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Resumen. En este articulo se estudia la dinamica global
del modelo de Evasién-Inmune presentado por Arciero,
Jackson y Kirschner [1], el cual describe la interaccién
entre células efectoras, células cancerigenas y las ci-
tocinas IL — 2 y TGF — 8 en el sitio del tumor. El
sistema modela distintos comportamientos, como lo son:
puntos de equilibrio, érbitas periédicas y ciclos limite
estables. Utilizando el método de Localizaciéon de Con-
juntos Compactos Invariantes se logra definir un dominio
en el espacio de estados donde se localizan todas las
dindmicas que exhibe el modelo de Evasion-inmune. La
localizacion de dicho dominio es importante debido a
que proporciona informacion sobre la salud del individuo
en corto y largo plazo. Los limites de tal dominio repre-
sentan los valores minimos y maximos de las variables
de estado y se expresan mediante desigualdades alge-
braicas dadas por una combinacién de los parametros
del sistema. Adicionalmente, mediante una funcién can-
didata de Lyapunov, se demuestra que la regién de loca-
lizacion es un dominio positivamente invariante, lo que
permite asegurar que dada cualquier condicién inicial,
las trayectorias del sistema no divergen. Finalmente,
se presentan simulaciones numéricas y se realiza un
analisis de las posibles implicaciones bioldgicas de los
resultados obtenidos.

Palabras clave. Conjunto compacto invariante, dominio
acotado positivamente invariante, Lyapunov, cancer, sis-
tema bioldgico.

Study of the Global Dynamics for a
Tumor Immune-Evasion System

Abstract. In this paper we study the global dynamics for
a Tumor Immune-Evasion model proposed by Arciero,

Jackson and Kirschner [1], which describes the interac-
tion between effector cells, cancer cells, and the cytoki-
nes IL — 2 and TGF — 3 in the tumor site. This system
describes different behaviors such as equilibrium points,
periodic orbits, and stable limit cycles. By using the Lo-
calization of Compact Invariant Sets method, we define
a domain where all the dynamics of the Immune-Evasion
system are located. The localization of these sets is
important because they provide information about the
individual’s health in the short and long term. The domain
boundaries are expressed by inequalities depending on
the system’s parameters and represent the minimum and
maximum values of the system variables. Furthermore,
by taking a Lyapunov candidate function, we demons-
trate that the localizing region is a positively invariant
domain. This ensures that for any initial condition out-
side this domain, the trajectories of the system will not
diverge. Finally, we present numerical simulations and
realize an analysis of possible biological implications of
our results.

Keywords. Compact invariant set, bounded positively
invariant domain, Lyapunov function, cancer, biological
system.

1. Introduccion

El cancer es considerado una de las principales
causas de enfermedad y muerte a nivel global, de
acuerdo con la Organizacion Mundial de la Salud,
en el ano 2008 se registraron 12.7 millones de
casos de los cuales se estima que murieron 7.6
millones de personas, esto representa alrededor
del 13% de las muertes totales en el mundo [27].
Aunque México tiene la tasa de mortalidad mas
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baja en América Latina, el cancer representa la
tercera causa de muerte en el pais, en el 2011 el
12.07 % del total de defunciones fueron a causa de
algun tumor maligno [6], [26].

Cancer es un término utilizado para definir un
grupo de enfermedades que pueden afectar a una
persona en alguna parte del cuerpo y se carac-
teriza por un crecimiento anormal de células que
han perdido la capacidad de regular su tiempo de
vida (apoptosis), este fenédmeno les permite crecer
mas alla de sus limites habituales e invadir tejidos
y 6rganos circundantes, los cuales forman nuevos
focos cancerosos, conocidos como tumores malig-
nos. El proceso en el que las células cancerigenas
se diseminan a través del cuerpo se conoce co-
mo metéastasis y representa la principal causa de
muerte por esta enfermedad.

Con el proposito de analizar la dinamica en
corto y largo plazo del cancer, los especialistas
han recurrido al uso de modelos matematicos [4],
cuya utilidad radica en el hecho de que pueden
proporcionar informacion sobre el crecimiento de
un tumor maligno y su interaccién con el sistema
inmunoldgico, asi como el efecto producido por
ciertos tratamientos, como referencia se pueden
encontrar diversos ejemplos, e.g., [1], [2], [7], [9],
[13], [15], [16].

La Localizacion de Conjuntos Compactos In-
variantes (LCCI) es una herramienta que permi-
te analizar la dinamica global de modelos ma-
tematicos de ecuaciones diferenciales ordinarias.
El método fue propuesto por Krishchenko en [11]
y optimizado por Krishchenko y Starkov en [12] y
ha sido utilizado recientemente para el andlisis de
sistemas bioldgicos: [3], [20], [21], [22], [23], [24],
[25]. Por ejemplo, en [24] Starkov y Pogromsky
analizan la dinamica del sistema de cinco ecua-
ciones diferenciales de Owen-Sherratt [15], el cual
describe la interaccion entre el desarrollo de un
tumor cancerigeno, macroéfagos y células sanas;
utilizando el método de LCCI se obtienen los va-
lores minimos y maximos de las variables del mo-
delo y se determinan condiciones bajo las cuales
cualquier trayectoria en R% converge a un punto
de equilibrio libre de tumor. El objetivo principal de
utilizar el método de LCCI es definir un dominio
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en el cual se localizan todos los conjuntos com-
pactos invariantes de un sistema especifico, la lo-
calizacién de dichos conjuntos es importante para
el analisis de sistemas bioldgicos que describen
la evolucién de un tumor maligno, ya que éstos
proporcionan informacién sobre la carga tumoral
en un sitio especifico del cuerpo, la eficacia del
sistema inmunoldgico para combatir el tumor y la
eficiencia de los tratamientos aplicados.

