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Abstract. The Artificial Bee Colony (ABC) algorithm
is a popular swarm based algorithm inspired by the
intelligent foraging behavior of honey bees. In the
past, many swarm intelligence based techniques
were introduced and proved their effective
performance in solving various optimization
problems. The exploitation of food sources is
performed by onlooker bees in accordance with a
proportional selection scheme that can be further
modified to avoid such shortcomings as population
diversity and premature convergence. In this paper,
different selection schemes, namely, tournament
selection, truncation selection, disruptive selection,
linear dynamic scaling, linear ranking, sigma
truncation, and exponential ranking have been used
to analyze the performance of the ABC algorithm by
testing on standard benchmark functions. From the
simulation results, the schemes other than the
standard ABC prove their efficient performance.

Keywords. Swarm based algorithm, artificial bee
colony, optimization, selection scheme.

1 Introduction

A number of complex tasks are systematically
performed by honey bees; a good example of such
tasks is collection and processing of nectar [1]. The
effectiveness and simplicity of the whole process is
due to the decentralized decision making approach
of honey bee colonies [2]. Such swarm intelligence
features as autonomy, self-organizing, distributed
functioning employed by a bee swarm provided
inspiration to solve complex traffic, transportation
problems [3, 4] and deterministic combinatorial
problems in dynamic and uncertain environments
[5, 6, 7]. Swarm intelligence algorithms based on

the behavior of bees can be classified into two
categories: the foraging behavior and the marriage
behavior. Algorithms in the first category are
inspired by searching for food sources and nest
sites, while those of the second category are based
on the marriage behavior [8]. One of the most
important algorithms inspired by the foraging
behavior of honey bee swarms is the Artificial Bee
Colony (ABC). It was proposed by Karaboga and
is used for solving various optimization problems
[9, 10].

The remainder of the paper is organized as
follows. Section 2 presents the original ABC
algorithm and its selection scheme. Various
selection schemes applied to the ABC are
described in Section 3. The experimental results
are presented and analyzed in Section 4. The
paper is concluded in Section 5.

2 Artificial Bee Colony Algorithm

The ABC is a population based optimization
algorithm which is iterative in nature. Basically, the
ABC consists of cycles of four phases: the
initialization phase, the employed bees phase, the
onlooker bees phase, and the scout bees phase.
The bees going to a food source already visited by
them are the employed bees, while the bees
looking for a food source are unemployed. The
scout bees carry out search for new food sources,
and the onlooker bees wait for the information from
the employed bees for food sources. The
information exchange among bees takes place
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through the waggle dance. There is one employed
bee for every food source. An employed bee
becomes scout when the position of a food source
does not get improved through the predetermined
number of attempts called “limit”. In this way, the
exploitation process is performed by the employed
and onlooker bees, whereas the scouts perform
exploration of the search space [10].

There are three control parameters used in the
ABC algorithm: the number of employed or
onlooker bees to represent the number of food
sources (N), the value of limit, the maximum cycle
number (MCN). The main steps of the ABC are as
follows.

— Step 1. Generate the initial population of
solutions xi’, i=1...N, j=1...D using (1) and
evaluate the fitness using (2).

— Step 2. Generate new solutions for the
employed bees using (3) and evaluate the
fitness.

— Step 3. Apply the greedy selection process for
the employed bees.

— Step 4. Calculate the probability values for the
current solution using (4) so that the onlooker
bee can choose one according to its value.

— Step 5. Assign the onlooker bees to the
solutions according to the probability, generate
new solutions using (3) and evaluate the fitness.

— Step 6. Apply the greedy selection process for
the onlooker bees.

— Step 7. If there is a solution abandoned by the
bees, stop its exploitation and replace it with a
new solution produced by (1).

— Step 8. Memorize the best solution found so far.

— Step 9. Check the termination criteria. If not
satisfied, go to Step 2, otherwise end.

xlj = xrj;u.n +rand(0,1) (x . — X)), (1
where xij is a parameter for the i" employed bee
on the j" dimension, x},.. and x. . are the upper
and lower bounds for x; .

1
fiti={ Tvy 20 )
1+abs(fi) f; <0
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where f; is a specific objection function and fit; is
a fitness value.

vy = Xy + ¢ (% — x), (3)

where i, ke{1...N}, i # k and je{1...D}, x;; is the i"
employed bee in the j" dimension, v;; is a new
solution for x;;, xi; is the neighbor of x;;, ¢ is a
random number in the range [-1,1] to control the
production cf neighbor solutions around x;;.

iy
PN fity @

where fit; is the fitness value of the it" solution and
p; is the selection probability of the it" solution.

