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Resumen. En este artı́culo se estudia la dinámica global
del modelo de Evasión-Inmune presentado por Arciero,
Jackson y Kirschner [1], el cual describe la interacción
entre células efectoras, células cancerı́genas y las ci-
tocinas IL − 2 y TGF − β en el sitio del tumor. El
sistema modela distintos comportamientos, como lo son:
puntos de equilibrio, órbitas periódicas y ciclos lı́mite
estables. Utilizando el método de Localización de Con-
juntos Compactos Invariantes se logra definir un dominio
en el espacio de estados donde se localizan todas las
dinámicas que exhibe el modelo de Evasión-inmune. La
localización de dicho dominio es importante debido a
que proporciona información sobre la salud del individuo
en corto y largo plazo. Los lı́mites de tal dominio repre-
sentan los valores mı́nimos y máximos de las variables
de estado y se expresan mediante desigualdades alge-
braicas dadas por una combinación de los parámetros
del sistema. Adicionalmente, mediante una función can-
didata de Lyapunov, se demuestra que la región de loca-
lización es un dominio positivamente invariante, lo que
permite asegurar que dada cualquier condición inicial,
las trayectorias del sistema no divergen. Finalmente,
se presentan simulaciones numéricas y se realiza un
análisis de las posibles implicaciones biológicas de los
resultados obtenidos.

Palabras clave. Conjunto compacto invariante, dominio
acotado positivamente invariante, Lyapunov, cáncer, sis-
tema biológico.

Study of the Global Dynamics for a
Tumor Immune-Evasion System

Abstract. In this paper we study the global dynamics for
a Tumor Immune-Evasion model proposed by Arciero,

Jackson and Kirschner [1], which describes the interac-
tion between effector cells, cancer cells, and the cytoki-
nes IL− 2 and TGF − β in the tumor site. This system
describes different behaviors such as equilibrium points,
periodic orbits, and stable limit cycles. By using the Lo-
calization of Compact Invariant Sets method, we define
a domain where all the dynamics of the Immune-Evasion
system are located. The localization of these sets is
important because they provide information about the
individual’s health in the short and long term. The domain
boundaries are expressed by inequalities depending on
the system’s parameters and represent the minimum and
maximum values of the system variables. Furthermore,
by taking a Lyapunov candidate function, we demons-
trate that the localizing region is a positively invariant
domain. This ensures that for any initial condition out-
side this domain, the trajectories of the system will not
diverge. Finally, we present numerical simulations and
realize an analysis of possible biological implications of
our results.

Keywords. Compact invariant set, bounded positively
invariant domain, Lyapunov function, cancer, biological
system.

1. Introducción

El cáncer es considerado una de las principales
causas de enfermedad y muerte a nivel global, de
acuerdo con la Organización Mundial de la Salud,
en el año 2008 se registraron 12.7 millones de
casos de los cuales se estima que murieron 7.6
millones de personas, esto representa alrededor
del 13 % de las muertes totales en el mundo [27].
Aunque México tiene la tasa de mortalidad más
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baja en América Latina, el cáncer representa la
tercera causa de muerte en el paı́s, en el 2011 el
12.07 % del total de defunciones fueron a causa de
algún tumor maligno [6], [26].

Cáncer es un término utilizado para definir un
grupo de enfermedades que pueden afectar a una
persona en alguna parte del cuerpo y se carac-
teriza por un crecimiento anormal de células que
han perdido la capacidad de regular su tiempo de
vida (apoptosis), este fenómeno les permite crecer
más allá de sus lı́mites habituales e invadir tejidos
y órganos circundantes, los cuales forman nuevos
focos cancerosos, conocidos como tumores malig-
nos. El proceso en el que las células cancerı́genas
se diseminan a través del cuerpo se conoce co-
mo metástasis y representa la principal causa de
muerte por esta enfermedad.

Con el propósito de analizar la dinámica en
corto y largo plazo del cáncer, los especialistas
han recurrido al uso de modelos matemáticos [4],
cuya utilidad radica en el hecho de que pueden
proporcionar información sobre el crecimiento de
un tumor maligno y su interacción con el sistema
inmunológico, ası́ como el efecto producido por
ciertos tratamientos, como referencia se pueden
encontrar diversos ejemplos, e.g., [1], [2], [7], [9],
[13], [15], [16].

La Localización de Conjuntos Compactos In-
variantes (LCCI) es una herramienta que permi-
te analizar la dinámica global de modelos ma-
temáticos de ecuaciones diferenciales ordinarias.
El método fue propuesto por Krishchenko en [11]
y optimizado por Krishchenko y Starkov en [12] y
ha sido utilizado recientemente para el análisis de
sistemas biológicos: [3], [20], [21], [22], [23], [24],
[25]. Por ejemplo, en [24] Starkov y Pogromsky
analizan la dinámica del sistema de cinco ecua-
ciones diferenciales de Owen-Sherratt [15], el cual
describe la interacción entre el desarrollo de un
tumor cancerı́geno, macrófagos y células sanas;
utilizando el método de LCCI se obtienen los va-
lores mı́nimos y máximos de las variables del mo-
delo y se determinan condiciones bajo las cuales
cualquier trayectoria en R5

+ converge a un punto
de equilibrio libre de tumor. El objetivo principal de
utilizar el método de LCCI es definir un dominio

en el cual se localizan todos los conjuntos com-
pactos invariantes de un sistema especı́fico, la lo-
calización de dichos conjuntos es importante para
el análisis de sistemas biológicos que describen
la evolución de un tumor maligno, ya que éstos
proporcionan información sobre la carga tumoral
en un sitio especifico del cuerpo, la eficacia del
sistema inmunológico para combatir el tumor y la
eficiencia de los tratamientos aplicados.