La posibilidad de determinar que la region de
localizacion es un Dominio Acotado Positivamente
Invariante (DAPI) es un proceso Util en el andlisis
de modelos matematicos que describen el creci-
miento de un tumor maligno. Su importancia ra-
dica en el hecho de que los limites superiores e
inferiores del DAPI poseen un significado biol6gi-
co sobre las densidades maximas y minimas de
las variables del sistema, las cuales pueden ser:
células cancerigenas, células efectoras, proteinas
que estimulan o regulan una respuesta anti-tumor
por parte del sistema inmunoldgico o incluso la
concentracion de algun tratamiento. El determinar
que la region de localizacién es un DAPI implica
que cualquier trayectoria que entre en él perma-
necera dentro del mismo para todo tiempo futuro
y, debido a que sus limites se encuentran expre-
sados en funcién de los parametros del modelo,
los especialistas tendran la oportunidad de ma-
nipular la dinamica global del sistema mediante
la variacion de los parametros cuando ello sea
posible fisioldgicamente. Esta manipulacién puede
lograrse mediante la aplicacién de tratamientos o
bioterapias que ayudan a potenciar la respuesta
del sistema inmunol6gico o regular los mecanis-
mos de defensa de un tumor cancerigeno.

Debido a su complejidad, el calculo explicito
de los limites inferiores y superiores de un DA-
Pl es un problema poco estudiado para sistemas
bioldgicos que describen el desarrollo de un tumor
cancerigeno. No obstante, en [20] Starkov y Coria
presentan el analisis de la dinamica global para el
modelo de inmunoterapia propuesto por Kirschner
y Panetta [9], el cual describe la interaccion entre
células efectoras, células cancerigenas, la citocina
interleucina-2 (IL — 2) y el efecto producido por la
aplicacion de dos tratamientos de inmunoterapia.
El interés particular en el sistema radica en la
variedad de conjuntos compactos invariantes que
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exhibe, como lo son: érbitas periddicas, homoclini-
cas y heteroclinicas, ciclos limite estables y puntos
de equilibrio. Aunque el modelo de inmunoterapia
ha sido estudiado anteriormente mediante cuasi-
funciones de Lyapunov en [10], solo se obtienen
el limite maximo para la carga tumoral y el limite
inferior para la densidad de la citocina IL — 2. Sin
embargo, utilizando el método de LCCI, Starkov y
Coria definen un dominio compacto en R? cuyos
limites se expresan en funciéon de los parametros
del modelo y los tratamientos de inmunoterapia.
Adicionalmente, se determina que la regién de
localizacion es un DAPI y se definen condiciones
de atraccion hacia un punto de equilibrio libre de
tumor.

En este documento se presenta el estudio de la
dindmica global del modelo matematico de Eva-
sién-Inmune presentado por Arciero, Jackson y
Kirschner en [1]. Este sistema modela el desarro-
llo de un tumor maligno y su interacciéon con el
sistema inmunolégico mediante cuatro ecuaciones
diferenciales: la citocina TG F —  (Factor de creci-
miento transformante - Beta) (w), células efectoras
(¢), células cancerigenas (y) y la citocina IL — 2

(2)-

2
. pay
- — - 1
w Tg+y2 H3W; ()
e () ()
T = — T — ;
1+yw i g1tz b g2 +w
g o= r(1-Y) - Y
b gty gzst+w’
p3xry
= _/,LQZ.
(94 +y) (1 + aw)

La dinamica del sistema de Evasién-Inmune (1)
se encuentra localizada en el ortante positivo, es
decir:

R :={w>0,7>0,y >0,z > 0}.

A continuacion se presenta la descripcién de los
parametros del sistema:

u1: Tasa de muerte de las células inmunes.

p1: Tasa de proliferacion de las células efectoras.
g1: Saturacién media del término p;.

c¢: Antigenicidad.

~: Inhibicion de antigenos por la TGF — §.

q1: Tasa del efecto de anti-proliferacion.

g2: Saturacion media del término q;.

r: Tasa de crecimiento intrinseco del cancer.

b: Carga tumoral maxima.

a: Fuerza inmunolégica contra el cancer.

g2: Saturacion media del término a.

p2: Tasa de proliferacion de células cancerigenas.
g3: Saturacién media del término ps.

ps3: Tasa de produccién de la IL — 2.

ueo: Vida mediadela IL — 2.

g4: Saturacién media del término ps.

a: Inhibicion de la IL — 2 por la TGF — .

p4: Tasa de producciéon maxima de la TGF — 3.
7.: Acumulacion critica de células cancerigenas.
us3: Vidamediade laTGF — .

Los valores de los parametros se muestran en la
Tabla 1, la estimacion de los valores es presentada
en [9] por Kirschner y Panetta y en [1] por Arciero,
Jackson y Kirschner.

