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Resumen. La segmentación de imágenes es el proceso
de extraer información con base en criterios de
semejanza. En este artı́culo se propone un algoritmo
de segmentación aplicado en imágenes a color con
información sı́smica en el espacio CIELAB. Dicho
algoritmo, el IMP-2DMA, parte de un conjunto de
valores iniciales proporcionados por el usuario, que
forman parte de patrones en la imagen con ciertas
caracterı́sticas. Se realiza la asociación de pı́xeles con
base en variables de control de expansión vertical
y guı́as de dirección. Con los pı́xeles seleccionados
se forma un conjunto de máscaras binarias 2D
que serán parte de un volumen. Mediante una
proyección tridimensional, las máscaras resultantes son
visualizadas con efectos de luz y sombra, permitiendo
apreciar geocuerpos complejos no visibles a primera
vista. Los resultados muestran que con el IMP-2DMA
se consigue extraer diversos patrones de manera similar
a los obtenidos manualmente y con mayor precisión
que con otros algoritmos de segmentación. Para evaluar
el desempeño del IMP-2DMA se utilizó la prueba de
suma de rangos de Wilcoxon. Las máscaras 2D fueron
comparadas contra la solución ideal y la segmentación
obtenida por un algoritmo de segmentación basado en
umbral.

Palabras clave. Segmentación de imágenes, imágenes
sı́smicas, geocuerpos, CIELAB.

Segmentation Algorithm Applied to
Seismic Images for Obtaining
Potentially Hidden Geobodies

Abstract. Image segmentation is the process of
extracting information based on similarity criteria. In this
paper we propose a segmentation algorithm applied in
color images with seismic information in the CIELAB

space. This algorithm, the IMP-2DMA, takes a set of
initial values provided by the user, which are part of
patterns in the image with certain characteristics. The
association of pixels based on vertical expansion control
variables and direction guides is performed. With the
selected pixels, a set of 2D binary masks will be
formed that will be part of a volume. By means of a
three-dimensional projection, the resulting masks are
visualized with effects of light and shadow, allowing to
appreciate complex geobodies not visible at first sight.
The results show that with the IMP-2DMA it is possible
to extract different patterns in a similar way to those
obtained manually and more accurately than with other
segmentation algorithms. The Wilcoxon rank sum test
was used to evaluate the performance of the IMP-2DMA.
The 2D masks were compared against the ideal solution
and the segmentation obtained by a threshold-based
segmentation algorithm.

Keywords. Image segmentation, seismic images,
geobodies, CIELAB.

1. Introducción

En geofı́sica, la mejor aproximación que se tiene
de la estructura interna de la tierra es por medio
de la interpretación sı́smica [33]. Particularmente,
se analiza la respuesta sı́smica del subsuelo ante
una fuerza aplicada y que es registrada como
amplitudes positivas, negativas y cruces por cero
(figura 1a), las cuales son asociadas con un
mapa de colores (1b). La unificación de las trazas
crea un perfil o imagen sı́smica (figura 1c) y un
gran número de estas imágenes forman lo que
se conoce como un cubo sı́smico. Este cubo es
interpretado por los geocientı́ficos para encontrar,
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entre muchas otras cosas, identificadores de
acumulación de hidrocarburo [16].

Fig. 1. Generación de una imagen sı́smica. a) La
respuesta del subsuelo a una fuerza artificial es
capturada en forma de amplitudes positivas, negativas
y cruces por cero. b) Asociación de las amplitudes de
las trazas con un mapa de colores. c) Perfil o imagen
sı́smica resultante cuyos patrones coloridos representan
la continuidad de las capas de roca. (1) Patrón sı́smico
con alta intensidad de color (2) Patrón complejo de forma
elongada, irregular y de baja intensidad de color

Los Sistemas comerciales de Interpretación
Sı́smica actuales (SIS) permiten tener una visión
dinámica y colorida de los perfiles sı́smicos, lo
que resulta adecuado para apreciar más detalles
que con las trazas sı́smicas. Al existir una relación
directa con las amplitudes, los patrones de color
más intensos representan cambios drásticos en
la roca (figura 1(1)), mientras que los menos
intensos significan cambios más débiles (figura
1(2)) [6]. El geofı́sico realiza un picking o mapeo
sı́smico, el cual consiste en realizar diversos
trazos directos sobre los patrones coloridos e
identificar diferentes aspectos estratigráficos y
estructurales [16]. Esta tarea depende de la
calidad de las señales, por lo que puede ser una
actividad trivial o bien, un problema desafiante
[7]. El objetivo de estos trazos es el de tener
una visión tridimensional de cómo y en dónde
están distribuidas las capas y de qué manera

