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5 Universidad Politécnica de Querétaro,
Querétaro, Mexico

mendijor@uaq.mx, ariasmo@inaoep.mx, santilis@gmail.com,juvenal@ieee.org,
martin oso@hotmail.com, domag5@hotmail.com, iterol@cideteq.mx

Abstract. In this paper a methodology to restore gray
scale images with pixels polluted by random impulsive
noise is presented. Noise is discovered using a criterion
based on the white top-hat by reconstruction. Pixels
detected as corrupted are restored using an iterative
morphological algorithm built with extensive and antiex-
tensive morphological transformations. The proposal
is compared with the rank ordered mean filter (ROM)
and other morphological transformations reported in the
current literature.

Keywords. Noise detection, morphological pixel restora-
tion, transformations by reconstruction.

1 Introduction

The goal of impulse noise removal in images is
to suppress the noise while preserving the in-
tegrity of edge and detail information. To reach
this goal, nonlinear techniques have been found

to provide more satisfactory results in comparison
with linear methods. For instance, median and,
in general, order statistic filters have demonstrated
good performance in the removal of impulse noise
[2, 4, 5, 7, 12].

However, since these approaches are typically
implemented uniformly across an image, they tend
to modify pixels that are undisturbed by noise.
Consequently, an effective removal of impulses is
often performed at the expense of blurred and
distorted features. In [11], the author introduces a
method where outliers are replaced by estimating a
regularization term. In particular, smooth and con-
vex edge-preserving potential functions are used.

The idea given in [11] is utilized in [3] to remove
noisy components. The disadvantage of the pro-
posal given in [3] is the way of suppressing noise,
since it is not clear how the authors detect the
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best threshold parameter related to noise distribu-
tion. On the other hand, a filter used to remove
impulse noise with percentages as much as 40% is
reported in [1]. This filter is called the rank-ordered-
mean filter (ROM) and it is built similar to the mean
operator but without including the center pixel, i.e.,
the noisy pixel is eliminated during the processing.

Within Mathematical Morphology (MM), some
special operators used for suppressing random im-
pulsive noise are the rank-max connected opening
[10], morphological amoebas [8], the opening and
closing by reconstruction [16], and the area open-
ing [17], among others. All of them have the char-
acteristic of being adaptive. Nevertheless, these
transformations are applied once on the whole im-
age without considering a restoration process.

Due to this fact, a new approach to deal with
the elimination of impulse noise from the MM point
of view is introduced in this paper. The proposal
includes the following steps: i) noise detection; ii)
filtering of corrupted regions, and iii) restoration by
means of extensive and antiextensive connected
transformations. On the other hand, the opening
and closing by reconstruction fulfill transformations
to be connected [13], i.e., they avoid the creation of
new information during the processing.

However, these operators cannot process ad-
equately long and narrow regions, this problem
is due to the fact that the structuring element
does not fit these structures. Nevertheless, all
regions where the structuring element fits will be
preserved. Due to this fact, in the present paper,
the opening and closing by reconstruction will be
used to restore the image, and the median operator
will filter the noisy components. At this point, a
problem with our proposal is that it cannot ade-
quately preserve the details of the image.

The paper is organized as follows: Sections 2.1
and 2.2 define the operators utilized throughout
the text. The method to detect noise is given in
Section 2.3. The iterative process to make the
restoration is outlined in Section 2.4. In Section
2.5, the results obtained in this study are compared
against the morphological rank filter, morphological
amoebas, and the ROM filter on images contami-
nated with different noise percentages. Discussion
is presented in Section 3 and conclusions are given
in Section 4.