La caracteristica principal del modelo es que
toma en consideracion que el tumor secreta la
citocina TGF — 3, la cual es uno de los principales
factores que impide el combate de dicho tumor
por el sistema inmunoldgico; a continuacion se
describen sus principales efectos:

a) Contrarrestar las propiedades inmuno-
estimuladoras de la IL — 2.

b) Prevenir la deteccion del tumor por parte del
sistema inmune.

c¢) Inhibir la activacion y expansion de las células
T citotoxicas y células B.

d) Reducir la expresion de antigenos en las célu-
las cancerigenas.
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Tabla 1. Valores de los parametros correspondientes al
modelo de Evasion-Inmune

Parametro Valor
I3 0.03 dias=1
D1 0.1245 dias™*
9 2 x 107 pg/1
c 0 —0.035 dias™!
ot 101/pg
q 0.1121 dias™*
4 2 x 10% pg/1
r 0.18 dias™!
b 1 x 10° células/ml
1 dia=1
92 1 x 10° células/ml
Do 0.27 dias™*
g3 2 x 107 pg/ml
D3 5 pg/ (células x dia)
L2 10 dias™!
94 1 x 103 células/ml
a 1 x 1073 1/pg
D4 0 — 3 x 108 pg/ (I x dias)
Te 1 x 108 células/ml
U3 10 dias™!

Adicionalmente, la citocina TGF — (3 posee pro-
piedades angiogénicas, lo que beneficia el desa-
rrollo y metastasis de los tumores malignos [1],
[19].

El sistema de Evasién-Inmune (1) posee sola-
mente un punto de equilibrio libre de tumor dado
por E = (0,0,0,0). Al linealizar el sistema se
encuentran los siguientes valores propios: A; = r,
Ay = —p1, A3 = —p2, Ay = —pu3; por lo que se
determina que el punto de equilibrio libre de tumor
es localmente inestable.

La estructura del trabajo es la siguiente: En
la siguiente secciéon se muestran los preliminares
matematicos relacionados a la teoria de LCCI; en
la seccion 3 se presenta el calculo de un dominio
compacto donde se localizan todos los conjuntos
compactos invariantes del sistema de Evasion-
Inmune (1); después se presentan las condiciones
necesarias para la existencia de un DAPI en el
ortante positivo R ,; en la seccion 5 se presentan
las implicaciones biolégicas de los resultados ob-
tenidos, después se muestran simulaciones para
ilustrar la convergencia de las trayectorias w (t),
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x (t), y(t) y z (t) hacia el dominio de localizacion
Kgprp, y finalmente, se presentan las conclusio-
nes de la investigacion.

2. Preliminares matematicos

El método de “Localizacion de Conjuntos Com-
pactos Invariantes” se utiliza para determinar un
dominio en R™ en el cual se localizan todos los
conjuntos compactos invariantes que se presentan
bajo ciertas condiciones en un sistema especifico,
estos conjuntos pueden ser: Orbitas periddicas,
homoclinicas y heteroclinicas, ciclos limite, puntos
de equilibrio y atractores cadticos. La importancia
del método radica en que el andlisis es Util para
conocer la dinamica del sistema a largo plazo;
su caracteristica principal consiste en que es un
método estrictamente analitico, lo que implica la
solucion del problema sin la necesidad de realizar
la integracién numérica del sistema de ecuacio-
nes diferenciales. A continuacion se describiran
los teoremas, notaciones y definiciones basicas
utilizadas.

Considere un sistema no lineal de la forma:

= f(x); (2)

donde f es una funcion vectorial continua para un
C>y xz € R"™ es el vector de estados. Sea h(z) :
R"” — R, la cual es llamada funcion localizado-
ra y no es la primera integral de (2), entonces,
por h|p se denota la restriccién de h a un con-
junto B ¢ R™. Por S(h) se denota el conjunto
{x € R"| Lyh(x) =0}, donde Lsh es la derivada
Lie de (2) y esta dada por: L;h = (0h/0z) f (x).
Ademas se define hiy¢ := inf{h(z) | = € S(h)};
hsup = bup{h('r) | T e S(h’)}

A continuacién se definiran el Teorema general
de LCCI, una Proposicion de no existencia de
conjuntos compactos invariantes y el Teorema ite-
rativo.

Teorema 1. Vea [12]. Cada conjunto compacto
invariante T' de (2) esta contenido en el conjunto
de localizacion K (h) = {hins < h(z) < hgup}-

Si se considera la localizacién de todos los con-
juntos compactos invariantes dentro del dominio
U C R™ se tiene el conjunto de localizacién K (h)N
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U, con K(h) definida en el Teorema 1. Supon-
ga que todos los conjuntos compactos invariantes
correspondientes a (2) estan localizados en dos
conjuntos cualesquiera llamados: @ y @2, donde
Q1:Q> C R™, entonces también estaran localiza-
dos en el conjunto Q1 N Q2. Ahora, si se desea
determinar la localizacién de todos los conjuntos
compactos invariantes en algun subconjunto @ del
espacio de estados R". Se formula la siguiente:

Proposicion 1. Vea [12]. Si Q N S(h) = 0 enton-
ces el sistema (2) no tiene conjuntos compactos
invariantes localizados en Q.