son afectadas por la presencia de fracturas [10].
El especialista tiene la opción de realizar el
mapeo a mano alzada o mediante los procesos
automáticos (autotrackers) disponibles en los SIS
[34]. Sin embargo, debido al gran número de
imágenes que conforman el cubo sı́smico, los
trazos manuales consumen demasiado tiempo
y los trazos automáticos suelen no satisfacer
las expectativas del experto [4]. En esta etapa
de interpretación, los objetivos primordiales que
busca el especialista son los patrones de
mayor intensidad (amplitudes originales altas),
no obstante, en muchas ocasiones un patrón
de interés se encuentra en regiones con baja
intensidad de color (amplitudes originales bajas)
en donde los trazos manuales son aún más
laboriosos y en donde los procesos automáticos
fallan [7]. En la figura 2 se muestra que
el autotracking (lı́nea amarilla) sobre patrones
complejos es incorrecto. Dado un punto inicial
indicado por el usuario (2a), pueden observarse
brincos (2b) y truncamientos (3c) en el trazo que
requieren de ajustes manuales y laboriosos que
ocasionan que este tipo de zonas sean poco
exploradas.

Fig. 2. Autotracking sobre patrones complejos. La lı́nea
amarilla es el resultado de un proceso automático
incorrecto. a) Punto inicial del mapeo. b) Invasiones o
brincos. c) Mapeo truncado

En este artı́culo se propone un algoritmo
alternativo de procesamiento sobre patrones de
baja intensidad de color mediante técnicas de
procesamiento de imágenes. Se busca que en
su representación digital sea posible mejorar los
trazos que realizan los autotrackers a partir de
la extracción de regiones seleccionadas por un
usuario. Como mapas de bits, las imágenes
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sı́smicas pueden ser analizadas para realizar
una segmentación supervisada de regiones de
mayor complejidad. El algoritmo propuesto es
capaz de procesar zonas de intensidad de
color baja y extraer los elementos necesarios
para construir geocuerpos, los cuales son una
proyección tridimensional de ciertas secciones
de una imagen. Los resultados muestran que
los geocuerpos encontrados son tan relevantes
como aquellos obtenidos a partir de patrones de
intensidad de color alta.

Uno de los objetivos de los algoritmos de
segmentación es el de simplificar imágenes
para obtener información significativa o para la
detección de objetos [27]. Sin embargo, a pesar de
que existen cientos de técnicas de segmentación
en la literatura, no hay un solo método que
funcione para todos los tipos de imágenes [29]. La
segmentación consiste en asociar aquellos pı́xeles
que compartan ciertas caracterı́sticas (como el
color, iluminación o textura) dentro de una imagen
[36]. Dicha asociación va creando regiones que
son un subconjunto de la imagen original, ya sea
objetos, contornos, o incluso la imagen misma.

Dentro del área de procesamiento de patrones,
se identifican cuatro técnicas de segmentación:
las que binarizan la imagen basadas en un
umbral (divide los pı́xeles en dos grupos: blanco
para el fondo y negro como primer plano);
aquellas que detectan lı́mites o bordes (buscan
los cambios drásticos de la intensidad de los
pı́xeles en los bordes u orillas de los objetos);
las que obtienen regiones (encuentra regiones
coherentes formadas por pı́xeles que tienen
caracterı́sticas similares) y las técnicas hı́bridas
(combina crecimiento de región y detección de
bordes) [15].

Por lo general, estos métodos analizan la
imagen completa para llevar a cabo la segmen-
tación de acuerdo con distintos objetivos. Debido
a lo anterior, no tienen un buen desempeño
si se pretende obtener una segmentación más
especı́fica y al aplicarlos en imágenes sı́smicas
se generan demasiados segmentos basura. El
algoritmo propuesto en este artı́culo efectúa un
procesamiento más controlado que reproduce el
trazo manual que realizarı́a un usuario humano
sobre la continuidad de los patrones sı́smicos.

El presente artı́culo está organizado de la
siguiente manera: en la sección 2 se muestran los
trabajos relacionados y la aportación principal de
este trabajo; la sección 3 describe el IMP-2DMA,
se explica en qué consiste la selección de semillas
y guı́as de direccionamiento; los resultados
experimentales se presentan en la sección 4 y
finalmente la sección 5 es de conclusiones y
perspectivas.

