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Resumen. En este articulo se presenta el filtrado por
deconvolucion a través de la inversa para conocer la
dinamica interna del modelo tipo caja negra con
respuesta acotada y con evolucion invariante en el
tiempo. En vez de utilizar la pseudoinversa en la
deconvolucién al observar problemas de inversion y de
singularidad, se propone la separacion por bloques de
matrices y usando la inversa para lograr una menor
complejidad algoritmica y un error de estimacion
directo, sin perder de vista la estabilidad del sistema.
Es asi que se presenta la descripcion del filtro
aplicando su transformacion a una forma diagonal,
considerando: a) la diagonalizacion de matrices, b) el
desarrollo del filtro diagonalizado, c) el funcional del
error, d) el analisis de la complejidad algoritmica, d) la
simulacion del filtro de deconvolucion de manera
diagonal, y e) se dan las conclusiones
correspondientes.

Palabras clave. Filtrado digital, deconvolucion;
diagonalizacién, inversa, pseudoinversa, funcional del
error.

Inverse Deconvolution Estimation
Filter

Abstract. This paper presents a deconvolution filter
technique using a diagonal block inverse in order to
learn the internal dynamics of a black-box model with
bounded response and time-invariant evolution. Instead
of using a pseudoinverse in deconvolution on problems
of inversion and singularity, we propose a separation by
matrix blocks and application of an inverse to achieve a
lower algorithmic complexity and less error of direct
estimation without losing the stability properties. With
this in mind, we present a deconvolution filter applying
its transformation into a diagonal form considering
matrix diagonalization, diagonal filter description,

functional error, algorithm complexity analysis, and
diagonal deconvolution applied to filter simulation.

Keywords. Deconvolution, diagonalization, inverse,
pseudoinverse, functional error.

1. Introduccion

En el area de control, hay un grupo de
sistemas que solo pueden ser modelados como
cajas negras, solo teniendo acceso a las senales
de excitacion (entradas) y a las respuestas
generadas por estas en un sistema especifico
(salidas). En este modelo se conocen las
entradas o estimulos que afectan al sistema (caja
negra) y la respuesta del sistema; pero se
desconoce la dinamica interna o funcién de
transicion que hace que el sistema tenga
determinada respuesta al estimulo. Por ejemplo:
a) Se conoce la cantidad de nucleos que recibe y
emite un interior nuclear; pero se desconoce su
funcion de transferencia isotrdpica (es aquella
funciéon que relaciona la salida con la entrada y
en la cual sus propiedades basicas no cambian
independientemente de excitacion que reciba,
siempre y cuando ésta no haga que pierda su
estabilidad) [1], b) Se conoce la cantidad de
voltaje que recibe un motor de Corriente Directa
(CD) y la cantidad de revoluciones por minuto
(rom) que realiza; pero se desconoce su dinamica
interna de operacion [2], ¢) Se conocen los
factores que han provocado que algunas
especies estan en peligro de extincion, como el
0so polar; pero se desconoce la medida exacta
en que estos factores han propiciado esta
situacion.
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Cualquiera de estos sistemas puede ser
descrito con la relacion estimulo-respuesta como
en la figura 1 donde F representa los estimulos
que afectan al sistema G,y C es la respuesta del
sistema.

La convolucién C, es el resultado de la
interacciéon entre los estimulos F y el sistema G,
por medio de la operacion F o G. Para conocer la
dinamica interna o funcién de transicion del
sistema G , requiriendo de la operacién inversa, la
deconvolucién (F o G)™L.

La deconvolucion ha sido utilizada en la
solucién de diversos problemas tales como: a) la
reconstrucciéon de imagenes en microscopia [3],
b) el analisis de medidas sismicas [4], ¢) la
identificacion de la concentracion de ARN-
m(acido ribonucleico) en los genes de diferentes
tipos de células [5], d) en la identificacion de
biomarcadores candidatos en tejidos
heterogéneos [6], e) en la dinamica de poblacion
de células[7], f) en la deteccion de alimentos
irradiados [8], g) en la estimacion de energias jet
y el espectro de reacciones de alto fondo como
las colisiones nucleares de iones pesados y el
gran colisionador de hadrones [9], h) la
estimacion de parametros cosmolégicos de datos
proporcionados en tres anos por el explorador
Wilkinson Microwave Anisotropy Probe (WMAP)
[10] y, i) todos los mencionados en [11, 12], entre
otros.