Un refinamiento del conjunto de localizacion
K (h) puede realizarse con el uso del teorema
iterativo que dice:

Teorema 2. Vea [12]. Sea h,,(z),m = 0,1,2,...
una secuencia de funciones de clase infinitamente
diferenciable. Los conjuntos

Ky :K(h0)7 K, = mflmefl,rru m >0,
con
Kmfl,m = {iC : hm,znf < hm(x) < hm,sup}a
hm7sup = sup hm(x)v
S(hm)me—l
P ing = inf hm ’
L ’ f S(hnLl)rrl]KnL—l (Z)

contienen cualquier conjunto compacto invariante
del sistema (2) y

KoD2K 2 2Kp2....

3. Localizacion de conjuntos
compactos invariantes

En esta seccion se definen los limites maximos
para las densidades de las células efectoras y can-
cerigenas, y las citocinas IL—2y TGF — 3. Con los
limites calculados se define un dominio compacto
en RY , en el cual se localizan todos los con-
juntos compactos invariantes del sistema de Eva-
sion-Inmune (1). Estos se encuentran expresados
mediante desigualdades en funcién de los parame-
tros del sistema y se obtienen mediante funciones
localizadoras lineales y no lineales. El formulee que
define la regién de localizacion se muestra en el

Teorema 3; para determinar este teorema se utili-
zaron las funciones localizadoras: hy = w, hs = y,
hs =z, hy = z, hs = y+nz Yy hg = xy. Por simplici-
dad en las notaciones de esta seccidon se conside-
ra: S(h)={Lsh =0}, S(h;):=5(h;)N{y >0},
i=2,6;y K(h) = K(h)NR4 .

Teorema 3. Todos los conjuntos compactos in-
variantes del modelo de Evasion-Inmune (1) se
encuentran contenidos dentro del dominio:

Kppip = K (hl)ﬁK (hz)ﬂK (hg)ﬁK (hz>ﬂK (hﬁ);

donde

K(hl){0§w§wméx:zz};

P2Wmsax
Kh) =30<y < ymsx:=b|1+ - :
(ha) { =V=Y ( +T(93+wméx>>}

CYmax

M1 —P1

K(hs)—{OSxSxmax:— 7/~L1>p1};

K (hy) = {0 <2 < Zimax i= %xménu H1 > p1} ;

62
K (hs) = {0 <z < Zomax 1= 451;27]} :
(h4) 51 21 max < 22 max,

K
K (hS) st 21 méx Z 22 méx,
b 2
K (he) = {QZIJS - (fgl‘f'cyméuc)};

y las constantes n, 6; y B;, i = 1,2; se definen
como

n > minq 2L 4 L.
- pP3g2’ p3

..
o = = 3
d2 1 =71 +p2top;
. a .
oo = 92+ Ymax ’
. __ _P2Wmisx —
B2 T g3+ Wmax TP =

A continuacion se muestra, mediante seis fun-
ciones localizadoras, la prueba del Teorema 3:
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1. Limite superior de la proteina TGF — 3, w (¢) .
Se toma la funcién localizadora h; = w, cuya
derivada de Lie esta dada por

2
Lihy = zi_w — H3W;
y de la cual se obtiene el conjunto
T2
S (hy) = {p4 (1—737;/2> —M3w=0};

entonces, se puede llegar a la siguiente férmula

2
— P4 _ _Tc .
sy = 1 (1 T§+y2) ’

por lo tanto se determina que: Todos los conjun-

tos compactos invariantes de w (t) se encuentran

localizados en el dominio
K(hl):{ogwgwméx = %}

2. Limite superior de las células cancerigenas,

y (¢) . Se utiliza la funcion localizadora hy = y, de
la cual al calcular su derivada de Lie se obtiene

ary + p2wy .

— _r,2
Liha =7y = 30" — 535 + qarw

ahora, se puede llegar al conjunto

S (he) = {T — Y~ aky T2 (1 - gsgju,) = 0} ;

del cual se obtiene
_b _ _ 93
h2|s(hz) -7 {T gz+y +p2 ( gs+w)} .

Aplicando el Teorema lterativo utilizando el conjun-
to K (hy) se tiene

halspynrein =0 [1 + 5 (1 - 93+913max):| ;

lo que permite aseverar que: Todos los conjuntos
compactos invariantes de y (t) se encuentran loca-
lizados en el dominio

K (h2) = {0 < y < s 1= b (14 2z )1

3. Limite superior de las células efectoras, = (¢) .
Se utiliza la funcion localizadora hs = =z, y se
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obtiene su derivada de Lie como se muestra a
continuacion

Lyhs = 1+"/w T T <91+2> (pl - qzikww> ;

entonces, se obtiene el conjunto

S(h’d) = {1+'yw — T+ p1x

_gipir __ q1wrz — O}
g1+z (g2+w)(g1+2) )

del cual, al discriminar los términos racionales ne-
gativos y si la siguiente condicion se cumple

p1 > pi;

se llega a la siguiente férmula

1 cy .
h3|sng) < (m—m) (1+7w>’

ahora, mediante el Teorema lterativo, se puede
redefinir h3|s(h3)y se llega a lo siguiente

L) (etman)

3|S(hg)ﬂ$:1K(hi) - <“1*p1

entonces, se tiene que: Todos los conjuntos com-
pactos invariantes de x (t) se encuentran localiza-
dos en el dominio

K (h3) = {O <z < Tmax = Cyﬂ}

H1—P1

4. Limite superior de la citocina IL — 2, z (¢) . Al

tomar la funcion localizadora hy = z, y calcular su
derivada de Lie se llega a

— p3TyY .

th4 - (g4+y§’(1+aW) 2%

entonces se puede obtener el conjunto
S (h) = {5 (1= 3t5) — = = 0}
del cual se determina
- uz(g)j-xaw) (1 N gfiy) ’
ahora, sila condicion i1 > p1, se cumple, se puede

redefinir iy, - haciendo uso del Teorema lterativo
como se muestra a continuacion

h4\s<h4)

h < P3Tmax 1— 94 .
4|s(h4)m7 LK(hy) — B2 ga+Ymax )’
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por lo tanto, se determina que: Todos los conjun-
tos compactos invariantes de z (t) se encuentran
localizados en el dominio

K(h4) — {0 S z < P3TmaxYmax = szméx} .