2. Trabajos relacionados

La automatización de tareas sobre imágenes
sı́smicas ha tomado gran relevancia en los últimos
años [42]. La simplificación de las imágenes
como esqueletos sı́smicos (lı́neas), tuvo una
aceptación dividida dentro de la industria [22, 23],
sin embargo también ha sido objeto de análisis
en el dominio del procesamiento de imágenes.
La idea principal consiste en aplicar algoritmos
de detección de contornos para simplificar la
imagen pero conservando su estructura original
(figura 3a) [20, 3]. No obstante, los resultados
suelen ser confusos y requieren de edición e
interpretación por parte del experto. A pesar de
eso, la simplificación de las imágenes sı́smicas dio
lugar al planteamiento de nuevos objetivos, como
la identificación de secciones sı́smicas (facies)
[19, 44, 13], el reconocimiento de fracturas [12, 32,
43, 41, 14] y la identificación de curvas asociadas
a cuerpos salinos (3b, lı́nea amarilla) [42, 38, 24, 1]
o cı́rculos pequeños asociados a dolinas kársticas
(3c) [30] entre muchos otros.

La opciones de color que surgieron en los
SIS amplió el panorama de interpretación y
fue posible apreciar más detalles presentes en
los cubos sı́smicos [4]. La visualización de
geocuerpos, que son la conjunción tridimensional
de las imágenes 2D, fue posible al proyectar
automáticamente las capas individuales de ciertos
patrones seleccionados. Sin embargo, como ya
se ha comentado, los patrones mostrados en
las figuras 1(1), 1(2) y figura 2 no pueden ser
procesados de forma trivial ni por los expertos
ni por los autotrackers. Las distintas técnicas
de segmentación basadas en umbrales [40, 39],
detección de contornos [5, 18], crecimiento de
región [35, 17] y las técnicas hı́bridas [11, 21]
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tampoco son una opción viable debido a que
aplicados en este tipo de imágenes generan
demasiados segmentos basura. El algoritmo
propuesto realiza un mejor procesamiento de
los patrones sı́smicos, independientemente de su
forma irregular, elongada y las intensidades de
color de la que estén formados.

Fig. 3. Procesamiento de imágenes sı́smicas. a)
Detección de contornos. b) La detección de curvas
favorece la identificación de cuerpos salinos. c) Los
cı́rculos representan estructuras geológicas

3. El algoritmo desarrollado: el
IMP-2DMA

En este artı́culo se propone un algoritmo de
segmentación llamado IMP-2DMapping Algorithm
o IMP-2DMA que actúa en imágenes sı́smicas a
color dentro del espacio CIELAB. El algoritmo está
divido en tres partes: la primera es la selección
de semillas, rangos y variables. La segunda parte
consiste en la creación de máscaras binarias
que muestran la segmentación realizada. En esta
etapa se muestra el algoritmo principal de todo el
procesamiento. La última parte muestra cómo se
construyen y visualizan los geocuerpos a partir de
las máscaras obtenidas en la etapa anterior.

El IMP-2DMA fue evaluado con imágenes que
corresponden a cubos sı́smicos reales y fueron

obtenidas directamente del sofware Petrel R©[37].
Las imágenes tienen una resolución de 1680x600
bit/pı́xeles. Se seleccionó el espacio de color
CIELAB (creado por la Commission Internationale
de l’Eclairage en 1976 [8]) por ser ampliamente
recomendado para realizar comparaciones entre
colores, porque puede mostrar todos los colores
visibles al ojo humano y además de ser indepen-
diente de dispositivo [9]. La ventaja de CIELAB
sobre el estandar RGB (espacio que define los
colores en términos de los colores primarios
rojo, verde y azul) es que se logran identificar
diferencias muy pequeñas y significativas entre
colores [25].

3.1. Selección de semillas, rangos y variables

Una semilla se define como un punto de
coordenadas (x, y) dentro de una imagen (in-
dicado por el usuario) que se convierte en el
punto inicial del procesamiento, ya que define
el color predominante del patrón seleccionado.
En el espacio CIELAB, todo imagen consta de
tres coordenadas (L, a, b), que corresponden a
la iluminación L y a las coordenadas cromáticas
a (coordenadas rojo/verde) y b (coordenadas
amarillo/azul). El usuario selecciona un patrón
sı́smico y define rangos y variables necesarias
para el funcionamiento del algoritmo.