Existen varios métodos para llevar a cabo la
deconvolucion como: en linea, homomorfica,
iterativo y, estimacion de sistemas, entre otros [3,
4,13, 14, 15, 16, 17, 18, 19, 20]. Estos métodos
buscan minimizar el error generado respecto a la
funcion de transicion original y su estimada.

Sin embargo hay una pérdida de informacién
durante la transformacién directa entre
convolucién y deconvolucion. Que sumada a las
pérdidas ya existentes en la propia informacion al
viajar de un dispositivo a otro, o al cambiar de
medio, hace que se pierda gran parte de la
informacioén buscada [21].

En este trabajo se propone la trasformacion
del sistema descrito en la figura 1, en un sistema
de diagonales, lo cual permite estimar la matriz
G a través de su sistema equivalente de
diagonales de F vy C evitando usar asi la
pseudoinversa, logrando con esto disminuir la
complejidad computacional del proceso de
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Fig. 1. Diagrama a bloques del sistema visto como
un modelo tipo caja negra
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Fig. 2. Diagrama a blogues del sistema visto como
un modelo tipo caja negra
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Fig. 3. Diagrama a bloques del estimador (3)

estimacién y obtener un error de estimacion
tendiente a una constante.



2. Diagonalizacion del modelo tipo
caja negra

De acuerdo con [19] el sistema
convolucionado dentro de un intervalo T, de
acuerdo con la figura 1, es descrito en (1), por el
producto punto:

C=G-F, (1

donde C € R™1, G € RV, F € RV,

El principal problema se presenta cuando se
quiere conocer a G en funcién de C y F. Para ello,
comunmente es necesario que se considere el
proceso de pseudoinversa, basado en la técnica
de Pen-Rose [20], obteniendo los valores y
vectores propios aproximados para el vector F;
sin embargo este proceso implica una pérdida de
informaciéon en la estimacion de G. En este
articulo se propone la diagonalizacién de las
matrices G, C y F como sistema equivalente a (2),
del cual a través de matrices diagonales se
posible lograr la inversion de la diagonal de F y
asi obtener los valores estimados en la diagonal
de G. Diagonalizando las matrices C, G y F de
acuerdo con [22, 23, 24], el sistema descrito en
(1) tiene una descripcion afin en (2):

E=M-P, (2)

donde E € R">"’] M € RI"***], F g RI***n°],

Donde E es la matriz diagonal de la matriz C,
M la matriz diagonal de G y P la matriz diagonal
de F, respectivamente. De esta forma que el
sistema de la figura 1, es afin al sistema
mostrado en la figura 2.

3. Filtro estimador del sistema

diagonalizado
Teorema 1 (filtro estimador). Dado el

sistema (2), su estimador tiene la forma (3) de
acuerdo a la figura 3.

M=E-pPt, )
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con los coeficientes de M se presentan en (4)
y (5):

M= {Mt,j}izm,FW’
(4)

H(tTrxi) .
conM;; =4 F(x;) l_],T=1,s,sEZ+,
0 i#j

)

=E-P', (5)

Prueba 1. Considerando que en (2) las
matrices E,M y P los valores de sus diagonales
son diferentes de cero, el estimador M
simbdlicamente es descrito en (5).

[n%?xn?]

Con MeR")) ",

puede representar como M,2,2, tiene la forma
extendida (6):

que simbdlicamente se

MTlZ an
[ nxni,q nxni,2 Tanljn-I
| o o P (6)
— nxny1 nxnp 2 nXnzn
Mnxnnjl nxny 2 Mnxnn.n n2xn?