= p2(94+Ymsx) — #1 méx m

5. Limite superior de la citocina /L — 2, sin
restriccion en los parametros del sistema. Me-
diante la funcién localizadora hs = y + 1z, es po-
sible establecer un limite adicional para la variable
z (t). Se calcula su derivada de Lie y se obtiene lo
siguiente

ary p2wy

_ 2
Lihs = ry—3y T g2ty T gstw

np3ry _ .
Tty (Traw) — TH2%
de la cual se llega al conjunto

S(hs) = {(r+p2)y - ju? - P2

—Pxy —nusz = 0};
donde

p .- (ps—a)y—awya—awags—agatngaps .
’ (9a+y)(g2+y) (1+ow) ’

y se tiene que P > 0 si se considera lo siguiente
para el valor de n

7 ags a \ .
nz mln{:”sgz’ Ps} !
entonces, se puede llegar a la siguiente férmula

Ala(v-g)

2
_ P293y _ 55 ]
gs+w ny + 461 b

h5\s<h5)

donde
01 =

02 =7+ p2 + pi2;

)

Salle]

y se puede reescribir como se muestra a continua-
cion
52
5|5 gy < Ty
por lo tanto, se obtiene que: Todos los conjuntos
compactos invariantes se encuentran localizados
en el dominio

2
K* (hs) = {Ogy—i—nzg 45612H2}.

El conjunto anterior se puede redefinir mediante
la interseccion K* (hs) N {y =0} y se determina
que: Todos los conjuntos compactos invariantes de
la variable z (t) se encuentran localizados en el

dominio
S5
461 p2n [ °
6. Dominio de localizacion mediante una fun-

cion no lineal. Se toma la funcién localizadora
he¢ = zy, cuya derivada de Lie esta dada por

Lyhe = y[lﬁiuﬁmﬁ(gﬁz)(Pl*qii“;))}

y paw | .
Y [r (1-%) - wty t ggiw} '

K (hs) = {0 <2 < Zomsx i=

entonces, al realizar las operaciones correspon-
dientes, se obtiene el conjunto

sthe) = { —me+ (52) (m - %)

T _az® prwz _ }
+re 5Ty g2ty + gs+w Oy

y se puede llegar a la siguiente féormula

g qiw
v(1-5%2) (m - )

cy az?

1+yw g2+y

T
5h6|s(h6)

—p1r +re +

_ _39 .
oo (1- 585)

ésta Ultima se puede redefinir al aplicar el Teorema
Iterativo con los conjuntos K (hy) y K (he)

r < -
th‘s(h,G)m%le(hi) - fi + p1v+ e
__az® + CUma
g2+Ymax Ymix

_ g .
TP (1 93+Ug)max) !

ahora, realizando las sustituciones correspondien-
tes se obtiene lo siguiente

b 2 .
K(h;) < T (_B z” + BQCC + Cyméx) ’

Olsnernz_,

donde:
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52 p— P2Wmsx +p1 +T*,U1;

g3+ Wmax

entonces, se completan cuadrados y se obtiene

S(he)n2_q K(h;)

2 2
he| <? [—51 (33 - %) + fﬁ + Cyméx:| ;

de esta forma se concluye que: El conjunto de
localizacion esta dado por

2
K (he) = {IZJ <?t (fﬁ + Cyméx>} .
O

Es importante mencionar que la condicién u; >
p1 implica que la tasa de muerte de las células
efectoras es mayor a su tasa de proliferacién y
afecta solamente a los conjuntos de localizacién
K (hs) y K (ha4) los cuales representan los limites
maximos de las densidades de las células efecto-
ras (&) y la citocina IL — 2 (£) respectivamente.
En la seccién 5 se presentan los escenarios en los
cuales se puede cumplir esta condicién, asi como
las implicaciones biolégicas que ésto conlleva. La
importancia del conjunto de localizacién K (hs) ra-
dica en que su existencia no condiciona los valores
de los parametros del sistema de Evasion-Inmune

(1).

4. Dominio acotado positivamente
invariante

En esta seccién se describen las condiciones
necesarias bajo las cuales el dominio Kgprp €s
atractivo y positivamente invariante en R? . Para
demostrarlo se utiliza una teoria relacionada al sis-
tema presa-depredador de Lotka-Volterra, el cual
posee una primera integral conformada por una
combinacion de funciones lineales y logaritmicas
de sus variables. Este tipo de combinaciones pue-
de ser utilizada con el proposito de encontrar fun-
ciones candidatas de Lyapunov de modelos que
describen la dinamica de sistemas bioldgicos. De
esta forma, se propone una funcién candidata de
Lyapunov para el sistema de Evasion-Inmune (1) y
se logra determinar el Teorema 4.
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Teorema 4. Si se cumple que 1 > p1, entonces el
politopo

Kppip =K (hl)ﬂK (hg)ﬁK (hg)ﬂK (hz)ﬂK (h@);

es un Dominio Acotado Positivamente Invariante
en R}, N {y >0} para el sistema de Evasion-
Inmune (1).