La posibilidad de determinar que la región de
localización es un Dominio Acotado Positivamente
Invariante (DAPI) es un proceso útil en el análisis
de modelos matemáticos que describen el creci-
miento de un tumor maligno. Su importancia ra-
dica en el hecho de que los lı́mites superiores e
inferiores del DAPI poseen un significado biológi-
co sobre las densidades máximas y mı́nimas de
las variables del sistema, las cuales pueden ser:
células cancerı́genas, células efectoras, proteı́nas
que estimulan o regulan una respuesta anti-tumor
por parte del sistema inmunológico o incluso la
concentración de algún tratamiento. El determinar
que la región de localización es un DAPI implica
que cualquier trayectoria que entre en él perma-
necerá dentro del mismo para todo tiempo futuro
y, debido a que sus lı́mites se encuentran expre-
sados en función de los parámetros del modelo,
los especialistas tendrán la oportunidad de ma-
nipular la dinámica global del sistema mediante
la variación de los parámetros cuando ello sea
posible fisiológicamente. Esta manipulación puede
lograrse mediante la aplicación de tratamientos o
bioterapias que ayudan a potenciar la respuesta
del sistema inmunológico o regular los mecanis-
mos de defensa de un tumor cancerı́geno.

Debido a su complejidad, el cálculo explı́cito
de los lı́mites inferiores y superiores de un DA-
PI es un problema poco estudiado para sistemas
biológicos que describen el desarrollo de un tumor
cancerı́geno. No obstante, en [20] Starkov y Coria
presentan el análisis de la dinámica global para el
modelo de inmunoterapia propuesto por Kirschner
y Panetta [9], el cual describe la interacción entre
células efectoras, células cancerı́genas, la citocina
interleucina-2 (IL− 2) y el efecto producido por la
aplicación de dos tratamientos de inmunoterapia.
El interés particular en el sistema radica en la
variedad de conjuntos compactos invariantes que
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exhibe, como lo son: órbitas periódicas, homoclı́ni-
cas y heteroclı́nicas, ciclos lı́mite estables y puntos
de equilibrio. Aunque el modelo de inmunoterapia
ha sido estudiado anteriormente mediante cuasi-
funciones de Lyapunov en [10], solo se obtienen
el lı́mite máximo para la carga tumoral y el lı́mite
inferior para la densidad de la citocina IL − 2. Sin
embargo, utilizando el método de LCCI, Starkov y
Coria definen un dominio compacto en R3

+ cuyos
lı́mites se expresan en función de los parámetros
del modelo y los tratamientos de inmunoterapia.
Adicionalmente, se determina que la región de
localización es un DAPI y se definen condiciones
de atracción hacia un punto de equilibrio libre de
tumor.

En este documento se presenta el estudio de la
dinámica global del modelo matemático de Eva-
sión-Inmune presentado por Arciero, Jackson y
Kirschner en [1]. Este sistema modela el desarro-
llo de un tumor maligno y su interacción con el
sistema inmunológico mediante cuatro ecuaciones
diferenciales: la citocina TGF −β (Factor de creci-
miento transformante - Beta) (ẇ), células efectoras
(ẋ), células cancerı́genas (ẏ) y la citocina IL − 2
(ż).

ẇ =
p4y

2

τ2
c + y2

− µ3w; (1)

ẋ =
cy

1 + γw
− µ1x+

(
xz

g1 + z

)(
p1 −

q1w

q2 + w

)
;

ẏ = ry
(

1− y

b

)
− axy

g2 + y
+

p2wy

g3 + w
;

ż =
p3xy

(g4 + y) (1 + αw)
− µ2z.

La dinámica del sistema de Evasión-Inmune (1)
se encuentra localizada en el ortante positivo, es
decir:

R4
+ := {w > 0,x > 0, y > 0, z > 0}.

A continuación se presenta la descripción de los
parámetros del sistema:

µ1: Tasa de muerte de las células inmunes.

p1: Tasa de proliferación de las células efectoras.

g1: Saturación media del término p1.

c: Antigenicidad.

γ: Inhibición de antı́genos por la TGF − β.

q1: Tasa del efecto de anti-proliferación.

q2: Saturación media del término q1.

r: Tasa de crecimiento intrı́nseco del cáncer.

b: Carga tumoral máxima.

a: Fuerza inmunológica contra el cáncer.

g2: Saturación media del término a.

p2: Tasa de proliferación de células cancerı́genas.

g3: Saturación media del término p2.

p3: Tasa de producción de la IL− 2.

µ2: Vida media de la IL− 2.

g4: Saturación media del término p3.

α: Inhibición de la IL− 2 por la TGF − β.

p4: Tasa de producción máxima de la TGF − β.

τc: Acumulación crı́tica de células cancerı́genas.

µ3: Vida media de la TGF − β.

Los valores de los parámetros se muestran en la
Tabla 1, la estimación de los valores es presentada
en [9] por Kirschner y Panetta y en [1] por Arciero,
Jackson y Kirschner.