. 2.2
Cada elemento de la matriz M € ]R{fl_xff I de

(6) se describe en (7):
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Fig. 4. Diagrama a bloques del filtro identificador
descrito en (15)
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Generalizando (7) se tiene (8):

H(ti' xl) 0 0
[ Foy Hux2) 0 ]
=| 0 F (%) _ | (®)
| H(t, %) |
| © 0 Fla) |

Los elementos que no forman parte de la
diagonal de M., > son descritos por (9):

0 0 cen 0
{Mm”}lz_nz 0 0 T WNvixi @
J=1in 0 0 - 0

De donde el estimador G, de (1) es descrito
por los elementos de la diagonal de M,z
en (10):

G1,1 = M11 '612 = Mzz ) 'Gl,n = Ml*n,l*nf

GZ 1= n+1 n+1 GZ 2 = Mn+2,n+2 rr Gz,n
- MZ*n,Z*nr

G3, = M(Z*n)+1,(2*n)+1 ,G3 2
= M(Z*n)+2,(2*n)+2 s G3,n
= M3*n,3*nr

(10)

Gy1 = M(S*n)+1,(3*n)+1 ,Gy2
= M@iny+2,3m)+2 5 - ,Gan
= M4*n,4*nr

Gn,l = M(n—1)+1,(n—1)+i ’ Gn,Z
= M(n—1)+2,(n—1)+2 PRI Gn,n
= an‘nz.

Siendo diferentes de cero, solo los descritos
en (8) m.

4. Filtro estimador recursivo del
sistema diagonalizado

Teorema 2 (filtro estimador recursivo). El
estimador (3), expresado de manera recursiva
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Fig. 5. Diagrama a bloques del error de estimacion
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Fig. 6. Diagrama a bloques del funcional del error
descrito en (7)

(11) para condiciones estacionarias en dos

intervalos adyacentes con métricas descritas
como Ty (T —1):

My = Ep(Pp)™ 4+ Mp_y . (11)

Prueba 2. En (12) se describe (3) para el
conjunto de métricas de los intervalos que
conforman a T:

T
t=1
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con condiciones estacionarias para el periodo de
tiempo inmediato anterior, se tiene (13):

T-1

firyi= ) E(P)™. (13)
t=1

Al ver (13) en (12) y tomando el ultimo término
de (12) se obtiene (14), que corresponde a (11):

MT = ET(PT)_1+MT—1'. (14)

a. Error de estimacion
Dada la sefal de referencia E de acuerdo con
la figura 3, y la respuesta del filtro identificador
E en (15):
E=MmP, (15)
como se ilustra en la figura 4.

La traza del error de estimacion (16) del
sistema (2) en el instante de tiempo T, es
ilustrada en la figura 5:

EET = traZa(ET - ET) (16)
4.1. Estimacion 6ptima

Teorema 3 (estimacién éptima). La
estimacién (3) es O6ptima de acuerdo con el

rotacional del funcional del error V]/M =0.

Prueba 3. El funcional del error (17)
J=(E-E)E-E), (17)

como se ilustra en la figura 6.
Al sustituir a (3) en (17) se tiene (18):

J = (E - MP)(E — MP)". (18)
Desarrollando la transpuesta de (18) en (19):
J=(E—-MP)(ET - PTMT). (19)

De (19) su producto punto en (20):
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J = EET — MPET — EPTM" + MPPTMT. (20)
Con rotacional v]/1\71 =0 en (21):

0 x (EE" — MPET — EPTM" + MPPTM") 0

21
oM @1

Desarrollando el rotacional se tiene (22)
—EPT —EPT + MPPT + MPPT = 0. (22)
Organizando los términos en (22) se tiene (23):
—2EPT + 2MPPT = 0. (23)

Despejando el estimador M de (22) se
tiene (24):

M = EP™ 1, (24)

Que corresponde con (3), de tal forma que se
puede concluir que el estimador es 6ptimo ya que

cumple con la condicién V]/M =0. m

4.2. Funcional del error recursivo

Teorema 4 (funcional recursivo). El
funcional del error recursivo (25) para un instante
en el tiempo T:

Jr = 2 (EED? + (T =D (Jr-0)). (25)

Prueba 4. El funcional del error a través de la
esperanza matematica E, en el instante de
tiempo n tiene la forma (26), considerando el
error de estimacion descrito en (7):
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Jr = E{(EET)}. (26)

Para un proceso estacionario, se tiene (27):
1 T
Jr= ;Z(EtED. (27)

Desarrollando (27) se tiene (28):
Jo =3 (EED) + TTZHEED). (28)

En (29) se describe el funcional del error en el
instante de tiempo (T — 1):