A continuacion se presenta la prueba del Teore-
ma 4. Se toma la siguiente funcion candidata de
Lyapunov:

h =e1x+ey—Iny+esz+eqw, y,e; >0, i=1,....4;

cuya derivada se encuentra dada por la siguiente
expresion:

Lih = 8% —eynz+e (gsz) (p1 B quw)

_ ear,2  E20axy EaP2wWY
TEY = Y T gty T gatw

_ T ar _ _ _p2w €3p3LY
r+zyt g2ty gstw + (94+y) (1+aw)

2
S
—e3piaz + Sy — eapzw.

Ahora, tomando los términos racionales positivos
de la forma =& ; se pueden obtener las siguientes

) c+G?
igualdades:
g1z _ _qw — _ giprr qQuwrz .
9tz (P q2+w) SIPIT=EL g 42 TE (garw) (g1 +2)
€2Pp2WY __ _ E2p2g3y.
gstw €2p2Y gstw ’
£3p3TY — E3p3r €3P3g4x .
(ga+y)(1+aw) 1+aw (1+ow)(ga+y)’
capay’ _ €aTZpa

T24yT E4P4 — TIy?

Agrupando los términos correspondientes a las
variables x y y, es posible determinar las desigual-
dades que se muestran a continuacioén:

(—€1M1 tem+ i+ ﬁﬁl,) r < pi

(1j1,fw +er+ 3+ 62}72) y < p2y;
donde

p1i= —€1pn +e1p1 + - +E3ps;
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p2 i=€1c+ o + rb~t 4 Eap2.

Parte del desarrollo fundamental para deter-
minar atractividad del dominio de localizacion
Kgprp, es definir las condiciones bajo las cuales
Lsh es negati\{a en RN {?J > 0}, entonces, se
proponen las siguientes condiciones:

1 > Ppi;

£3P3 a .
&1 > H1—p1 + g2(p1—p1)’ )

por lo tanto, asumiendo que existe un conjunto de
soluciones ¢f > 0,7 = 1, 3; que satisfacen (3), se
tiene:

_ gigipir elqrwzz
th S patpr g1+=2 (g2+w)(g1+2)
—p _ P2 _ €20y _ E2P29g3yY _ _P2w
3 2p3 g2ty gstw gstw
* 2
€3P394T €4T. P4

* .
T Utow)(gaty) ~ C3M2Z T TTym T E4H3W;

donde
p3 = %;
P4 = —T + E4Pa + 45753;
Finalmente, si
pa > 0;
se define un dominio U = {L;h <0} en RY ;N

{y > 0} ,donde Kgp;p C U,y por férmula se tiene

elgipiz + elqrwzz
(g2

pa < T T Fw)(g91+2)

+p3 ( — ﬂ)Q + €202y + €2P293Yy + p2w

2p3 g2ty gs+w g3+w
L EEPsGT 4ok €aT2pa 1 e paw
(1+ow)(ga+y) 3H2 T2+y? A3

Esto, de acuerdo con el Teorema de LaSalle, sig-
nifica que todas las trayectorias en R% (N {y > 0}
entran en el dominio compacto Kgprp, y perma-
necen en éste. Por lo tanto, para cada solucién
(w,2,y,2)" € Ry ;N {y > 0} su conjunto w—Ilimite

w ((w, .y, z)T> no es vacio y es un conjunto com-

pacto invariante, vea Perko [17] en §3.2 'y Khalil [8]
en §4.2. Entonces se tiene que

w ((w,x,y,z)T) C Kppip CU.

5. Implicaciones biologicas

La existencia de los conjuntos K (hg) y K (h4)
y del Teorema 4 depende de la condicion p; > pi,
ésta implica que la tasa de mortalidad de las célu-
las efectoras es mayor a su tasa de proliferacion.
Aungue es una condicién que implica un deterioro
en la salud del paciente es importante analizarla.
En la literatura se ha encontrado que esta condi-
cién puede presentarse en un paciente debido a
los dos escenarios que se muestran a continua-
cion:
1. Los mecanismos de defensa del tumor. Estos
afectan el tiempo de vida de las células del siste-
ma inmune y son generados por la inestabilidad

genética de las células cancerigenas [19]. Algunos
de los mecanismos son los siguientes:

= Algunos tumores presentan niveles de antige-
nos demasiado bajos para ser detectados por
el sistema inmune, lo cual puede inducir apop-
tosis en las células T debido a la falta de
sefales de peligro que alerten al sistema in-
munoldgico, este fendmeno puede provocar
una tolerancia inmunoldgica hacia las células
cancerigenas.

= La produccién por parte del tumor de sus-
tancias inhibidoras del sistema inmunolégico,
comoloeslaTGF — j.

= La induccién en la proliferacién de las células
T supresoras por el tumor.