La caracterı́stica principal del modelo es que
toma en consideración que el tumor secreta la
citocina TGF −β, la cual es uno de los principales
factores que impide el combate de dicho tumor
por el sistema inmunológico; a continuación se
describen sus principales efectos:

a) Contrarrestar las propiedades inmuno-
estimuladoras de la IL− 2.

b) Prevenir la detección del tumor por parte del
sistema inmune.

c) Inhibir la activación y expansión de las células
T citotóxicas y células B.

d) Reducir la expresión de antı́genos en las célu-
las cancerı́genas.
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Tabla 1. Valores de los parámetros correspondientes al
modelo de Evasión-Inmune

Parámetro Valor
µ1 0.03 dı́as−1

p1 0.1245 dı́as−1

g1 2× 107 pg/l
c 0− 0.035 dı́as−1

γ 10 l/pg
q1 0.1121 dı́as−1

q2 2× 106 pg/l
r 0.18 dı́as−1

b 1× 109 células/ml
a 1 dı́a−1

g2 1× 105 células/ml
p2 0.27 dı́as−1

g3 2× 107 pg/ml
p3 5 pg/ (células× dı́a)
µ2 10 dı́as−1

g4 1× 103 células/ml
α 1× 10−3 l/pg
p4 0− 3× 108 pg/ (l × dı́as)
τc 1× 106 células/ml
µ3 10 dı́as−1

Adicionalmente, la citocina TGF − β posee pro-
piedades angiogénicas, lo que beneficia el desa-
rrollo y metástasis de los tumores malignos [1],
[19].

El sistema de Evasión-Inmune (1) posee sola-
mente un punto de equilibrio libre de tumor dado
por E = (0, 0, 0, 0). Al linealizar el sistema se
encuentran los siguientes valores propios: λ1 = r,
λ2 = −µ1, λ3 = −µ2, λ4 = −µ3; por lo que se
determina que el punto de equilibrio libre de tumor
es localmente inestable.

La estructura del trabajo es la siguiente: En
la siguiente sección se muestran los preliminares
matemáticos relacionados a la teorı́a de LCCI; en
la sección 3 se presenta el cálculo de un dominio
compacto donde se localizan todos los conjuntos
compactos invariantes del sistema de Evasión-
Inmune (1); después se presentan las condiciones
necesarias para la existencia de un DAPI en el
ortante positivo R4

+,0; en la sección 5 se presentan
las implicaciones biológicas de los resultados ob-
tenidos, después se muestran simulaciones para
ilustrar la convergencia de las trayectorias w (t),

x (t), y (t) y z (t) hacı́a el dominio de localización
KBPID, y finalmente, se presentan las conclusio-
nes de la investigación.

2. Preliminares matemáticos

El método de “Localización de Conjuntos Com-
pactos Invariantes” se utiliza para determinar un
dominio en Rn en el cual se localizan todos los
conjuntos compactos invariantes que se presentan
bajo ciertas condiciones en un sistema especı́fico,
estos conjuntos pueden ser: órbitas periódicas,
homoclı́nicas y heteroclı́nicas, ciclos lı́mite, puntos
de equilibrio y atractores caóticos. La importancia
del método radica en que el análisis es útil para
conocer la dinámica del sistema a largo plazo;
su caracterı́stica principal consiste en que es un
método estrictamente analı́tico, lo que implica la
solución del problema sin la necesidad de realizar
la integración numérica del sistema de ecuacio-
nes diferenciales. A continuación se describirán
los teoremas, notaciones y definiciones básicas
utilizadas.

Considere un sistema no lineal de la forma:

ẋ = f(x); (2)

donde f es una función vectorial continua para un
C∞ y x ∈ Rn es el vector de estados. Sea h(x) :
Rn → R, la cual es llamada función localizado-
ra y no es la primera integral de (2), entonces,
por h|B se denota la restricción de h a un con-
junto B ⊂ Rn. Por S(h) se denota el conjunto
{x ∈ Rn | Lfh(x) = 0}, donde Lfh es la derivada
Lie de (2) y está dada por: Lfh = (∂h/∂x) f (x).
Además se define hı́nf := ı́nf{h(x) | x ∈ S(h)};
hsup := sup{h(x) | x ∈ S(h)}.

A continuación se definirán el Teorema general
de LCCI, una Proposición de no existencia de
conjuntos compactos invariantes y el Teorema ite-
rativo.

Teorema 1. Vea [12]. Cada conjunto compacto
invariante Γ de (2) está contenido en el conjunto
de localización K(h) = {hı́nf ≤ h(x) ≤ hsup}.

Si se considera la localización de todos los con-
juntos compactos invariantes dentro del dominio
U ⊂ Rn se tiene el conjunto de localización K(h)∩
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U , con K(h) definida en el Teorema 1. Supon-
ga que todos los conjuntos compactos invariantes
correspondientes a (2) están localizados en dos
conjuntos cualesquiera llamados: Q1 y Q2, donde
Q1;Q2 ⊂ Rn, entonces también estarán localiza-
dos en el conjunto Q1 ∩Q2. Ahora, si se desea
determinar la localización de todos los conjuntos
compactos invariantes en algún subconjunto Q del
espacio de estados Rn. Se formula la siguiente:

Proposición 1. Vea [12]. Si Q ∩ S(h) = ∅ enton-
ces el sistema (2) no tiene conjuntos compactos
invariantes localizados en Q.

Un refinamiento del conjunto de localización
K(h) puede realizarse con el uso del teorema
iterativo que dice:

Teorema 2. Vea [12]. Sea hm(x),m = 0, 1, 2, . . .
una secuencia de funciones de clase infinitamente
diferenciable. Los conjuntos

K0 = K(h0), Km = Km−1 ∩Km−1,m, m > 0,

con

Km−1,m = {x : hm,inf ≤ hm(x) ≤ hm,sup},
hm,sup = sup

S(hm)∩Km−1

hm(x),

hm,inf = ı́nf
S(hm)∩Km−1

hm(x),

contienen cualquier conjunto compacto invariante
del sistema (2) y

K0 ⊇ K1 ⊇ · · · ⊇ Km ⊇ . . . .