2 Morphological Methodology to
Suppress Impulse Noise

2.1 Definitions of Some Morphological
Transformations

The basic morphological filters are the morpholog-
ical opening γµB(f) and closing ϕµB(f) [6]. In this
paper, a square structuring element is employed,
where B represents the basic structuring element
of size 3× 3 pixels, which contains its origin. While
B̆ is the transposed set with respect to its origin,
B̆={−x : x ∈ B}, µ ∈ Z is a size parameter, and
Z represents the integers set. The morphological
opening γµB(f) is expressed as
γµB(f)(x) = δµB(εµB̆(f))(x). By duality,

the morphological closing ϕµB(f) is defined as
ϕµB (f) (x) = [γµB(f c)]c, where f c (x) = 255 −
f(x), δµB , and εµB(f) represent the morpholog-
ical dilation and erosion εµB (f) (x) =

∧
{f (y) :

y ∈ µB̆x}, and
∧

denotes the inf operator. By
duality, the morphological dilation is written as
δµB (f) (x) = [εµB (f c) (x)]c.

2.2 Opening by Reconstruction

Transformations by reconstruction are built with
geodesic transformations [11]. The geodesic di-
lation δ1

f (g)(x) is given by δ1
f (g)(x)=f(x) ∧ δ(g)(x)

with g(x) ≤ f(x). When the marker g(x)
is equal to the erosion of the original func-
tion εµB(f)(x), and the geodesic dilation is iter-
ated until the idempotence is reached, the open-
ing by reconstruction γ̃µB(f) is obtained, where
γ̃µB(f)(x) = limn→∞ δnf (εµB(f))(x). By duality,
the closing by reconstruction ϕ̃µB(f) is repre-
sented as ϕ̃µB(f)(x) = (γ̃µB(f c)(x))c. The open-
ing by reconstruction accomplishes to be an antiex-
tensive transformation, γ̃µB(f) ≤ f , while the
closing by reconstruction fulfills the property to be
extensive, i.e., ϕ̃µB(f) ≥ f . Fig. 1 illustrates these
properties. In Fig. 1(d) notice that the original
image f is comprised between the closing and
opening by reconstruction. This special feature will
be used in Section 2.4 to introduce a morpholog-
ical restoration method. On the other hand, re-
construction transformations do not introduce new
information; Figures 1(b) and 1(c) exemplify this
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fact, note that the maxima or minima have been
flattened, however, the remaining components stay
unchanged during the processing, thus ensuring
the preservation of the edges.

                                 (a)                                                                            (b) 

                             (c)                                                                            (d) 

f 

x x 

x x 
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Fig. 1. Extensive and antiextensive transformations. (a)
Original image f ; (b) opening by reconstruction using a
circular flat structuring element B, γ̃B(f) ≤ f ; (c) closing
by reconstruction using a circular flat structuring element
B, ϕ̃B(f) ≥ f ; (d) opening and closing by reconstruction,
ϕ̃µ(f) ≥ f ≥ γ̃µ(f)

2.3 Noise Detection

The white top-hat by reconstruction is defined as
[15]: T̃Wµ(f) = f − γ̃µ(f). Hence, a criterion
to detect impulsive noise is defined by the formula
that follows [9]. A pixel f(x) is corrupted if

T̃Wµ (f) (x) ≥ T̃Wµ (f) (x) , (1)

with T̃Wµ(f) being the mean white top-hat by re-
construction. This criterion allows detecting noise
in white components, for this, the complement im-
age also should be processed to filter the dark
components using the same criterion. The candi-
date noise set ρ is defined as

ρ = { z ∈ Df : T̃Wµ (f) (z) ≥ T̃Wµ (f) (z)

and
T̃Wµ (f c) (z) ≥ T̃Wµ (f c) (z)},

whereas ρc = Df \ ρ represents the set of all
uncorrupted pixels.

2.4 Morphological Image Restoration

To restore gray level intensities, firstly, noise candi-
dates are identified by using the procedure outlined
in Section 2.3, and all pixels detected as uncor-
rupted will keep their values during the processing.
Posteriorly, the restoration process based on ex-
tensive and antiextensive filters by reconstruction
is applied to find adequate values for those pixels
classified as corrupted. Two images, CP : Z2 →
Z and UCP:Z2 → Z , are defined, CP represents
the Corrupted Pixels Image, this image is initial-
ized with zeros and filled with the corrupted pixels,
∀ z ∈ ρ. The Uncorrupted Pixels Image UCP is
initialized with zeros and posteriorly filled by the
uncorrupted pixels, ∀ ẑ ∈ ρc. The input image f
can be represented as

f = UCP + CP .