2.1 Selection Scheme in the Basic ABC

As explained above, food sources are chosen by
the onlooker bees using a stochastic selection
scheme in accordance with the probability value p;.
The process employs three stages [11]:

(i) Calculate the fitness value using (2).

(ii) Calculate the probability value using (4).

(i) Choose a food source according to the
probability value based on the roulette wheel
method.

However, the proportional selection scheme
employed in the ABC has two shortcomings viz.
reduction in population diversity and premature
convergence. Thus, the ABC is not able to maintain
the balance between exploration (diversification)
and exploitation (intensification) of the search
space and is considered as an inefficient algorithm.

3 Description of Selection Schemes

The selection scheme plays an important role in
the ABC algorithm as it drives the search space in
a proper direction. These schemes may be
classified in two categories: proportionate selection
and ordinal based selection. In the proportionate
selection scheme, individuals are selected on the
basis of their fithess values relative to the fitness of
others, whereas in the ordinal based scheme,
individuals are selected based on their rank in the
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population. The rank is determined in accordance
with their fithess values. The schemes presented
in this paper except the proportional selection in
the basic ABC are covered in the ordinal based
selection category. In this work, we performed
experiments on the ABC using different selection
schemes. The details of the schemes are given in
what follows.

3.1 Tournament Selection

This selection scheme works by holding a
tournament of N individuals chosen from the
population, where N is taken as the tournament
size [11, 12, 13, 14]. The fithess values of
individuals are compared and some score (say, S)
is assigned to the best one. The process is
repeated till the best in the population achieves the
highest score. The individuals are then selected
according to the probability using the following
equation:

Si

iy ®

3.2 Truncation Selection

This selection scheme assigns equal selection
probabilities to the y best individuals selected in a
population of size A and is equivalent to (u,A)-
selection used in evolution strategies [12, 15, 16].
The selection probabilities are given as

_(/ul<i<p
P={otcicr ®

3.3 Disruptive Selection

This scheme introduces the concept of normalized-
by-mean fitness function. The idea is to give more
chances to better and worse solutions in
comparison to moderate solutions so that the
population diversity can be improved [11, 17, 18].
The selection probability is calculated as follows:

P =T i (7)

where fit; is the fitness value of the it solution and
P; is the selection probability of the it" solution. The
fitness function is given by

fit:=fi- |, (8)

where f; is a specific objective function, f is the
average of the objective values for the individuals
in the population.

3.4 Linear Dynamic Scaling

In order to improve the performance of the
proportional selection, it is combined with a scaling
technique called linear dynamic scaling [12]. The
dynamic scaling is introduced to favor better
individuals resulting in improved population fitness
over generations. The selection probability is
given by

fi —¢

where Sy = Z}zlfj , ¢ >0, and A is the number of
solutions in the population.

3.5 Linear Ranking

In this scheme, the ranks are assigned to the
individuals based on their fitness values. The
individual having the worst fitness is assigned rank
1 and the best fitness is assigned rank N. The
method uses a linear function to calculate selection
probabilities according to the rank of individuals
[12, 186]:

1 i~ 1
po=g (1 + @ =) ) el N (10)

To satisfy the constraints, two conditions must
be fulfilled:

n"=2-n"andn™ =0.
3.6 Sigma Truncation

In order to improve the fitness of a population, low
fitness individuals are discarded using the
standard deviation of fitness values before scaling
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Table 1. Results of algorithms (varying parameters)
[Colony size=100, Limit=100, Max Cycles=100, Runs=10]
ABC TABC TRABC DABC
D 10 50 100 10 50 100 10 50 100 10 50 100
Mean 7.86E-04 18197.9 119349 1.26E-02  15293.3 101725 3.23E-04 11503.3 101015 0.0390 6139.17 494258
K SD 4.79E-04 5773.81 113401 1.13E-02  3129.45 11241.6 2.14E-04 2799 5199.34 0.0184 2877.18 14375.5
Mean 77.67 2.37E+09  4.83E+10  308.28 2.41E+09 397E+10 61.64 1.09E+09  3.44E+10 72216 1.14E+09  1.98E+10
" SD 41.85 1.62E+09  7.54E+09  278.05 8.10E+08 6.79E+09  50.20 7.45E+08 597E+09  381.39 9.01E+08  5.07E+09
Mean 1.89 257.31 943.99 2.057 228.82 864.08 1.598 214.035 801.84 2.329 146.91 596.78
© SD 0.94 26.58 42.13 0.831 24.41 26.08 0.907 23.45 46.22 1.149 35.60 90.38
Mean 0.1446 177.71 1068.53 0.1715 153.75 901.85 0.139 98.75 936.073 0.2242 65.108 575.22
" SD 0.0640 41.95 101.08 0.0605 41.73 125.67 0.070 32.8 101.12 0.0773 15.979 141.43
Mean 0.7058 17.05 19.71 0.7835 15.60 19.185 0.229 15.7 19.14 0.2550 6.753 16.243
© SD 0.4060 1.00 0.121 0.5037 0.644 0.231 0.072 0.818 0.095 0.374 2.325 2.195
Mean -3881.45 -12678.8 -18256.9 -3948.01 -12809.1 -18606.5 -3892.84 126321 -18548.1 -3988.83  -14476.8 -232113
© SD 93.39 341.11 779.43 84.84 462.49 897.98 147.18 436.095 635.19 72.67 767.98 1393.06
LDABC LRABC STABC ERABC
D 10 50 100 10 50 100 10 50 100 10 50 100
f1 Mean 1.08E-04 291359 146802 7.91E-02 274709 139846 7.55E-04 4907.19 51886.7 5.57E-03 11149 89782.1
SD 1.07E-04 428013 7117.67 4.61E-02 5451.15 7891.2 3.32E-04 304.61 16109.3 3.79E-03  4065.45 7305.54
f2 Mean 689.50 6.06E+09  546E+10 779.85 6.11E+09  5.77E+10 108.27 2.68E+08  1.64E+10 174.54 1.53E+09  3.298E+10
SD 285.78 2.27E+09  8.34E+09  660.82 1.68E+09  7.75E+09  71.12 1.3E+08 3.11E+09  77.083 9.34E+08  6.069E+09
f3 Mean 1.477 308.83 1014.3 3.85 302.34 1007.81 0.945 142.656 693.134 2.232 203.157 772.51
SD 1.142 20.001 60.858 1.19 19.09 37.66 0.735 29.66 61.55 0.848 22.893 35.863
f4  Mean 0.0977 273.024 1255.24 0.238 2562.194 1217.57 0.101 28.204 551.79 0.125 110.507 818.615
SD 0.0378 30.143 119.355 0.087 45.30 92.28 0.046 13.77 134.22 0.058 20.925 111.986
f5 Mean 0.462 17.521 19.670 1.536 17.537 19.693 0.107 11.614 17.83 0.505 14.684 18.705
SD 0.342 0.728 0.1256 0.436 0.439 0.146 0.070 2.258 0.686 0.399 0.837 0.461
f6 Mean -3832.67 -12651.7 -19983.4 -3839.7 -11398.6 -16375.4 -3970.52 134031 -20470.4 -3929.34  -13026.4 -20521.8
SD 104.237 591.847 1193.19 91.427 568.706 1020.43 132.09 435.806 1356.8 41.297 533.769 1102.73

them. This scheme ensures the selection of good
fitness individuals [19, 20]. The fitness values of
individuals are calculated as
fit' = fit — (Fit — co), (11)
where fit is the average fitness value of the
population, ¢ is the standard deviation of the

fitness values, c is a small constant having values
from 1 to 3.

3.7 Exponential Ranking

In this scheme, ranks are assigned to the
individuals similar to linear ranking. The difference
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lies in exponential weighing of ranked individuals
to compute probabilities as follows [12, 16]:

c—

P = (12)

1 .
= oM € {1, N,

where c<1, an indicative of the selection probability
of the best individual.