3. Localización de conjuntos
compactos invariantes

En esta sección se definen los lı́mites máximos
para las densidades de las células efectoras y can-
cerı́genas, y las citocinas IL−2 y TGF−β. Con los
lı́mites calculados se define un dominio compacto
en R4

+,0 en el cual se localizan todos los con-
juntos compactos invariantes del sistema de Eva-
sión-Inmune (1). Estos se encuentran expresados
mediante desigualdades en función de los paráme-
tros del sistema y se obtienen mediante funciones
localizadoras lineales y no lineales. El formulæ que
define la región de localización se muestra en el

Teorema 3; para determinar este teorema se utili-
zaron las funciones localizadoras: h1 = w, h2 = y,
h3 = x, h4 = z, h5 = y+ ηz y h6 = xy. Por simplici-
dad en las notaciones de esta sección se conside-
ra: S (h) = {Lfh = 0}, S (hi) := S (hi) ∩ {y > 0},
i = 2, 6; y K(h) := K(h) ∩R4

+,0.

Teorema 3. Todos los conjuntos compactos in-
variantes del modelo de Evasión-Inmune (1) se
encuentran contenidos dentro del dominio:

KBPID := K (h1)∩K (h2)∩K (h3)∩K (hz)∩K (h6) ;

donde

K (h1) =

{
0 ≤ w ≤ wmáx :=

p4

µ3

}
;

K (h2) =

{
0 ≤ y ≤ ymáx := b

(
1 +

p2wmáx

r (g3 + wmáx)

)}
;

K (h3) =

{
0 ≤ x ≤ xmáx :=

cymáx

µ1 − p1
, µ1 > p1

}
;

K (h4) =

{
0 ≤ z ≤ z1 máx :=

p3

µ2
xmáx, µ1 > p1

}
;

K (h5) =

{
0 ≤ z ≤ z2 máx :=

δ2
2

4δ1µ2η

}
;

K (hz) =

 K (h4) si z1 máx < z2 máx,

K (h5) si z1 máx ≥ z2 máx,

 ;

K (h6) =

{
xy ≤ b

r

(
β2

2

4β1
+ cymáx

)}
;

y las constantes η, δi y βi, i = 1, 2; se definen
como

η ≥ mı́n
{
ag4

p3g2
, a
p3

}
;

δ1 : = r
b ;

δ2 : = r + p2 + µ2;

β1 : = a
g2+ymáx

;

β2 : = p2wmáx

g3+wmáx
+ p1 + r − µ1.

A continuación se muestra, mediante seis fun-
ciones localizadoras, la prueba del Teorema 3:
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1. Lı́mite superior de la proteı́na TGF −β, w (t) .
Se toma la función localizadora h1 = w, cuya
derivada de Lie está dada por

Lfh1 = p4y
2

τ2
c +y2 − µ3w;

y de la cual se obtiene el conjunto

S (h1) =
{
p4

(
1− τ2

c

τ2
c +y2

)
− µ3w = 0

}
;

entonces, se puede llegar a la siguiente fórmula

h1|S(h1)
= p4

µ3

(
1− τ2

c

τ2
c +y2

)
;

por lo tanto se determina que: Todos los conjun-
tos compactos invariantes de w (t) se encuentran
localizados en el dominio

K (h1) =
{

0 ≤ w ≤ wmáx := p4

µ3

}
.

2. Lı́mite superior de las células cancerı́genas,
y (t) . Se utiliza la función localizadora h2 = y, de
la cual al calcular su derivada de Lie se obtiene

Lfh2 = ry − r
by

2 − axy
g2+y + p2wy

g3+w ;

ahora, se puede llegar al conjunto

S (h2) =
{
r − r

by −
ax
g2+y + p2

(
1− g3

g3+w

)
= 0
}

;

del cual se obtiene

h2|S(h2)
= b

r

[
r − ax

g2+y + p2

(
1− g3

g3+w

)]
.

Aplicando el Teorema Iterativo utilizando el conjun-
to K (h1) se tiene

h2|S(h2)∩K(h1)
≤ b

[
1 + p2

r

(
1− g3

g3+wmáx

)]
;

lo que permite aseverar que: Todos los conjuntos
compactos invariantes de y (t) se encuentran loca-
lizados en el dominio

K (h2) =
{

0 ≤ y ≤ ymáx := b
(

1 + p2wmáx

r(g3+wmáx)

)}
.

3. Lı́mite superior de las células efectoras, x (t) .
Se utiliza la función localizadora h3 = x, y se

obtiene su derivada de Lie como se muestra a
continuación

Lfh3 = cy
1+γw − µ1x+

(
xz
g1+z

)(
p1 − q1w

q2+w

)
;

entonces, se obtiene el conjunto

S (h3) = { cy
1+γw − µ1x+ p1x

− g1p1x
g1+z −

q1wxz
(q2+w)(g1+z) = 0};

del cual, al discriminar los términos racionales ne-
gativos y si la siguiente condición se cumple

µ1 > p1;

se llega a la siguiente fórmula

h3|S(h3)
≤
(

1
µ1−p1

)(
cy

1+γw

)
;

ahora, mediante el Teorema Iterativo, se puede
redefinir h3|S(h3)

y se llega a lo siguiente

h3|
S(h3)∩2

i=1
K(hi)

≤
(

1
µ1−p1

)
(cymáx) ;

entonces, se tiene que: Todos los conjuntos com-
pactos invariantes de x (t) se encuentran localiza-
dos en el dominio

K (h3) =
{

0 ≤ x ≤ xmáx := cymáx

µ1−p1

}
.