The original image f is filtered using the median
filter Mµ=1(f), µ = 1. The operator Mµ=1 smooths
several regions, in consequence flat zones will
be produced. Then, the corrupted pixels are re-
placed by the filtered gray levels obtained from
the transformation Mµ=1(f), while the uncorrupted
pixels are maintained unchanged, ∀ ẑ ∈ ρc.
The symbol N indicates that the image MNµ=1(f)
contains zeros ∀ ẑ ∈ ρc and that the median values
are maintained in the positions z ∈ ρ. The new
output image is expressed as

η = UCP +MNµ=1(f). (2)

As a first approximation, noise elimination is
done using Eq. 2. An example of applying Eq.
2 is presented in Fig. 3, where several white
components on the coat appear due to the median
filter performance, i.e., this transformation tends
to create new information. In order to restore all
pixels located in the position y ∈ ρ, the following
correction is made in Eq. 2:

η∗= UCP+χN , (3)

where χN is defined as

χN=(γ̃µ=1(η))
N

+

(
ϕ̃µ=1 (η)−γ̃µ=1(η)

2

)N
. (4)
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Fig. 2. Flow diagram to implement Equations 2 and 3 iteratively

                                      (a)                                                         (b) 

Fig. 3. Noise elimination using Eq. 2. (a) Input image
with 40% random impulse noise; (b) image where noise
has been eliminated

The term χN modifies the gray level of those pix-
els whose positions were classified as corrupted.
Notice that

γ̃µ=1(η) ≤ χNk=1 ≤ ϕ̃µ=1 (η) .

Equations 2 and 3 can be iterated k times to
obtain better results. A flow diagram representing
this procedure is presented in Fig. 2, while Fig. 4
shows an example considering 10 iterations. The
input image is given in Fig. 3(a).

Notice in Fig. 4 that several regions located in
Fig. 3(b) have been restored and the contours
around the coat are modified. The creation of arti-
facts is due to the median filter. On the other hand,
the computed term χN for a certain k value allows
improving the PSNR index as k is increased. To
corroborate this situation, the PSNR index is es-
timated at each iteration giving as result the data
set presented in Table 1 and its respective graph in
Fig. 5.

The graph in Fig. 5 shows that the quality of the
image is improved as k is increased. It is important
to mention that η∗ reaches the n− idempotence for
the value k = n, i.e., η∗nη∗n+1=η∗n.

It can be seen in Table 1 that this property is
fulfilled for k = 8, however, the n− idempotence de-
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Fig. 4. Output image after iterating 10 times the algo-
rithm implemented according to the flow diagram pre-
sented in Fig. 2

pends of the information of each processed image.
A practical way to identify it consists in evaluating
the sum of all gray levels of the processed image:
when the sum does not change for the following
iteration, the n− idempotence is reached.

Table 1. PSNR values considering 10 iterations

k PSNR
0 22.507
1 23.847
2 24.295
3 24.433
4 24.477
5 24.492
6 24.500
7 24.503
8 24.503
9 24.503
10 24.503

2.5 Experimental Results

In this section, the performance of Equations 3 and
4 applied iteratively is compared against other spe-
cialized transformations reported in the literature.
In Fig. 6 an example is presented. The input image
is contaminated with 60% random impulsive noise,
see Fig. 6(a). The output image obtained from
the connected rank-max opening is given in Fig.
6(b) considering µ = 3 and the connected filter
associated to the position k = 20. In Fig. 6(c)
morphological amoebas are computed using µ= 5

22

22.5

23
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24
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25