4 Experimental Results and
Discussions

4.1 Test Problems

Six benchmark functions were used for simulation
to evaluate the performance of various selection
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Table 2. Results of algorithms (varying maximum cycles)
[Colony Size=100, Limit=100, Parameters=100, Runs=10]

ABC TABC TRABC DABC

MCN 10 50 100 10 50 100 10 50 100 10 50 100

Mean 250930 185124 126051 246890 172770 102611 247661 168817 104904 242465 128258 55980.9

SD 12205.3 104712 113033 12918.1 11439.3 13032.3 11757.9 12539 10243.5 15606.1 13879.3 16367.7
Mean 1.326E+11 8.38E+10 5.048E+10 1.267E+11 7.55E+10 4.098E+10 1.299E+11 7.54E+10 4.136E+10 1.169E+11 5.554E+10 2.509E+10

* SD 810E+09 1.21E+10 5.83E+09 1.66E+10 9.46E+09 4.86E+09 9.94E+09 5.687E+09 5.282E+09 1.426E+10 9.23E+09 8.797E+09
Mean 1548.44 1216.53  913.72 1488.28 1163.74 859.263 1521.33 1112.25 840.877 1482.5 989.64 652.166

© SD 42.45 50.53 56.87 47.078 42.094 33.698 48.496 48.559 33.003 85.277 91.003 72199
Mean 2283.56 1575.77  1098.64 2200.89 1507.49 989.412 2211.95 1518.74 912.409 2159.39 1225.44 529.602

“ SD 98.56 93.51 139.31 78.463 98.668 105.66 154.68 130.747 115.838 106.184 238.072 147.206
Mean 20.823 20.341 19.766 20.773 20.077 19.249 20.819 20.079 19.256 20.609 19.444 14.618

© SD 0.0619 0.123 0.132 0.0654 0.123 0.182 0.064 0.162 0.167 0.198 0.321 1.694
Mean -7653.57 -14867.4 -18138.6 -6461.31 -13550.5 -18258.9 -6617.82 -14444.5 -18974.3 -7255.93 -17191 -23046.7

° SD 615.089 1269.98  501.176 671.23 676.86 709.486 762.275 727.245 730.611 621.579 1025.85 1469.03

LDABC LRABC STABC ERABC

MCN 10 50 100 10 50 100 10 50 100 10 50 100
Mean 249375 197323 141879 249782 188344 132937 227712 120885 52807 240551 156249 89304.2

" SD 13949.8 112421 10079 11540.8 11004.1 10138.4 20660.9 23585.2 17806.5 10449.7 12120.8 8856.27
Mean 1.28E+11 9.54E+10 6.22E+10 1.298E+11 9.042E+10 5.509E+10 1.206E+11 5.37E+10 1.789E+10 1.248E+11 6.903E+10 3.070E+10

* SD 7.52E+09 8.32E+09 4.21E+09 1.003E+10 8.421E+09 3.828E+09 9.359E+09 1.40E+10 7.726E+09 9.910E+09 8229E+09 7.233E+09

o Mean 1530.99 1286.12  1007.75 1540.29 1265 972.159 1429.55 1011.67 637.973 1462.19 1051.77 768.871

© SD 36.66 33.04 49.335 40.013 31.583 40.345 55.543 91.026 67.286 42.485 62.256 46.358
Mean 2273.92 1739.34  1280.77 2285.28 1711.15 1226.76 1993.09 1134.25 455.893 2184.82 1335.31 846.794

“ SD 103.46 103.40 49.93 147.962 106.724 78.204 233.127 221.491 191.044 142.632 104.762 66.028
Mean 20.525 20.347 19.682 20.799 20.299 19.694 20.699 19.659 17.892 20.712 19.93 18.717

© SD 0.049 0.078 0.130 0.097 0.111 0.108 0.088 0.361 0.564 0.057 0.145 0.273
Mean -8787.72 -15683.6  -20328.1 -6482.74 -11687.1 -16510.4 -8690.88 -15543.2 -20975.7 -7339.52 -15108.5 -20400.8

f6

SD 1043.64 1894.68  1685.1 953.017 579.232 394.528 1051.32 967.116 1121.47 708.848 679.761 1198.11

schemes in the ABC. These functions are the " )
iy Sphere function: —5.12 < x; < 5.12.
fi(x) =Y, x?, —100 < x; < 100. (13) iv) Griewank function:
iy Rosenbrock function: ful) = o= (T, x7) —
(0 = £ 100(,—x2)? + (2 — 1, (M cosGh)) + 1, (16)
—100 < x; <100. (14)
<x < —600 < x; < 600.
iii)  Rastrigin function: v) Ackley function:
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Table 3. Results of algorithms (varying colony size)
[Limit=100, Parameters=100, Max Cycles=100, Runs=10]