En la figura 4 se muestran los valores iniciales
que selecciona el usuario. La semilla central s
define la posición y el color predominante del
patrón inicial. Las flechas alrededor indican un
vecindario de 4 u 8 pı́xeles (a elección del usuario)
que se convierten, a su vez, en un conjunto de
semillas base. El usuario determina también el
vecindario V , que sirve de lı́mite al crecimiento
vertical a partir de un punto p. A la diferencia
de color entre dos muestras se le conoce como
4E o error delta y cuando se aplica en valores
CIELAB se escribe 4E∗. Este valor permite
conocer la diferencia entre dos colores e involucra
la iluminación y los valores de croma, definidos
como: 4L∗, 4a∗ y 4b∗.

Para calcular la diferencia entre dos pı́xeles
p(x, y) y q(x, y), se calcula este valor con la
fórmula CIE76 [31]. Sean (L∗1,a∗1,b∗1) y (L∗2,a∗2,b∗2)
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Fig. 4. Rangos y variables iniciales. La semilla central s
define el color predominante en el patrón. Los valores
4E∗, el umbral δ y el vecindario vertical V son definidos
por el usuario de acuerdo a las caracterı́sticas del patrón
seleccionado

dos colores en el espacio CIELAB,4E∗ se calcula
con:

4E∗ =
√
(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2,

(1)
siendo 4E∗≈ 2,3 un valor apropiado para notar
lo que se conoce como una diferencia apenas
notable (Just Noticeable Difference). Si este valor
supera un umbral δ, indica que la diferencia
de los colores es evidente. Dada la distribución
casi horizontal de los patrones sı́smicos, se
propusieron dos guı́as de direccionamiento para
conseguir un mejor control del recorrido a través
de las imágenes sı́smicas. Los puntos de la
guı́a G1 = {p1, p2, . . . , pn} deben de seguir
aproximadamente la trayectoria del patrón que
seleccionó el usuario (figura 5). Dados estos
puntos, se realiza un ajuste de curva de
interpolación para obtener los puntos intermedios.
El objetivo de las guı́as de dirección es el de
resolver las discontinuidades existentes sobre los
patrones sı́smicos seleccionados.

Debido a que los patrones que conforman una
imagen sı́smica van cambiando gradualmente de
forma y posición (desplazamientos verticales),
la guı́a G2 = {p1, p2, . . . , pn} determina los
cambios de altura que tiene un patrón en particular
que haya seleccionado el usuario. A manera
de ejemplo, en el perfil sı́smico de la figura 6
se muestra un patrón de color azul (6a, vista
frontal) que tiene un desplazamiento hacia abajo
hasta llegar a una posición final (6a, vista en

Fig. 5. Guı́as de direccionamiento. El usuario define una
guı́a G1 = {p1, p2, . . . , pn} en donde cada punto de
la guı́a debe seguir de manera aproximada al patrón
sı́smico seleccionado

perspectiva). El usuario marca los puntos de la
guı́a G2 únicamente sobre la vista frontal acorde
al desplazamiento vertical del patrón. Al igual que
con G1, se realiza el cálculo de los valores
intermedios para tener una altura inicial en cada
imagen. Las dos guı́as permiten que este patrón
sea extraı́do en todas las imágenes desde su
posición inicial hasta la final.

Fig. 6. Desplazamiento vertical de un patrón sı́smico
desde una posición inicial (a) a una final. b) Los puntos
de G2 definen la altura del recorrido sobre cada uno de
los puntos de G1

3.2. Creación de máscaras binarias

El IMP-2DMA recibe como entrada un conjunto
de imágenes I y devuelve un conjunto M de
máscaras 2D binarias. Los pasos del algoritmo
IMP-2DMA se muestran en la tabla 1. Todas
las variables son almacenadas en una colección
de objetos Oj . El recorrido de la imagen va de
izquierda a derecha sobre los puntos de G1 y
G2. Se lleva a cabo la conversión de la i-ésima
imagen al formato CIELAB con Ic = C(i) (punto
3). Por cada pı́xel pi se realizan dos validaciones
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verticales (V ,′ ↑′,′ ↓′) de dicho pı́xel mediante la
función α(s,V , Ic, δ), donde sss ← γ(p, g) es un
vector de semillas que incluye a los vecinos
inmediatos, g = 4 o g = 8, de p. Cada nuevo pı́xel
q ∈ V es evaluado contra todos los elementos de
p ∈ sss.