0 1 2 3 4 5 6 7 8 9 1011

PSNR 

k 

Fig. 5. Graph corresponding to the values given in
Table 1
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Fig. 6. Comparison with other methodologies. (a) Image
contaminated with 60% random impulse noise; (b) rank
max connected opening; (c) morphological amoebas,
(d) proposal given in this paper according to the flow
diagram given in Fig. 2 considering 10 iterations

and λ = 0.02. The image in Fig. 6(d) corresponds
to the algorithm implemented according to the flow
diagram given in Fig. 2 applying 10 iterations. Mea-
surements corresponding to the PSNR and SSIM
[18] indices for images in Fig. 6 are displayed in
Table 2. Better values for the SSIM index are those
closest to 1. It can be observed in Table 2 that the
adaptive transformations, rank max, and morpho-
logical amoebas present good performance, how-
ever, the problem with these operators is that they
are applied once on the whole image causing a
modification of corrupted and uncorrupted pixels at
the same time. On the contrary, our proposal mod-
ifies and restores only the detected noisy pixels in
each iteration. On the other hand, a problem with
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Table 2. PSNR and SSIM indices associated to the
images in Fig.6

Image PSNR SSIM
Fig. 6(b) 18.5756 0.5512
Fig. 6(c) 24.4405 0.3883
Fig. 6(d) 25.0975 0.6632

Table 3. PSNR and entropy (H) values for the images in
Fig 8 and for the original images in Fig. 7

Figure PSNR H
7(a) ∞ 2.9920
8(a1) 24.5736 3.0408
8(a2) 25.6289 3.2838
8(a3) 23.0061 5.4107
8(a4) 24.5752 3.5385
7(b) ∞ 1.7185
8(b1) 28.6544 1.6200
8(b2) 31.4726 1.7122
8(b3) 28.8863 2.7666
8(b4) 30.4651 1.6254
7(c) ∞ 3.1969
8(c1) 26.7877 3.2583
8(c2) 28.4348 3.4134
8(c3) 25.6786 5.3318
8(c4) 27.4307 3.5626
7(d) ∞ 2.5948
8(d1) 28.1209 2.6216
8(d2) 30.9022 2.7682
8(d3) 27.7226 4.5647
8(d4) 29.8351 2.8357
7(e) ∞ 3.6756
8(e1) 24.0993 3.8113
8(e2) 25.3106 4.0435
8(e3) 23.0669 6.4146
8(e4) 24.1939 4.4497

the SSIM index is that sometimes this measure
does not coincide with the visual perception of the
processed image; so in the next example this index
will not be computed. Another example is imple-
mented considering 10% and 40% random impul-
sive noise. The set of original images to carry out
this experiment was taken from the USC-SIPI Im-
age Database (http://sipi.usc.edu/database/), see
Fig 7(a)-(e).

These images were contaminated with impulse
noise using Matlab, and they are shown in Figures
7(f)-7(j) and 7(k)-(o). The filters to be compared
with our proposal are the median and the ROM
filters [1]. The experiments consist in a) applying
the median filter, our proposal, and the ROM filter

Table 4. PSNR and entropy (H) values for the images in
Fig 9 and for the original images in Fig. 7

Figure PSNR H
7(a) ∞ 2.9920
9(a1) 20.0937 4.1728
9(a2) 22.1535 3.6385
9(a3) 21.0684 6.2651
9(a4) 22.4495 4.6001
7(b) ∞ 1.7185
9(b1) 23.2744 1.6200
9(b2) 28.5185 1.7625
9(b3) 28.0764 3.6703
9(b4) 28.6784 2.3248
7(c) ∞ 3.1969
9(c1) 22.3572 4.0746
9(c2) 24.9504 3.6871
9(c3) 23.7828 6.2927
9(c4) 25.1127 4.5027
7(d) ∞ 2.5948
9(d1) 24.5265 3.3448
9(d2) 27.6297 2.9657
9(d3) 26.2917 5.5456
9(d4) 27.9095 3.7170
7(e) ∞ 3.6756
9(e1) 20.4768 4.7309
9(e2) 22.3540 4.4465
9(e3) 21.3413 7.2344
9(e4) 22.4938 5.5581

3 times on the whole image, and b) the restoration
of those pixels classified as noise considering the
information provided by the ROM filter. Figures 8
and 9 display the output images. Tables 3 and 4
present the PSNR and entropy [14] (denoted as H)
indices. Entropy is used to compare the similarity
between two pixels. The following observations
correspond to the computed indices:

— According to the PSNR values shown in Table
3, our method outperforms the median and
ROM transformations for the set of images
contaminated with 10% noise. Table 4, which
corresponds to the set of images corrupted
with 40% noise, indicates that the sequential
application of the ROM filter presents a better
behavior compared with the other transforma-
tion.