4. Lı́mite superior de la citocina IL − 2, z (t) . Al
tomar la función localizadora h4 = z, y calcular su
derivada de Lie se llega a

Lfh4 = p3xy
(g4+y)(1+αw) − µ2z;

entonces se puede obtener el conjunto

S (h4) =
{

p3x
1+αw

(
1− g4

g4+y

)
− µ2z = 0

}
;

del cual se determina

h4|S(h4)
= p3x

µ2(1+αw)

(
1− g4

g4+y

)
;

ahora, si la condición µ1 > p1, se cumple, se puede
redefinir h4|S(h4)

haciendo uso del Teorema Iterativo
como se muestra a continuación

h4|
S(h4)∩3

i=1
K(hi)

≤ p3xmáx

µ2

(
1− g4

g4+ymáx

)
;
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por lo tanto, se determina que: Todos los conjun-
tos compactos invariantes de z (t) se encuentran
localizados en el dominio

K (h4) =
{

0 ≤ z ≤ p3xmáxymáx

µ2(g4+ymáx) ≤ z1 máx := p3

µ2
xmáx

}
.

5. Lı́mite superior de la citocina IL − 2, sin
restricción en los parámetros del sistema. Me-
diante la función localizadora h5 = y + ηz, es po-
sible establecer un lı́mite adicional para la variable
z (t). Se calcula su derivada de Lie y se obtiene lo
siguiente

Lfh5 = ry − r
by

2 − axy
g2+y + p2wy

g3+w

+ ηp3xy
(g4+y)(1+αw) − ηµ2z;

de la cual se llega al conjunto

S (h5) = { (r + p2) y − r
by

2 − p2g3y
g3+w

−Pxy − ηµ2z = 0};

donde

P := (ηp3−a)y−awyα−awαg4−ag4+ηg2p3

(g4+y)(g2+y)(1+αw) ;

y se tiene que P ≥ 0 si se considera lo siguiente
para el valor de η

η ≥ mı́n
{
ag4

p3g2
, a
p3

}
;

entonces, se puede llegar a la siguiente fórmula

h5|S(h5)
= 1

µ2
[− δ1

(
y − δ2

2δ1

)2

−p2g3y
g3+w − Pxy +

δ2
2

4δ1
];

donde
δ1 = r

b ;

δ2 = r + p2 + µ2;

y se puede reescribir como se muestra a continua-
ción

h5|S(h5)
≤ δ2

2

4δ1µ2
;

por lo tanto, se obtiene que: Todos los conjuntos
compactos invariantes se encuentran localizados
en el dominio

K∗ (h5) =
{

0 ≤ y + ηz ≤ δ2
2

4δ1µ2

}
.

El conjunto anterior se puede redefinir mediante
la intersección K∗ (h5) ∩ {y = 0} y se determina
que: Todos los conjuntos compactos invariantes de
la variable z (t) se encuentran localizados en el
dominio

K (h5) =
{

0 ≤ z ≤ z2 máx :=
δ2
2

4δ1µ2η

}
.

6. Dominio de localización mediante una fun-
ción no lineal. Se toma la función localizadora
h6 = xy, cuya derivada de Lie está dada por

Lfh6 = y
[

cy
1+γw − µ1x+

(
xz
g1+z

)(
p1 − q1w

q2+w

)]
+xy

[
r
(
1− y

b

)
− ax

g2+y + p2w
g3+w

]
;

entonces, al realizar las operaciones correspon-
dientes, se obtiene el conjunto

S (h6) = { cy
1+γw − µ1x+

(
xz
g1+z

)(
p1 − q1w

q2+w

)
+rx− r

bxy −
ax2

g2+y + p2wx
g3+w = 0};

y se puede llegar a la siguiente fórmula

r
bh6|S(h6)

= x
(

1− g1

g1+z

)(
p1 − q1w

q2+w

)
−µ1x+ rx+ cy

1+γw −
ax2

g2+y

+p2x
(

1− g3

g3+w

)
;

ésta última se puede redefinir al aplicar el Teorema
Iterativo con los conjuntos K (h1) y K (h2)

r
bh6|

S(h6)∩2
i=1

K(hi)
≤ −µ1x+ p1x+ rx

− ax2

g2+ymáx
+ cymáx

+p2x
(

1− g3

g3+wmáx

)
;

ahora, realizando las sustituciones correspondien-
tes se obtiene lo siguiente

h6|
S(h6)∩2

i=1
K(hi)

≤ b
r

(
−β1x

2 + β2x+ cymáx

)
;

donde:
β1 := a

g2+ymáx
;
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β2 := p2wmáx

g3+wmáx
+ p1 + r − µ1;

entonces, se completan cuadrados y se obtiene

h6|
S(h6)∩2

i=1
K(hi)

≤ b
r

[
−β1

(
x− β2

2β1

)2

+
β2

2

4β1
+ cymáx

]
;

de esta forma se concluye que: El conjunto de
localización está dado por

K (h6) =
{
xy ≤ b

r

(
β2

2

4β1
+ cymáx

)}
.

�

Es importante mencionar que la condición µ1 >
p1 implica que la tasa de muerte de las células
efectoras es mayor a su tasa de proliferación y
afecta solamente a los conjuntos de localización
K (h3) y K (h4) los cuales representan los lı́mites
máximos de las densidades de las células efecto-
ras (ẋ) y la citocina IL − 2 (ż) respectivamente.
En la sección 5 se presentan los escenarios en los
cuales se puede cumplir esta condición, ası́ como
las implicaciones biológicas que ésto conlleva. La
importancia del conjunto de localización K (h5) ra-
dica en que su existencia no condiciona los valores
de los parámetros del sistema de Evasión-Inmune
(1).