Tabla 1. Algoritmo principal del IMP-2DMA. Cada objeto
recibe un conjunto de imágenes a ser procesadas y sus
respectivas variables. Por cada punto de las guı́as G1 y
G2, se realiza la validación del vecindario V para crear
las máscaras binarias

Algoritmo: IMP-2DMA
Entrada: {s, I,G1,G2,V , δ}
Salida: {M}
1. Oj ← class(|CPU |)
2. parfor i ∈ I, compute
3. Ic ← C(i)
4. Oj ← {s,G1,G2, δ,V , Ic,M}
5. for p ∈ G1, compute
6. sss← γ(p, g)
7. while ¬(V ,′ ↑′,′ ↓′)
8. if α(sss,V , δ)
9. set (M , p(x, y),′ 0′)
10. end
11. end
12. end
13.end

La función α es la que realiza la comparación
entre pı́xeles cuyo algoritmo se muestra en la
tabla 2: recibe el vector de semillas sss,V y δ y
realiza la comparación entre cada pı́xel q ∈ V
contra los elementos de p ∈ sss. Si se cumple
que 2,3 ≤ 4E∗(p, q) ≤ δ, se considera un pı́xel
aceptado y se marca con un valor binario en
M mediante set(M , p(x, y),′ 0′), donde M es la
imagen de salida o máscara binaria.

El algoritmo termina cuando se han evaluado
todos los pı́xeles de G1. En la figura 7 se
muestra un resultado preliminar de la máscara
binaria que se obtuvo de un perfil sı́smico. La
guı́a G1 está distribuida en un patrón de grises
a lo largo de la horizontal de la imagen (7a). La
máscara obtenida (figura 7b) es una extracción
del patrón seleccionado mediante el algoritmo
IMP-2DMA. El proceso se repite en cada una
de las imágenes del cubo sı́smico, obteniendo

Tabla 2. Algoritmo de la función α. Dado un pı́xel q ∈
V , se evalúa contra los pı́xeles p ∈ sss con la ecuación
1. Todo punto que cumpla que 4E∗(p, q) < δ, es un
pı́xel aceptado y será agregado como parte de la misma
región

Funci
Entrada: {s,V , δ}
Salida: [0, 1]
1. for cada q ∈ V , compute
2. for cada p ∈ sss, compute
3. if 4E∗(p, q) < δ
4. return true
5. end
6. end
7. end

un conjunto de máscaras que servirán para la
visualización tridimensional.

3.3. Visualización de geocuerpos

Para visualización de los resultados se necesita
construir una proyección tridimensional de las
máscaras 2D obtenidas. Se utilizaron funciones ya
diseñadas en Matlav v9. Como primer paso, se
construye un espacio (meshgrid) para en donde
se alojarán cada una de las máscaras mi ∈M . Se
procesa cada máscara para obtener su respectivo
contorno (figura 8a), se realiza un enlace punto a
punto con los contornos de la siguiente imagen
(8b) y finalmente, se agregan efectos de luz y
sombras para dar un efecto de volumen. La utilidad
de estos geocuerpos, que aún deben de ser
interpretados, queda fuera del alcance de este
artı́culo, sin embargo, sı́ es posible validar de una
manera cuantitativa las máscaras binarias que se
obtuvieron.

4. Resultados experimentales

Para evaluar el desempeño del algoritmo, se
realizaron diversas pruebas en las imagenes
de un cubo sı́smico real y se analizaron las
máscaras binarias obtenidas. Se seleccionaron
tres patrones distintos y visualmente atractivos
de forma irregular y colores de baja intensidad
(9, columna (a)). Las distintas técnicas de
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Fig. 7. a) Selección de un patrón sı́smico de color grisáceo y de estructura alongada. Se muestra la serie de puntos
de la guı́a G1 que siguen la trayectoria del patrón sı́smico y el alcance del vecindario vertical V . b) Máscara binaria 2D
obtenida

segmentación que existen dividen una imagen
de tal modo que pueden contener demasiadas
(oversegmented) o pocas regiones (underseg-
mented) correspondientes a objetos dentro de la
imagen [28].

Aplicadas en una imagen sı́smica, ocurre
que cualquiera que sea la técnica utilizada,
el resultado es un exceso de regiones que
dificultan la extracción y análisis de una sección
especı́fica. Debido a que la salida a evaluar son
imágenes binarias, se seleccionó un algoritmo de
binarización basado en umbral por ser uno de los
más sencillo de implementar y de ajustar. En este
tipo de pruebas, el trazo realizado manualmente se
toma como el más acertado. En la figura 9 columna
(b) se observa la solución ideal para cada muestra
y en las columnas (c) y (d) los resultados que

devuelven ambos algoritmos. Puede observarse
que los resultados del IMP-2DMA (columna (c))
tienen una mayor precisión y no generan tantos
segmentos ajenos a la solución ideal como los del
algoritmo basado en umbrales (columna (d)).