— The H index in the literature is used as a
measure of the details and the similarity be-
tween two pixels. However, H is expressed
in terms of probability and the logarithm of
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Fig. 7. Set of images used to illustrate the performance of the proposal given in this paper. (a)-(e) Original images
obtained from the USC-SIPI Image Database; (f)-(j) images contaminated with 10% random impulse noise; (k)-(o)
images contaminated with 40% random impulse noise

the same probability. Then, lower values of
H in the experiment presented here indicate
that the processed image has been smoothed
considerably with respect to the other meth-
ods. In Table 3, the higher values of entropy
correspond to the ROM filter when it is applied
on the whole image 3 times, followed by the
iterative ROM filter applied 3 times uniquely
on noisy pixels, then our method, and, lastly,
the median filter. In Table 4, the index H has
a similar behavior to that in Table 3. Since
our method presents a low H compared to the
ROM filter when it is applied 3 times uniquely
on noise pixels, the obtained output image is
more smoothed. For this reason the PSNR
values are better for the ROM filter in Table 4.

It can be observed in Table 4 that the ROM
filter iterated sequentially on noisy pixels has a
better performance when the noise percentage is

increased, and when the noise percentage de-
creases, see Table 3, the proposal given in this
paper shows a better performance.

It is important to mention here that the flow dia-
gram presented in Fig. 2 is implemented in Matlab
which includes fast algorithms for computing the
opening and closing by reconstruction. A deep
study on implementation of geodesic transforma-
tions can be found in [16], where the order asso-
ciated with these operators is not reported. The
difficulty in obtaining the order is that it depends on
the processed image: for example, the opening by
reconstruction consumes more time as the number
of regional maxima is increased. Therefore, in
this paper the execution time is obtained for the
algorithm represented by the flow diagram consid-
ering 6 iterations. The algorithm is implemented
in Matlab R2010a on a 2.5 GHz Intel Core i5 pro-
cessor with 2 GB RAM memory. The measures
are presented in Table 5 together with the time
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Fig. 8. Filtered images considering 10% of contamination. The filter associated to the output images in each row is
(a1),(b1),(c1),(d1),(e1) median filter with a window of 3×3 elements applied 3 times; (a2),(b2),(c2),(d2),(e2) the proposal
given in this paper with 3 iterations; (a3),(b3),(c3),(d3),(e3) ROM filter with a window of 3× 3 elements applied 3 times;
(a4),(b4),(c4),(d4),(e4) only noisy pixels are restored using the ROM filter during 3 iterations

associated to the ROM filter considering the same
number of iterations. The experiment considers the
images in Figures 8(k) and 8(l). The graph of the
values reported in this table can be seen in Fig. 10.

It can be seen in Table 5 that for all k values the
ROM filter applied 3 times on the whole image is
faster than our proposal. On the other hand, for

our algorithm, if the parameter k is increased, the
n-idempotence will be reached at a certain moment
and there will be no changes in time.

Additionally, our method spends more time dur-
ing the iteration process because it is necessary to
identify the positions of the noisy pixels. In each it-
eration, the number of corrupted pixels decreases,
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 Fig. 9. Filtered images considering 40% of contamination. The filter associated to the output images en each row is
(a1),(b1),(c1),(d1),(e1) median filter with a window of 3×3 elements applied 3 times; (a2),(b2),(c2),(d2),(e2) the proposal
given in this paper considering 3 iterations; (a3),(b3),(c3),(d3),(e3) ROM filter with a window of 3× 3 elements applied 3
times; (a4),(b4),(c4),(d4),(e4) noisy pixels are restored using the ROM filter during 3 iterations

and the algorithm runs almost at the same speed
as k is increased. This behavior can be observed
for k > 3 in the graphs displayed in Fig. 10. A simi-
lar behavior is presented by the ROM filter when it
is iterated sequentially to restore noisy pixels only.