ABC TABC TRABC DABC
colony 10 50 100 10 50 100 10 50 100 10 50 100
Mean 155803 120075 121949 153139 114532 104069 111492 111246 98360.8 128334 64734 61148
" SD 12251.9 16413.2 862249 15228 15009.8 9983.29 40111.8 11485.9 9452.93 18080.1 211113 184421
Mean  7.396E+10 561E+10 4.611E+10 6.305E+10 4.362E+10 4.281E+10 5.765E+10 3.778E+10 3.501E+10 6.086E+10 2.674E+10 2.423E+10
* SD 1.695E+10 7.42E+09 1.220E+10 1.575E+10 1.107E+10 6.642E+09 2378E+10 6.267E+09 7.195E+09 1.294E+10 8.313E+09 7.376E+09
Mean  1096.59 977255  932.744 984.253 887.64 847.167 967.669 846.695 821.185 905.62 636.894 595.537
© SD 45.81 62.85 47.755 46.754 53.319 52.681 775 47.25 58.120 73.099 87.505 86.610
Mean  1408.62 1137.28  969.686 1318.7 1066.59 939.254 1132.43 925.896 892.631 1169.85 616.013 481.919
“ SD 142.166 104152 120.243 134.866 128.681 102.622 235.766 108.521 140.515 153.54 178.318 172.974
Mean  20.029 19.783 19.622 19.721 19.269 19.160 19.688 19.325 19.229 19.604 17.439 14.885
® SD 0.119 0.207 0.152 0.218 0.294 0.215 0.615 0.250 0.223 0.348 1.018 2.381
Mean  -15851.9 -187771  -18969 -15924.3 -17914.9 -18322 -16751.9 -18753.7 -19305.4 -17554.3 -20919.8 -22832.8
° SD 1732.79 1105.3 933.175 666.684 811.496 637.356 1872.09 568.458 955.061 1810.79 1160.48 1101.72
LDABC LRABC STABC ERABC
colony 10 50 100 10 50 100 10 50 100 10 50 100
Mean 163777 148261 139431 163620 145658 140055 122765 77051.8 47392.9 159043 124064 87743.4
" SD 14833.9 12756.4 152479 122742 11780.2 11438 18427.8 14461.4 18164 112451 10493.2 8257.7
Mean 8.805E+10 6.68E+10 6.065E+10 7.084E+10 5.91E+10 6.007E+10 S5.26E+10 2.268E+10 1.234E+10 8.021E+10 4.966E+10 3.311E+10
* SD 1.165E+10 5.34E+09 9.48E+09 1.678e+10 6.547E+09 7.358E+09 1.39E+10 8.829E+09 8.756E+09 9.124E+09 8241E+09 3.718E+09
Mean  1117.99 106595  1026.66 1091.21 1024.36 986.227 865.64 667.954 600.535 1071.2 914.14 766.214
© SD 50.79 32505 35.87 84.147 33.897 45.925 92.444 72.493 116.839 86.789 66.309 47.801
Mean  1515.63 1382.41 1306.19 1575 1284.57 1221.79 1011.66 581.717 545.466 1491.3 1134.4 795.049
“ SD 111.498 103275 92921 101.208 85.695 110.568 142.21 181.086 163.445 178.409 100.799 110.972
Mean  20.088 19.751 19.77 20.021 19.780 19.812 19.47 18.684 17.72 20.117 19.425 18.75
© SD 0.102 0.216 0.114 0.154 0.138 0.078 0.343 0.440 1.034 0.129 0.203 0.285
Mean  -16861.1 -19109.2  -19325.2 -15016.1 -16195.2 -16759 -17222.7 -19346.7 -20759 -14485 -17676.1 -20221
° SD 2151.08 959.05 836.13 1088.17 863.413 635.595 622.396 1316.32 1132.32 892.029 754.008 485.715

fi(x)=20+e— 203<_0.2ﬁ2?=1x?> -

e (32 cos(amx)

—32<x; <32.

vi) Schwefel function:

n

fe(x) = Z_xi Sin( |xi|).

i=1

—500 < x; < 500.