Para realizar un análisis cuantitativo, se utilizó
la prueba de suma de rangos de Wilcoxon [26]
en lugar de otro análisis como la prueba-t [2]. Lo
anterior es debido a que el tamaño de una de las
muestras puede llegar a ser muy grande respecto
a la otra, lo cual es mejor manejado por la prueba
de Wilcoxon.

Dadas las máscaras obtenidas por los distintos
métodos, MHU (segmentación manual), MTHR

(segmentación por umbral) y MIMP (segmenta-
ción del IMP-2DMA), se plantea la hipótesis nula
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Fig. 8. Creación y visualización de geocuerpos. a) Se crea un espacio tridimensional para alojar cada una de las
máscadas 2D obtenidas. b) y c) El geocuerpo correspondiente se obtiene al entrelazar las máscaras y agregar efectos
de luz y sombra para dar un efecto de volumen

de que las máscaras sean iguales, simbolizada
como:

H0 :M1 =Mi. (2)

Siendo M1 la segmentación manual y Mi, con
i = 1, 2 donde 1 es el MTHR y 2 es el
MIMP (figura 9). Es evidente que el algoritmo
basado en umbral, que actúa sobre toda la
imagen, genera demasiados segmentos basura
que afectan su comparación con los otros dos
métodos (siendo el rectángulo rojo el que acota
el área de evaluación). En la tabla 3 se reportan
los resultados experimentales. Se muestran los
valores de p obtenidos con α = 0,05. Es claro que
los valores por p > 0,05 concluyen que la hipótesis
nula H0 no puede ser rechazada, por lo que el

resultado del MIMP es superior al del algoritmo
basado en umbral.

5. Conclusiones y perspectivas

En este artı́culo se ha propuesto un método de
segmentación de imágenes a color basado en el
espacio CIELAB: el IMP-2DMA. El algoritmo está
enfocado en la extracción de patrones complejos
visibles en las imágenes sı́smicas. La proyección
de las máscaras 2D obtenidas permite visualizar
los geocuerpos que surgen a partir de patrones
de mayor complejidad. El algoritmo fue evaluado
con diversos patrones sı́smicos con información de
cubos sı́smicos reales.
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Fig. 9. Resultados de la segmentación. a) Imagen original. b) Segmentación manual. c) Segmentación obtenida por
el IMP-2DMA. d) Segmentación basada en umbral. El rectángulo rojo acota el área de comparación de este algoritmo
contra la segmentación manual

Tabla 3. Resultados experimentales. Se muestran los
valores de p al comparar los resultados del MTHR y el
MIMP contra la segmentación manual MHU

Datos Máscaras valor-p
MTHR 0.001

(a) 243 imágenes
MIMP 0.458
MTHR 0.031

(a) 219 imágenes
MIMP 0.677
MTHR 0.019

(a) 274 imágenes
MIMP 0.547

Este trabajo es una aportación al área de
la interpretación sı́smica, ya que cumple con
un objetivo más amplio de lo que existe en la
literatura. Dentro del área de reconocimiento de
patrones, se encontró que los esfuerzos actuales
se han enfocado en extraer exclusivamente
cuerpos de sal o domos salinos [24, 1, 13], dejando
relegado el mejoramiento de técnicas para una
mayor y completa exploración de las imágenes
sı́smicas. Desde luego que no se trata de competir

contra lo que hacen los paquetes especializados,
sino de mostrar que es posible realizar procesos
exploratorios más profundos con un mı́nimo de
información disponible.

Una de las ventajas del IMP-2DMA es que es
posible el procesamiento y proyección tridimensio-
nal de cualquier patrón, independiente de su forma
y su intensidad de color, superando algunos de
los resultados que se obtienen con los SIS. Sin
embargo, los geocuerpos extraı́dos aún deben de
ser interpretados por los especialistas para darles
el adecuado contexto geológico. El algoritmo aún
debe de mejorarse para aumentar la velocidad
de procesamiento de las imágenes. Como trabajo
futuro se contempla aplicar el IMP-2DMA a otro
tipo de imágenes para la recuperación de fracturas
en fotografı́as de rocas, ya que se puede extraer
su trayectoria completa, conservando su espesor
mediante las técnicas propuestas en este trabajo.
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