3 Discussion

Now we will discuss the advantages and disadvan-
tages of our proposal. The advantages are:

1. According to the computed PSNR indices, our
proposal presents a better development than
the median and ROM filters for images con-
taminated with 10% noise. This occurs be-
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Table 5. Execution time in minutes (min) utilized to
process the images 8(k) and 8(l)

Iteration A B C D E F

1 0,52 0,52 0,17 0,19 0,48 0,50
2 0,82 0,84 0,29 0,28 0,88 0,70
3 0,95 0,83 0,41 0,41 1,09 1,00
4 1,00 0,84 0,56 0,53 1,16 1,08
5 1,06 0,87 0,69 0,69 1,31 1,16
6 1,10 0,88 0,84 0,78 1,44 1,36

A: Image in Fig 8(k) using our proposal; B: Image in Fig 8(l)
using our proposal; C:Image in Fig 8(k) using ROM filter on the
whole image; D:Image in Fig 8(l) using ROM filter on the whole
image; E:Image in Fig 8(k) using ROM filter sequentially on
noisy pixels; F:Image in Fig 8(l) using ROM filter sequentially
on noisy pixels
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Fig. 10. Graph of the values presented in Table 5

cause the restoration process permits to de-
tect a better pixel value.

2. The flow diagram presented in Fig. 2 can
be implemented in Matlab because fast algo-
rithms for the opening and closing by recon-
struction transformations are included in this
software.

3. Due to elimination of only noise, i.e., when
elimination is done considering only those pix-
els detected as corrupted, the various struc-
tures composing the image are better pre-
served.

4. At each iteration, the pixels detected as noise
not only are replaced by some gray level com-
puted from the median filter, but a restoration
is made considering Eq. 4.

5. The opening and closing by reconstruction try
to avoid the creation of new information.

The disadvantages are as follows:

1. According to the computed PSNR indices in
Table 4 (corresponding to images contami-
nated with 40% noise), the ROM filter presents
a better development than our proposal when
it is applied iteratively on noisy pixels. This
occurs because during the restoration pro-
cess the opening and closing by reconstruc-
tion smooth the pixels.

2. When only noise pixels are modified iteratively,
the two algorithms (using the median and the
ROM filter) take more time to execute. How-
ever, it is noteworthy to mention that the de-
tection is carried out without considering fast
algorithms.

3. The ROM filter applied iteratively on noisy pix-
els works better when the noise percentage is
increased.

4. The output images produced with our proposal
contain artifacts due to the performance of
the median filter. An example of this can be
observed in Fig. 4 where the contours were
modified.

4 Conclusions and Future Work

In the Mathematical Morphology area, the noise
elimination topic has not been dealt with in deep.
Few transformations have been proposed in this
theme. Therefore, an important contribution of
this paper is the introduction of a methodology to
restore images contaminated with impulse noise
using morphological transformations. The proposal
works iteratively and permits to obtain restored
images where the structures of the image are
better preserved if the noise percentage is low
(10%). The structure preservation is due to i)
treatment of only noisy pixels in each iteration, and
ii) restoration of noisy pixels using extensive and
antiextensive transformations. However, when the
noise percentage is increased to 40 %, the ROM
filter applied iteratively on noisy pixels produces
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better results. This occurs since the output images
obtained with our proposal are smoother due to the
reconstruction transformations.

The disadvantage of detecting noise iteratively
is that the algorithm consumes more time during
its execution. The PSNR indices computed with
our algorithm cannot increase more because the
median filter used to filter the noisy images does
not have the capability of adapting to the edges
of the processed image placing as consequence
a copy of several gray intensity levels around the
contours. Also, our proposal does not have the
capability of processing components smaller than
the structuring element.

As future work, a fast algorithm and the proposal
of an adaptative transformation to suppress noise
will be taken into consideration.
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Domingo José Gómez-Meléndez received his
PhD degree from the Universidad Autónoma de
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