4. Dominio acotado positivamente
invariante

En esta sección se describen las condiciones
necesarias bajo las cuales el dominio KBPID es
atractivo y positivamente invariante en R4

+,0. Para
demostrarlo se utiliza una teorı́a relacionada al sis-
tema presa-depredador de Lotka-Volterra, el cual
posee una primera integral conformada por una
combinación de funciones lineales y logarı́tmicas
de sus variables. Este tipo de combinaciones pue-
de ser utilizada con el propósito de encontrar fun-
ciones candidatas de Lyapunov de modelos que
describen la dinámica de sistemas biológicos. De
esta forma, se propone una función candidata de
Lyapunov para el sistema de Evasión-Inmune (1) y
se logra determinar el Teorema 4.

Teorema 4. Si se cumple que µ1 > p1, entonces el
politopo

KBPID := K (h1)∩K (h2)∩K (h3)∩K (hz)∩K (h6) ;

es un Dominio Acotado Positivamente Invariante
en R4

+,0 ∩ {y > 0} para el sistema de Evasión-
Inmune (1).

A continuación se presenta la prueba del Teore-
ma 4. Se toma la siguiente función candidata de
Lyapunov:

h = ε1x+ε2y−ln y+ε3z+ε4w, y, εi > 0, i = 1, ..., 4;

cuya derivada se encuentra dada por la siguiente
expresión:

Lfh = ε1cy
1+γw − ε1µ1x+ ε1

(
xz
g1+z

)(
p1 − q1w

q2+w

)
+ε2ry − ε2r

b y
2 − ε2axy

g2+y + ε2p2wy
g3+w

−r + r
by + ax

g2+y −
p2w
g3+w + ε3p3xy

(g4+y)(1+αw)

−ε3µ2z + ε4p4y
2

τ2
c +y2 − ε4µ3w.

Ahora, tomando los términos racionales positivos
de la forma G

σ+G ; se pueden obtener las siguientes
igualdades:

ε1xz
g1+z

(
p1 − q1w

q2+w

)
= ε1p1x−ε1

g1p1x
g1+z −ε1

q1wxz
(q2+w)(g1+z) ;

ε2p2wy
g3+w = ε2p2y − ε2p2g3y

g3+w ;

ε3p3xy
(g4+y)(1+αw) = ε3p3x

1+αw −
ε3p3g4x

(1+αw)(g4+y) ;

ε4p4y
2

τ2
c +y2 = ε4p4 − ε4τ

2
c p4

τ2
c +y2 .

Agrupando los términos correspondientes a las
variables x y y, es posible determinar las desigual-
dades que se muestran a continuación:(

−ε1µ1 + ε1p1 + a
g2+y + ε3p3

1+αw

)
x ≤ ρ1x;

(
ε1c

1+γw + ε2r + r
b + ε2p2

)
y ≤ ρ2y;

donde

ρ1 := −ε1µ1 + ε1p1 + a
g2

+ ε3p3;
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ρ2 := ε1c+ ε2r + rb−1 + ε2p2.

Parte del desarrollo fundamental para deter-
minar atractividad del dominio de localización
KBPID, es definir las condiciones bajo las cuales
Lfh es negativa en R4

+,0 ∩ {y > 0}, entonces, se
proponen las siguientes condiciones:

µ1 > p1;

ε1 > ε3p3

µ1−p1
+ a

g2(µ1−p1) ; (3)

por lo tanto, asumiendo que existe un conjunto de
soluciones ε∗i > 0, i = 1, 3; que satisfacen (3), se
tiene:

Lfh ≤ ρ4 + ρ1x− ε∗1g1p1x
g1+z −

ε∗1q1wxz
(q2+w)(g1+z)

−ρ3

(
y − ρ2

2ρ3

)2

− ε2axy
g2+y −

ε2p2g3y
g3+w −

p2w
g3+w

− ε∗3p3g4x
(1+αw)(g4+y) − ε

∗
3µ2z − ε4τ

2
c p4

τ2
c +y2 − ε4µ3w;

donde
ρ3 := ε2r

b ;

ρ4 := −r + ε4p4 +
ρ2

2

4ρ3
;

Finalmente, si
ρ4 > 0;

se define un dominio U = {Lfh < 0} en R4
+,0 ∩

{y > 0} , dondeKBPID ⊂ U , y por fórmula se tiene

ρ4 < −ρ1x+
ε∗1g1p1x
g1+z +

ε∗1q1wxz
(q2+w)(g1+z)

+ρ3

(
y − ρ2

2ρ3

)2

+ ε2axy
g2+y + ε2p2g3y

g3+w + p2w
g3+w

+
ε∗3p3g4x

(1+αw)(g4+y) + ε∗3µ2z +
ε4τ

2
c p4

τ2
c +y2 + ε4µ3w.

Esto, de acuerdo con el Teorema de LaSalle, sig-
nifica que todas las trayectorias en R4

+,0 ∩ {y > 0}
entran en el dominio compacto KBPID, y perma-
necen en éste. Por lo tanto, para cada solución
(w,x, y, z)

T ∈ R4
+,0 ∩ {y > 0} su conjunto ω−lı́mite

ω
(

(w,x, y, z)
T
)

no es vacı́o y es un conjunto com-
pacto invariante, vea Perko [17] en §3.2 y Khalil [8]
en §4.2. Entonces se tiene que

ω
(

(w,x, y, z)
T
)
⊂ KBPID ⊂ U .

