantes que ayudan a la 
clasificación de muestras con tejidos de tumores y 
muestras de tejidos normales.  

Los genes más relevantes que han encontrado 
son: el gen 245 (Human cysteine-rich protein 
(CRP) gene, exons 5 and 6) con el método Tabú-
(LDA, KNN) reportado en [42, 43, 44] y el gen 765 
(Human cysteine-rich protein CRP gene, exons 5 
and 6) con el método Tabú-(SVM, KNN) reportado 
en [37, 42, 45, 46, 47]. Estos dos genes han 
logrado separar mejor la clase de tejidos de 
tumores de la clase de tejidos normales, y se 
pueden utilizar en la identificación células con 
cáncer de colon. El resto de genes seleccionados 
para cada método son: para el método Tabú-SVM 
el gen 249 (Human desmin gene, complete cds), y 
el gen 897 (3' UTR 2ª 183264 Complement Factor 
D Precursor (Homo sapiens)). El método tabú-
KNN ha seleccionado el gen 267 (Human cysteine-
rich protein CRP gene, exons 5 and 6). El método 
Tabú-LDA también ha seleccionado el gen 493 
(Myosin Heavy Chain, Nonmuscle Gallus gallus), 
estos genes han sido reportados en [33, 37, 46, 
48, 49, 50, 51, 52]. 

En cáncer de pulmón, un total de tres genes 
relevantes han sido seleccionados por los tres 

métodos propuestos Tabú-(SVM, LDA, KNN), los 
genes encontrados son: el gen 3844 (Interferon, 
alpha-inducible protein clone IFI-6-16), el gen 8537 
(Replication protein A1, 70kDa) y el gen 11841 
(leucine-rich PPR-motif containing). Estos genes 
han logrado entrenar mejor los clasificadores, a 
diferencia de los demás genes utilizados en el 
estudio. La selección de estos genes se debe a la 
separación por el clasificador de la información 
contenida en la base de datos, esto significa que 
el clasificador ha logrado separar la clase 
Malignant Pleural Mesothelioma (MPM) de la clase 
Adenocarcinoma (ADCA). Estos genes han sido 
reportados en [33, 36, 53]. 

5. Conclusiones 

En este trabajo, se presentó un método híbrido 
basado en una búsqueda local y técnicas de 
minería de datos, implementado en la selección y 
clasificación de un conjunto de genes importantes 
explorando dentro de tres bases de datos de 
dominio público (Leucemia, Cáncer de pulmón, y 
Cáncer de Colon). El método propuesto tiene una 
etapa de pre-selección de genes mediante la 
utilización de cinco técnicas de filtrado de datos, 
estos filtros utilizan una puntuación o categoría 
que sirve para discriminar los genes contenidos en 
la base de datos, así se eliminan los genes no 
relevantes (ruidosos o redundantes) y son 
seleccionados los genes con información 
pertinente.  

Con lo anterior se ha generado una primera 
reducción efectiva de la dimensión de las bases de 
datos. Para realizar la selección dentro de los 
subconjuntos obtenidos por las técnicas de 
filtrado, se ha creado un algoritmo híbrido basado 
en una búsqueda tabú como método de selección 
de genes combinada con tres técnicas de 
clasificación (SVM, LDA, KNN). Utilizando las 
propiedades de memoria de la búsqueda tabú, se 
ha logrado crear un algoritmo guiado que recuerda 
los genes que han sido utilizados en un proceso 
(iteración) anterior. Basándose en la tasa de 
clasificación del gen recordado permite que el 
algoritmo prohíba genes que han sido utilizados 
durante su ejecución y trabaje con nuevos genes 
logrando explorar a profundidad la base de datos 
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y consecuentemente obtener la mejor tasa 
de clasificación. 

Cada técnica utilizada en éste trabajo ha 
seleccionado un subconjunto de genes con una 
tasa de clasificación alta. Para saber la relevancia 
que tiene cada gen seleccionado, se utiliza la 
frecuencia de selección del gen por cada método 
propuesto, de esta manera, se logra observar que 
un gen en particular al ser seleccionado logra 
entrenar el clasificador obteniendo una tasa de 
clasificación aceptable. 

El método propuesto determina una tasa de 
clasificación alta, obtenida con un subconjunto de 
genes pequeño para las tres bases de datos. Para 
evaluar la eficiencia del método, se genera un 
estudio de comparación de los resultados 
obtenidos con otros métodos reportados en la 
literatura, esto permite verificar si el método 
es competitivo. 

Se observa que en algunos casos se ha 
logrado superar las tasas de clasificación y se han 
obtenido un subconjunto de genes pequeño en 
comparación de los métodos reportados. Además 
de las tasas de clasificación, se desea conocer si 
los genes han sido reportados en la literatura, esto 
permite tener una mejor interpretación biológica de 
los genes que ha seleccionado el algoritmo. 

También se ha minimizado el número de genes 
a utilizar y en algunos casos igualado la exactitud 
de la clasificación utilizando la búsqueda Tabú con 
uno de los tres clasificadores (SVM, KNN, LDA) 
dentro del proceso de minería de datos. En 
trabajos futuros, se pretende probar y compara 
otros algoritmos de selección de características, 
también utilizar otros métodos de clasificación, la 
meta es minimizar el número de genes a utilizar y 
maximizar la tasa clasificación.  
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