2. Tratamientos como la quimioterapia y la ra-
dioterapia. Estos juegan un papel importante en la
deficiencia del sistema inmune del paciente dado
que afectan la capacidad de proliferacion de las
células, lo cual disminuye el niumero de glébulos
blancos y debilita el sistema inmune, ésto con-
tribuye a que el paciente sea mas susceptible a
adquirir diversos tipos de infecciones [14] y [18].
En [28] Zitvogel et al. realizan un andlisis detallado
sobre los efectos adversos que pueden tener en
el sistema inmunologico el arsenal de componen-
tes terapéuticos utilizados en la quimioterapia, asi
como la condicién de linfopenia ocasionada por la
radioterapia.
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Por lo tanto, los resultados mostrados en este
trabajo serian aplicables a la mayoria de los pa-
cientes. Bajo esta premisa se realizaron simulacio-
nes de las ecuaciones diferenciales del sistema de
Evasion-Inmune para distintos valores del parame-
tro p1 que cumplieran con la condicién 1 > p;. De
esta forma se decidié utilizar el valor p; = 0.01 y
mantener el valor 1 = 0.03 junto con los demas
mostrados en la Tabla 1 para realizar las simula-
ciones. En la Figura 1 se muestra una comparacion
de las series de tiempo de las células efectoras y
células cancerigenas obtenidas con cada uno de
los valores de p;.

Se puede observar que al disminuir la tasa de
proliferacion py, la densidad de células efectoras
se reduce de forma significativa lo cual disminuye a
su vez la densidad de la citocina I L —2; sin embar-
go, la densidad de células cancerigenas sélo se in-
crementa ligeramente, por lo cual se intuye que el
valor propuesto para el parametro p; es aceptable
debido a que no afecta de manera drastica la carga
tumoral del individuo. A su vez, se observa que
debido a la baja densidad de células efectoras, el
tiempo que el tumor permanece activo es un poco
mayor, no obstante, ambas densidades convergen
hacia el mismo valor minimo. El valor maximo de la
citocina TGF — 3 permaneci6 constante, esto de-
bido a que depende de la relacion p4/u3, aunque
si se visualiza un aumento en el periodo que esta
citocina permanece activa. La orbita periddica de
la Figura 1 es un fenémeno conocido como “tumor
durmiente” y es una etapa en el desarrollo de la
enfermedad en la que las células cancerigenas
permanecen ocultas y asintomaticas por largos
periodos de tiempo. Esta condicion puede presen-
tarse como resultado de un tratamiento “exitoso” lo
cual la convierte en punto critico para la supervi-
vencia a largo plazo del paciente [5].

Es importante mencionar que con el valor pro-
puesto para el parametro p; es posible obtener
las dinamicas mostradas por Arciero, Jackson y
Kirschner en [1], es decir, puntos de equilibrio,
oOrbitas periddicas y ciclos limite estables.

6. Simulaciones

Con el proposito de ilustrar los resultados obteni-
dos, se realizan simulaciones del sistema de Eva-
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Fig. 1. Comparacion de las series de tiempo del sistema
de Evasién-Inmune (1) con dos valores diferentes en el
parametro p;

sién-Inmune (1) utilizando los siguientes valores en
los parametros: ¢ = 0.0029, u; = 0.03, p; = 0.01y
ps = 0.1204, los demas valores utilizados son los
mostrados en la Tabla 1. En la Figura 2 se muestra
que tomando una condicion inicial fuera del domi-
nio Kpprp, las trayectorias w (t), = (t), y (t) y z (t)
convergen hacia él, a su vez se observa que dentro

del dominio el conjunto w—Ilimite w ((w,x,y,z)T)
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se encuentra definido por una orbita periddica.

Para el conjunto de parametros utilizados se
tiene que: z1 max < Zamax, POr lo tanto se simuld
el limite para la variable z (t) definido en el con-
junto K (hy). Ahora, dado que la 6rbita periddica
de la Figura 2.a y 2.b es un conjunto compacto
invariante, se puede asegurar que la trayectoria
no abandonara la region de localizacion cuando
t — oo, lo que permite visualizar graficamente el
resultado del Teorema 4.

7. Conclusiones

Utilizando el método de LCCI se logré definir
el dominio Kgprp, en el cual se localizan todos
los conjuntos compactos invariantes que presen-
ta el sistema de Evasion-Inmune. Adicionalmente,
haciendo uso del método directo de Lyapunov y
el Teorema de LaSalle, se determind que dicho
dominio es atractivo y positivamente invariante en
R4 ;N{y > 0}. Esto es importante debido a que el
unico punto de equilibrio libre de tumor del sistema
es localmente inestable. Por lo tanto, con los resul-
tados mostrados en los Teoremas 3y 4, se deter-
mina que las densidades de células y citocinas no
creceran fuera de los limites del dominio compacto
Kppip-

Del Teorema 3 se pueden realizar las siguientes
observaciones:

» | adensidad maxima de la citocina TGF—_ se
muestra en el conjunto K (hy) y esta dada por
la relacion entre su tasa de produccion (p4)
y vida media (u3); esta relacion py/us puede
tomar un rango de valores de 0—3 x 107 debido
a que la tasa de produccion de la citocina
TGF — g varia de acuerdo a la densidad de
células cancerigenas, un mayor volumen de
células producira una mayor concentracion de
citocina.