�

5. Implicaciones biológicas

La existencia de los conjuntos K (h3) y K (h4)
y del Teorema 4 depende de la condición µ1 > p1,
ésta implica que la tasa de mortalidad de las célu-
las efectoras es mayor a su tasa de proliferación.
Aunque es una condición que implica un deterioro
en la salud del paciente es importante analizarla.
En la literatura se ha encontrado que esta condi-
ción puede presentarse en un paciente debido a
los dos escenarios que se muestran a continua-
ción:

1. Los mecanismos de defensa del tumor. Éstos
afectan el tiempo de vida de las células del siste-
ma inmune y son generados por la inestabilidad
genética de las células cancerı́genas [19]. Algunos
de los mecanismos son los siguientes:

Algunos tumores presentan niveles de antı́ge-
nos demasiado bajos para ser detectados por
el sistema inmune, lo cual puede inducir apop-
tosis en las células T debido a la falta de
señales de peligro que alerten al sistema in-
munológico, este fenómeno puede provocar
una tolerancia inmunológica hacia las células
cancerı́genas.

La producción por parte del tumor de sus-
tancias inhibidoras del sistema inmunológico,
como lo es la TGF − β.

La inducción en la proliferación de las células
T supresoras por el tumor.

2. Tratamientos como la quimioterapia y la ra-
dioterapia. Éstos juegan un papel importante en la
deficiencia del sistema inmune del paciente dado
que afectan la capacidad de proliferación de las
células, lo cual disminuye el número de glóbulos
blancos y debilita el sistema inmune, ésto con-
tribuye a que el paciente sea más susceptible a
adquirir diversos tipos de infecciones [14] y [18].
En [28] Zitvogel et al. realizan un análisis detallado
sobre los efectos adversos que pueden tener en
el sistema inmunológico el arsenal de componen-
tes terapéuticos utilizados en la quimioterapia, ası́
como la condición de linfopenia ocasionada por la
radioterapia.
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Por lo tanto, los resultados mostrados en este
trabajo serı́an aplicables a la mayorı́a de los pa-
cientes. Bajo esta premisa se realizaron simulacio-
nes de las ecuaciones diferenciales del sistema de
Evasión-Inmune para distintos valores del paráme-
tro p1 que cumplieran con la condición µ1 > p1. De
esta forma se decidió utilizar el valor p1 = 0.01 y
mantener el valor µ1 = 0.03 junto con los demás
mostrados en la Tabla 1 para realizar las simula-
ciones. En la Figura 1 se muestra una comparación
de las series de tiempo de las células efectoras y
células cancerı́genas obtenidas con cada uno de
los valores de p1.

Se puede observar que al disminuir la tasa de
proliferación p1, la densidad de células efectoras
se reduce de forma significativa lo cual disminuye a
su vez la densidad de la citocina IL−2; sin embar-
go, la densidad de células cancerı́genas sólo se in-
crementa ligeramente, por lo cual se intuye que el
valor propuesto para el parámetro p1 es aceptable
debido a que no afecta de manera drástica la carga
tumoral del individuo. A su vez, se observa que
debido a la baja densidad de células efectoras, el
tiempo que el tumor permanece activo es un poco
mayor, no obstante, ambas densidades convergen
hacia el mismo valor mı́nimo. El valor máximo de la
citocina TGF − β permaneció constante, esto de-
bido a que depende de la relación p4/µ3, aunque
si se visualiza un aumento en el perı́odo que esta
citocina permanece activa. La órbita periódica de
la Figura 1 es un fenómeno conocido como “tumor
durmiente” y es una etapa en el desarrollo de la
enfermedad en la que las células cancerı́genas
permanecen ocultas y asintomáticas por largos
periodos de tiempo. Esta condición puede presen-
tarse como resultado de un tratamiento “exitoso” lo
cual la convierte en punto crı́tico para la supervi-
vencia a largo plazo del paciente [5].

Es importante mencionar que con el valor pro-
puesto para el parámetro p1 es posible obtener
las dinámicas mostradas por Arciero, Jackson y
Kirschner en [1], es decir, puntos de equilibrio,
órbitas periódicas y ciclos lı́mite estables.

6. Simulaciones

Con el propósito de ilustrar los resultados obteni-
dos, se realizan simulaciones del sistema de Eva-

Fig. 1. Comparación de las series de tiempo del sistema
de Evasión-Inmune (1) con dos valores diferentes en el
parámetro p1

sión-Inmune (1) utilizando los siguientes valores en
los parámetros: c = 0.0029, µ1 = 0.03, p1 = 0.01 y
p4 = 0.1204, los demás valores utilizados son los
mostrados en la Tabla 1. En la Figura 2 se muestra
que tomando una condición inicial fuera del domi-
nio KBPID, las trayectorias w (t), x (t), y (t) y z (t)
convergen hacia él, a su vez se observa que dentro
del dominio el conjunto ω−lı́mite ω

(
(w,x, y, z)

T
)
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se encuentra definido por una órbita periódica.
Para el conjunto de parámetros utilizados se

tiene que: z1 máx < z2 máx, por lo tanto se simuló
el lı́mite para la variable z (t) definido en el con-
junto K (h4). Ahora, dado que la órbita periódica
de la Figura 2.a y 2.b es un conjunto compacto
invariante, se puede asegurar que la trayectoria
no abandonará la región de localización cuando
t → ∞, lo que permite visualizar gráficamente el
resultado del Teorema 4.

7. Conclusiones

Utilizando el método de LCCI se logró definir
el dominio KBPID, en el cual se localizan todos
los conjuntos compactos invariantes que presen-
ta el sistema de Evasión-Inmune. Adicionalmente,
haciendo uso del método directo de Lyapunov y
el Teorema de LaSalle, se determinó que dicho
dominio es atractivo y positivamente invariante en
R4

+,0∩{y > 0}. Esto es importante debido a que el
único punto de equilibrio libre de tumor del sistema
es localmente inestable. Por lo tanto, con los resul-
tados mostrados en los Teoremas 3 y 4, se deter-
mina que las densidades de células y citocinas no
crecerán fuera de los lı́mites del dominio compacto
KBPID.