_ 1
ICEEY)

Jr-1 Y1 EEL. (29)

Despejando de (29) se obtiene (30):

T-1

Y BEL = (= DUr-. (30)
t=1

Utilizando (30) en (28) se obtiene la
descripcion recursiva del funcional del error
descrita en (31):

Jr = 2 (EED? + (T =D (Jr-0). (31)

Lo que corresponde a la forma (25). m

Donde la traza del funcional del error (25) es
descrita como (32):

Tr = iz:]i,i- (32)
=1
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Fig. 7. Complejidad algoritmica de (FFT)™.
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Traza del error

Fig. 9. La traza del funcional del error de
identificacion (32) para 300 iteraciones

Los {J;;} son los elementos de la diagonal
principal de J;.

3. Discusioén: Diagonalizacién con respecto a
la pseudoinversa (Complejidad algoritmica)
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La obtencién de la matriz de ganancias del
sistema (1) a través de la pseudoinversa de
acuerdo con [19], se tiene en (33):

G =CFT(FF*, (33)

de (FFT)*. Donde FFT, es una matriz singular, que
requiere conocer sus valores y vectores propios
para encontrar su pseudoinversa, lo cual tiene
una complejidad algoritmica de la forma O(n°) de
acuerdo con [25, 26, 27], como se observa en la
figura 7.

El sistema equivalente de (1) de manera
diagonal tiene la forma (2). La estimacion de los
parametros de (2) es descrita por el estimador en
(3) a través del inverso multiplicativo de cada una
de las componentes de entrada del sistema
descrito en (2), lo cual tiene una complejidad
algoritmica 0(n?) de acuerdo con [25, 26, 27],
como se observa en la figura 8.

5. Experimentacion

Se describe el comportamiento del funcional
del error (25) y del filtro estimador (11), para ello
se establece un sistema de referencia con las
sefiales de entrada y salida (34)y (35):

F(i) = 0.005 cos(i) , (34)

G(t—1i) = (0.005sen(t — i) + 0.03 * rand) *

0.005 cos(@) . (35)

Dadas (34) y (35) como sistema de referencia
se construyé el sistema (1) que después fue
transformado en (2) de manera diagonal para
finalmente ser utilizado como referencia en las
simulaciones que a continuacion se ilustran.

En la figura 9, se ilustra la traza del funcional
del error (25) para un proceso de estimacion con
300 iteraciones. El sistema de referencia es del
tipo caja negra con condiciones entrada-salida,
acotadas.

El funcional del error recursivo (25), en la
figura 10, se muestran 50 trazas con 220
iteraciones cada una, incluyendo a la mejor
descripcion de ellas en el sentido de Monte-Carlo
[28, 29].

La curva representativa de acuerdo a Monte-
Carlo [28, 29, 30] de los funcionales de error del

Computacién y Sistemas, Vol. 19, No. 3, 2015, pp. 609-617
doi: 10.13053/CyS-19-3-1596



ISSN 2007-9737

616 Consuelo V. Garcia Mendoza, José de Jests Medel Juarez

08

0.6

Trazas del error

250

Fig. 10. 50 trazas del funcional del error (32) con un
recorrido de 220 iteraciones cada una. Y la curva
representativa de acuerdo a Monte-Carlo [29]
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Fig. 11. Curva representativa de las trazas de los
funcionales de error de acuerdo con Monte — Carlo
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Fig. 12. Complejidad algoritmica de (FFT)*P™"

sistema de identificacion se ilustra en la
figura 11.
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6. Conclusiones

Transformar a un sistema de la forma (1) a la
forma diagonal (2), permitié estimar G,,, a través
de la inversa en lugar de utilizar pseudoinversa,
logrando con ello disminuir el error de estimacién
[19] y la complejidad computacional del proceso
de estimacion, como se observa en las figuras 7 y
8. Asi como una rapida discriminacién de los
elementos de (9), para solo enfocarse a los
elementos de la diagonal principal. El lograr solo
considerar a la diagonal principal del vector
transformado a la matriz (7) con elementos
descritos en (8), y ver que cada uno de ellos esta
en funciéon del cociente {%}z =1,n, como
se observa en la figura 12 en donde se comparan
ambas complejidades.
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