(17)

(18)
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4.2 Experimental Settings

The algorithms for various selection schemes are
implemented using MATLAB R2012a on an Intel
(R) Core (TM) i3 CPU 3.06 GHZ with 4 GB RAM.
In the following tables, ABC represents the original
proportional scheme. TABC means the tournament
selection, TRABC represents the truncation
selection, DABC is the disruptive selection, LDABC
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Table 4. Results of algorithms (varying initialization range)
(FR: Full Range, LHR: Left Half Range, RHR: Right Half Range)
[Colony size=100, Limit=100, Parameters=100, Max Cycles=100, Runs=10]

ABC TABC TRABC DABC

Range FR LHR RHR FR LHR RHR FR LHR RHR FR LHR RHR
Mean 121689 153620 150495 107252 142749 140865 103796 139065 135255 61719.5 84576.3 89298.2

" SD 10883.5 14247.6 12512.8 15826.4 9520.49 6115.17 122142 19030.2 8912.89 147147 13296.3 24164.7
Mean 475E+10 5.79E+10 5.83E+10 3.81E+10 5.47E+10 579E+10 381E+10 5.39E+10 500E+10 2.39E+10 3.86E+10 3.12E+10

* SD 8.18E+09 1.02E+10 7.68E+09 4.587E+09 6.532E+09 5.079E+09 4.662E+09 9.373E+09 8.797E+09 1.001E+10 1.223E+10 9.103E+09
Mean 909.938 1002.02 963.617 847.579 912.07 934.039 842.424 909.494 913.36 607.236 647.623 743.819

© SD 52.910 27.789 61.354 39.451 37.340 56.306 24.046 47.093 39.436 54.797 87.810 63.378
Mean 1080.47 1399.01 1393.61 964.143 1217.68 1257.09 922.779 1171.9 1236.74 533.073 836.681 857.867

“ SD 101.607 88.326 115.701 76.564 83.187 107.068 70.082 67.728 135.894 194.406 140.974 196.065
Mean 19.692 20.022 20.028 19.076 19.626 19.645 19.090 19.686 19.646 14.543 17.628 18.204

© SD 0.122 0.0959 0.0952 0.242 0.154 0.164 0.233 0.214 0.146 2.885 1.326 0.537
Mean -18449.8 -18813.3 -203286  -18857.7 -157021 -212481 -18586.6 -20587.6 -20976.1 -24007.4 -20263.3 -24533.9

° SD 946.304 1376.26 1042.54 608.96 590.622 909.506 658.871 1208.27 846.723 1286.78 1160.12 945.887

LDABC LRABC STABC ERABC

Range FR LHR RHR FR LHR RHR FR LHR RHR FR LHR RHR

1 Mean 146802 171035 173591 134539 166072 164595 56154.3 92882.7 85664 87489.8 120376 119350
SD 7117.67 7075.02 11976.6 8120.69 13929.8 14076.1 125251 13795 17405.2 10384.3 16138.6 6182.65

f2  Mean 5.46E+10 7.67E+10 7.37E+10 5680E+10 6.855E+10 7.297E+10 1.920E+10 2.137E+10 2482E+10 3.271E+10 4.46E+10 4.241E+10
SD 8.34E+09 4.93E+09 8.28E+09 6.75E+09 9.118E+09 6.504E+09 6.733E+09 9.248E+09 9.829E+09 4.734E+09 7.743E+09 4.052E+09

f3  Mean 1014.3 1088.44 1071.89 987.873 1061.34 1052.4 656.849 745.054 737.336 783.299 855.078 805.276
SD 60.858 31.30 36.65 40.923 48.759 58.716 68.01 72.310 48.533 33.132 52.021 47.068

f4  Mean 1255.24 1552.89 1527.36 1179.54 1518.76 1543.07 480.133 863.346 883.199 785.88 1073.36 1043.12
SD 119.355 60.67 68.09 93.621 91.467 113.547 175.216 118.049 147.164 67.001 74112 127.377

f5 Mean 19.670 20.05 20.052 19.681 19.982 19.894 17.765 19.232 19.123 18.873 19.460 19.482
SD 0.1256 0.077 0.108 0.120 0.069 0.16 0.725 0.185 0.428 0.280 0.149 0.119

f6  Mean -19187.6  -26122.8 -199333 -15948.8 -13200.3 -19031.3 -20469.4 -19687 .1 -23429.8 -20405.7 -17743.7 -22227.7
SD 117477 1123.43 1162.49 655.972 708.532 887.43 958.378 1190.62 1566.3 723.357 761.21 847.707

is the linear dynamic scaling, LRABC means the
linear ranking, STABC represents the sigma
truncation, and ERABC is the exponential ranking
scheme.