Del Teorema 3 se pueden realizar las siguientes
observaciones:

La densidad máxima de la citocina TGF−β se
muestra en el conjunto K (h1) y está dada por
la relación entre su tasa de producción (p4)
y vida media (µ3); esta relación p4/µ3 puede
tomar un rango de valores de 0−3×107 debido
a que la tasa de producción de la citocina
TGF − β varı́a de acuerdo a la densidad de
células cancerı́genas, un mayor volumen de
células producirá una mayor concentración de
citocina.

De acuerdo al resultado obtenido en el con-
junto K (h2) se puede observar que con la
presencia de la citocina TGF − β (wmáx) el
tumor tiene la capacidad de exceder su carga
máxima (b), tal como lo dicen Arciero, Jackson
y Kirschner en [1]. Esta citocina aumenta la
producción de células cancerı́genas mediante

Fig. 2. Dinámica que muestra la convergencia de las
trayectorias del sistema de Evasión-Inmune (1) hacia
una órbita periódica dentro del dominio de localización
KBPID: a) Proyección del plano de fase de las variables
w,x, y. b) Proyección del plano de fase de las variables
x, y, z

la relación dada por la tasa de proliferación
inducida (p2) y su crecimiento intrı́nseco (r).
Cabe destacar que el valor de wmáx puede
variar dependiendo del tipo de tumor y de la
etapa de desarrollo en la que se encuentre,
por lo tanto, la densidad de células cancerı́ge-
nas con una tasa de producción muy alta de
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la citocina TGF − β (p4) alcanzará un valor
crı́tico en el cual el tumor ya no podrá ser
contenido en su ambiente inicial y comenzará
a estimular el proceso de angiogénesis con el
propósito de obtener los nutrientes y oxı́geno
necesarios para su sustento, esto implica que
comenzará el proceso de metástasis.

Con el objetivo de determinar el lı́mite para
la densidad máxima de las células efectoras
mostrado en el conjunto K (h3), fue necesario
imponer la condición µ1 > p1, con esta se ob-
tiene que su densidad máxima es una relación
entre la proporción dada por la antigenicidad
(c) de las células cancerı́genas (ymáx) y las
tasas de muerte (µ1) y proliferación (p1) de
las propias células efectoras. Este lı́mite varı́a
según el parámetro c el cual tiene un rango de
0 − 0.035, en [1] se muestra un análisis para
diferentes valores y los tipos de dinámicas
que se pueden obtener, un valor alto impli-
ca que las células cancerı́genas pueden ser
detectadas con mayor facilidad por el sistema
inmunológico, mientras que con un valor bajo
el sistema inmunológico pierde el control so-
bre el tumor y éste puede alcanzar su carga
máxima (b).

Mediante la utilización del Teorema Iterativo
fue posible determinar dos lı́mites superiores
para la citocina IL − 2 : z1 máx y z2 máx, de-
finidos en los conjuntos K (h4) y K (h5) res-
pectivamente. Sin embargo, la existencia del
lı́mite z1 máx depende de la condición µ1 > p1,
mientras que el lı́mite z2 máx no presenta res-
tricciones en los parámetros del sistema. El
lı́mite z1 máx describe la densidad máxima de
la citocina como una proporción de la densi-
dad máxima de las células efectoras (xmáx),
dicha proporción está dada por la relación en-
tre la tasa de producción (p3) y la vida media
(µ2) de la citocina IL− 2. En el lı́mite z2 máx la
densidad máxima depende principalmente de
la relación entre la carga tumoral máxima (b)
y el crecimiento intrı́nseco del tumor (r). Para
determinar qué conjunto forma parte del domi-
nio KBPID se elige el mı́n {z1 máx, z2 máx}, el
cual, de acuerdo a los parámetros utilizados

en la simulación numérica en la sección 5, es
el valor z1 máx.

El parámetro a representa la fuerza inmu-
nológica contra el cáncer y su influencia se
observa en el conjunto K (h6), con éste se
logra disminuir el dominio donde se localiza la
dinámica de las células efectoras y las células
cancerı́genas.

Cabe destacar que los parámetros de satura-
ción g1, g4 y τ2

c no afectan los dominios de
localización. El parámetro g1 se descarta en
el término racional: −g1 (g1 + z)

−1 para poder
obtener el conjunto K (h3). Los parámetros g4

y τ2
c pierden su influencia en los dominios de

localización ya que ymáx � g4, τ2
c y por lo tanto

el valor de los términos:
ymáx

g4+ymáx
,

y2
máx

τ2
c +y2

máx
≈ 1.

Los parámetros de inhibición γ y α son elimi-
nados al tomar las desigualdades:

cy
1+γw ≤ cy;

p3xy
(g4+y)(1+αw) ≤ p3xy

g4+y ;

esto con el propósito de obtener los conjuntos
K (h3) y K (h4) respectivamente.

Se espera que el análisis realizado en este do-
cumento ayude a comprender mejor a los médicos
especialistas la dinámica en corto y largo plazo de
la enfermedad, esto debido a que los lı́mites del
dominio KBPID pueden ser manipulados ya que
se encuentran definidos mediante desigualdades
en función de los parámetros del sistema. Dicha
manipulación podrı́a lograrse mediante la aplica-
ción de tratamientos o bioterapias que ayuden a
potenciar el sistema inmune o regular los mecanis-
mos de defensa del tumor cancerı́geno. A su vez,
en base a los resultados obtenidos, los médicos
podrı́an planear mejor las dosis y horarios de las
terapias.
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