= De acuerdo al resultado obtenido en el con-
junto K (hy) se puede observar que con la
presencia de la citocina TGF — 8 (wmax) €l
tumor tiene la capacidad de exceder su carga
méaxima (b), tal como lo dicen Arciero, Jackson
y Kirschner en [1]. Esta citocina aumenta la
produccion de células cancerigenas mediante

1 Te+008
s 1e+008
Z0ms

5 .
Células
cancerigenas

)

7
Células efectoras (x) %10
(a)

M1 Te+00g
Yildes009
I 9e+007

Células
cancerigenas

)

Células efectoras (x) w10
(b)

Fig. 2. Dinamica que muestra la convergencia de las
trayectorias del sistema de Evasion-Inmune (1) hacia
una orbita periédica dentro del dominio de localizacion
Kgpip: a) Proyeccion del plano de fase de las variables
w, z,y. b) Proyeccién del plano de fase de las variables
x,Y, 2

la relacién dada por la tasa de proliferacion
inducida (p2) y su crecimiento intrinseco (r).
Cabe destacar que el valor de wy,;, puede
variar dependiendo del tipo de tumor y de la
etapa de desarrollo en la que se encuentre,
por lo tanto, la densidad de células cancerige-
nas con una tasa de produccion muy alta de

Computacién y Sistemas, Vol. 18, No. 4, 2014, pp. 773-786
ISSN 1405-5546
doi: 10.13053/CyS-18-4-1920



784 Paul A. Valle, Luis N. Coria y Konstantin E. Starkov

la citocina TGF — 3 (p4) alcanzara un valor
critico en el cual el tumor ya no podra ser
contenido en su ambiente inicial y comenzara
a estimular el proceso de angiogénesis con el
propdsito de obtener los nutrientes y oxigeno
necesarios para su sustento, esto implica que
comenzard el proceso de metastasis.

= Con el objetivo de determinar el limite para
la densidad maxima de las células efectoras
mostrado en el conjunto K (hs), fue necesario
imponer la condicién p; > p1, con esta se ob-
tiene que su densidad maxima es una relacién
entre la proporcion dada por la antigenicidad
(c) de las células cancerigenas (ymsx) Y las
tasas de muerte (u1) y proliferaciéon (p;) de
las propias células efectoras. Este limite varia
segun el parametro c el cual tiene un rango de
0 — 0.035, en [1] se muestra un analisis para
diferentes valores y los tipos de dinamicas
que se pueden obtener, un valor alto impli-
ca que las células cancerigenas pueden ser
detectadas con mayor facilidad por el sistema
inmunoloégico, mientras que con un valor bajo
el sistema inmunolégico pierde el control so-
bre el tumor y éste puede alcanzar su carga
maxima (b).

» Mediante la utilizacion del Teorema lterativo
fue posible determinar dos limites superiores
para la citocina IL — 2 : z1max ¥ #2max, de-
finidos en los conjuntos K (hy4) y K (hs) res-
pectivamente. Sin embargo, la existencia del
limite 21 4« depende de la condicién u; > p1,
mientras que el limite 22,5, NO presenta res-
tricciones en los parametros del sistema. El
limite z1 masx describe la densidad maxima de
la citocina como una proporcion de la densi-
dad maxima de las células efectoras (zmax),
dicha proporcién esta dada por la relacién en-
tre la tasa de produccion (p3) y la vida media
(u2) de la citocina IL — 2. En el limite 29 max 12
densidad maxima depende principalmente de
la relacién entre la carga tumoral maxima (b)
y el crecimiento intrinseco del tumor (r). Para
determinar qué conjunto forma parte del domi-
nio Kgprp se elige el min {21 max, 22 max}s €l
cual, de acuerdo a los parametros utilizados
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en la simulacién numérica en la seccion 5, es
el valor 2z msx.

» El parametro a representa la fuerza inmu-
noldgica contra el cancer y su influencia se
observa en el conjunto K (hg), con éste se
logra disminuir el dominio donde se localiza la
dinamica de las células efectoras y las células
cancerigenas.

= Cabe destacar que los parametros de satura-
cion g1, g2 y 72 no afectan los dominios de
localizacion. El parametro g; se descarta en
el término racional: —g; (g1 +2)~ " para poder
obtener el conjunto K (h3). Los parametros g4
y 72 pierden su influencia en los dominios de
localizacién ya que ymsx > g4, 72 y por lo tanto
el valor de los términos:

2
Ymax Ymax

9a+Ymax ' T2+y2

méx

~1

= Los parametros de inhibiciéon v y a son elimi-
nados al tomar las desigualdades:
cy .
I+vyw  — cy;

p3Ty p3xy .
(9aty)(I+aw) —  gaty’

A

esto con el propdsito de obtener los conjuntos
K (hs) y K (hy) respectivamente.

Se espera que el andlisis realizado en este do-
cumento ayude a comprender mejor a los médicos
especialistas la dinamica en corto y largo plazo de
la enfermedad, esto debido a que los limites del
dominio Kgprp pueden ser manipulados ya que
se encuentran definidos mediante desigualdades
en funcion de los parametros del sistema. Dicha
manipulacion podria lograrse mediante la aplica-
cion de tratamientos o bioterapias que ayuden a
potenciar el sistema inmune o regular los mecanis-
mos de defensa del tumor cancerigeno. A su vez,
en base a los resultados obtenidos, los médicos
podrian planear mejor las dosis y horarios de las
terapias.
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