The experiments were performed on the six
benchmark functions given above. In all the
experiments, the limit was put to 100, and the
values present the results of 10 runs (except Table
5 where runs=100). Alongside with comparing the
mean values and standard deviations of the

function values, the values of selection intensity,
success rate, reproduction rate, and loss of
diversity were also calculated.

4.3 Effect of Dimensions

We performed simulations on modified ABC
algorithms to analyze the effect of varying
dimensions of the problem. The colony size,
maximum cycles, and limit were fixed as 100. The
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Table 5. Results of algorithms
(SI: Selection Intensity, SR: Success Rate, RR: Reproduction Rate, Pd: Loss of Diversity)
[Colony size=100, Limit=100, Parameters=10, Max Cycles=100, Runs=100].

ABC TABC TRABC DABC
Sl SR RR Pd Sl SR RR Pd Si SR RR Pd Si SR RR Pd
f1 0058 100 1.062 0.989 0.005 100 1.062 0989 0.029 100 1.142 0.988 0.018 100 1.066 0.989
f2 0.012 0 1166 0988 0.010 0 1.090 0.989 0.022 0 1.0 0.99 0.004 0 1.090 0.989
f3 0009 81 1052 00989 0.008 38 1066 0989 0008 92 1.0 0.99 0.014 27 1.0 0.99
f4 0006 100 1.045 00989 0005 100 1.034 0989 0.002 100 1.0 0.99 0.057 100 1.052 0.989
f5 0015 100 1.041 0989 0005 100 1.052 0989 0.005 100 1.052 0.989 0.011 100 1.0 0.99
f6 0.008 0 1.0 0.99 0.009 0 1.0 099 0.015 0 1.032 0.989 0.014 0 1.0 0.99
LDABC LRABC STABC ERABC
Sl SR RR Pd Sl SR RR Pd Sl SR RR Pd Si SR RR Pd
f1 0012 100 1.166 0.988 0.014 100 1.0 099 0.002 100 1.0 0.99 0.013 100 1.0 0.99
f2 0.023 0 1.090 0.989 0.053 0 1.077 0989 0.023 0 15 0.985 0019 0 1.0 0.99
f3 0029 74 1.043 0.989 0.018 11 1.045 0989 0.001 100 1.0 0.99 0.007 19 1.066 0.989
f4 0.028 100 1.0 0.99 0.073 100 1.031 0989 0.016 100 1.042 0.989 0.006 100 1.0 0.99
f5 0.024 100 1.0 0.99 0.032 100 1.052 0989 0.004 100 1.0 0.99 0.018 100 1.0 0.99
f6  0.006 0 1.0 0.99 0.008 0 1.0 099 0.001 0 1.0 0.99 0007 0 1.077 0.989

performance of all ABC algorithms deteriorated as
the dimension of the problem was increased (10,
50, 100).

The results in Table 1 show that STABC
generated better results for Rastrigin and Ackley
functions followed by LDABC for Sphere and
Griewank functions in less dimensions, i.e., 10.
Again, STABC produced excellent results with an
increase in dimensions up to 50. However, DABC
had superior performance for 100 dimensions.
From Fig. 1(a), we can see that the increase in
dimensions makes the convergence of DABC
method better for Sphere function and also for
Rastrigin function as given in Fig. 1(b).

4.4 Effect of Cycles

We analyzed the performance of the ABC
algorithms by varying the maximum number of
cycles. The experiment was repeated for the six
benchmark functions as given in Table 2.

The obtained values prove better results for the
sigma truncation scheme on Sphere, Rosenbrock,
Rastrigin, and Griewank functions. Figs. 2(a) and
2(b) prove better results of STABC on Rosenbrock
function and of DABC on Ackley function. For a
less number of cycles, i.e. 10, LDABC shows the
best performance.
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4.5 Effect of Colony Size

In the next experiment, we determined what size of
population is suitable to generate better results.
The experiment was conducted for all six test
problems. Table 3 presents better results in case
of STABC on Rosenbrock, Griewank functions,
and in case of DABC on Rastrigin, Ackley,
Schwefel functions for varying colony sizes.

For a small colony size of 10, the results of
TRABC are good on Sphere function. The
performance of DABC got improved with an
increase in the colony size as given in Figs. 3(a)
and 3(b).

4.6 Effect of Region Scaling

We also investigated the effect of initializing the
solutions in various sub-regions of the search
space. There was a possibility of variation in the
performance of the algorithms during initialization
in the left half and the right half of the search space.
The results of the experiments using different
selection schemes are reported in Table 4. The aim
is to determine the sensitivity of the algorithms in
finding global optima under varying initialization
ranges. All the ABC algorithms were found to be
less sensitive to initial solutions in finding global
optima as shown in Figs. 4(a) and 4(b).
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4.7 Statistical Analysis

The propo”ional selection scheme used in the
basic ABC lacks the driving force to attract better
individuals which may result in premature
convergence and a lack of population diversity.
The tournament selection scheme randomly
selects a number of N individuals and comparison
is made based on their fithess values. The
truncation selection scheme assigns equal
selection probabilities to some selected best
individuals in the population. The linear dynamic
scaling scheme works by promoting better than
average individuals at the cost of worse than
average individuals. The linear ranking scheme is
biased to favor the good fitness individuals in the
population as the rank is assigned based on the
fitness value. The exponential ranking scheme
works in a similar manner to the linear ranking
scheme except the use of the exponential function
in computing selection probabilities.

From Figs. 1, 2, and 3, we can state that the
DABC and STABC algorithms prove their effective
performance in comparison to other algorithms.
The disruptive selection scheme favors both high
fitness and low fitness solutions and tends to
maintain population diversity. Hence, this scheme
improves the worse fithess solutions in
concurrence with the high fitness solutions. In the
case of STABC, the individuals having the fitness
value less than c¢ standard deviations of the
average value are discarded, while a large portion
of the population having the fitness values within ¢
standard deviations of the average value are
favored for selection.

Table 5 presents the analysis of the numerical
results obtained with a slight change (i.e. 100 runs)
in the experimental setting of subsection 4.2 using
various selection schemes. Selection Intensity (SI)
also called Selection Pressure measures the
degree that drives the algorithm to improve the
population fitness. It computes the difference
between the population average fitness after and
before selection. A high value of Sl indicates high
convergence rate, i.e. the algorithm is able to find
optimal solutions early. Positive values of S| in
Table 5 prove improvement in average fitness of
the original ABC and the modified ABC algorithms
due to selection for all test functions.
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Success Rate (SR) shows that algorithm is
able to obtain a desired function value (i.e. <2)
using the given experimental settings. From the
table, we can see that the success rate of the
TRABC and STABC algorithms gets improved for
Rastrigin function, whereas it is comparable to the
original ABC for the remaining test functions.

Reproduction Rate (RR) is calculated to
represent the ratio of the number of individuals with
a certain fitness value af er and before selection. A
value of RR > 1 means better individuals are
favored and bad individuals are discarded by a
suitable selection scheme. Table 5 clearly shows
that all selection schemes are able to replace bad
individuals by better individuals.

Loss of Diversity (Pd) presents the ratio of the
individuals of a population that are not selected
during the selection stage. It means that
Reproduction Rate and Loss of Diversity are



related to each other. The value of Pd should be as
low as possible, as a high value of Pd may increase
the risk of premature convergence. The values in
the table clearly conf rm the results.

5 Conclusions and Future Work

In this paper, we compared the performance of the
Anificial Bee Colony algorithm combined with
different selection schemes on six numerical
optimization functions. The simulations were
performed by varying the values of different control
parameters used in the ABC algorithm in addition
to initialization ranges. On the basis of the results
obtained, an analysis is made in terms of selection
intensity, success rate, reproduction rate, and loss
of diversity.

With an increase in the nhumber of dimensions,
it becomes difficult to find optimal solutions in all
selection schemes. As the number of cycles
increases, the algorithms explore and exploit
efficiently the search space to provide proper
convergence and population diversity. An increase
in the colony size also provides an opportunity to
find global optima values. The algorithms are also
less sensitive to initialization ranges in obtaining
optimal solutions.

Positive values of Selection Intensity in all
schemes represent an increase in the population
average fitness after selection. Success Rate is an
indicative of obtaining a desired function value. All
selection schemes favored good individuals by
assigning the reproduction rate > 1. Similarly low
values of loss of diversity suppo” the avoidance of
premature convergence. In general, the ABC
algorithms combined with different selection
schemes perform better on various parameters. In
future work, the performance of the ABC can be
improved by hybridizing it with a suitable selection
scheme and an effective neighbor search
technique.
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