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Abstract. In this paper I am going to deal with the 
phenomenon of synonymy from the logical point of 
view. In Transparent Intensional Logic (TIL), which is 
my background theory, the sense of an expression is 
an algorithmically structured procedure detailing what 
operations to apply to what procedural constituents to 
arrive at the object (if any) denoted by the expression. 
Such procedures are rigorously defined as TIL 
constructions. In this new orthodoxy of structured 
meanings and procedural semantics we encounter the 
problem of the granularity of procedure individuation. 
Though the identity of TIL constructions is rigorously 
defined, they are a bit too fine-grained from the 
procedural point of view. In an effort to solve the 
problem we introduced the notion of procedural 
isomorphism. Any two terms or expressions whose 
respective meanings are procedurally isomorphic are 
deemed semantically indistinguishable, hence 
synonymous and thus substitutable in any context, 
whether extensional, intensional or hyperintensional. 
The novel contribution of this paper is a formally 
worked-out, philosophically motivated criterion of 
hyperintensional individuation, which is defined in terms 
of a slightly more carefully formulated version of a- 
conversion and p-conversion by value, which amounts 
to a modification of Church's Alternative (A1).
Keywords. Procedural semantics, p-conversion by 
value, procedural isomorphism, transparent intensional 
logic, synonymy.

1 Introduction
The phenomenon of synonymy has been of a 
central interest for both linguists and logicians, 
and though it is an important theoretical relation 
existing in language, a satisfactory criterion of 
synonymy is still a hot issue. A seemingly simple 
definition of synonymy as the identity of meaning 
evokes many problems including, inter alia,

questions like what the meaning of an expression 
is and how fine-grained meanings should be.

This is a pressing issue, because many 
paradoxes and invalid inferences arise from a too 
coarse-grained analysis of premises. The purpose 
of logic is to differentiate between valid and 
invalid arguments so that all valid arguments be 
provable and invalid ones rejected. This in turn is 
closely connected with the granularity of 
individuation of meaning.

Possible-world semantics (PWS) that arose 
around 1960 models meanings as mappings 
defined on a domain of logical possibilities 
(‘possible worlds’). Possible-world semantics 
gained respectability and proved to be highly 
deployable in various areas, in particular, in 
modal logic and its variants like temporal and 
deontic logics, by solving the granularity issue. 
Co-intensionality is tantamount to necessary co- 
extensionality. Hence, mappings that take the 
same worlds to the same extensions come out 
identical. Formally, let the variables f, g range 
over intensions and w over possible worlds:

Vfg (Vw (f(w) = g(w)) ^  f  = g)
The basic thing to understand about this 

individuation of possible-world intensions is that it 
offers an extensional account of intensional 
entities. If A, B are sets of possible worlds then if 
A, B share exactly the same elements then A is 
identical to B. This principle of individuation is 
generalized to properties, relations-in-intension, 
etc. The possible-world semantics for modal logic 
is firmly and comfortably immersed in set theory. 
Once necessary equivalence between intensions 
has been established, lots of valid inferences can 
be drawn, and many invalid inferences are 
blocked. Various mathematical properties, or their
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absence, of various formal systems of intensions 
can also be established, like soundness and
completeness.

So far so good; however, already in 1947 [3, 
§§13ff| Carnap pointed out that there are 
attitudinal contexts that are neither extensional 
nor intensional, because the substitution of
logically equivalent expressions for the 
complement of an attitude fails here. For instance, 
one can easily believe that it is false that A
implies B without believing that A is true and B
false. Yet the truth-conditions of these two 
embedded clauses are identical, hence they are 
indiscernible in possible-world semantics.

Moreover, possible-world semantics is out of 
place in case of mathematics; all true 
mathematical statements are necessarily 
equivalent, hence identical from the PWS point of 
view. For instance, the set of equilateral triangles 
is identical with the set of equiangular triangles, 
but the property of being equilateral is not 
identical with the property of being equiangular. 
Drawing an equilateral triangle is a task different 
from drawing an equiangular triangle, and one 
can be able to do the former without being able to 
do the latter.

Ludwig & Ray said:
"In general, one term can be substituted for 

another in 'that'-clauses salva veritate only if they 
are synonymous. Perhaps the most popular 
solution to the problem of providing a 
compositional semantics for natural languages 
aims to exploit this fact by treating 'that'-clauses 
as referring to intensional entities -  entities (at 
least) as finely individuated as the meanings 
of sentences."

Thus since the late 60s, the issue of 
structured, hyperintensional meanings has been 
studied. The topic of hyperintensionality was born 
out of negativity, as it were. As mentioned above, 
Carnap noticed that there are attitudinal contexts 
that are neither extensional nor intensional, 
because the substitution of logically equivalent 
expressions fails here. Cresswell defines any 
individuation as hyperintensional that is finer 
than logical/necessary/strict equivalence.
Hyperintensionality became originally a matter 
of blocking unwanted and unwarranted 
inferences, by pointing out that the correct

substituends are hyperintensions. Indeed, any 
hyperintensional logic and formal semantics worth 
its name must be able to block various invalid 
inferences. But there is the other side of the coin, 
which is the positive topic of which inferences 
should be validated. That is, how hyper are 
hyperintensions? If there is one central question 
permeating hyperintensional logic and semantics 
then that is this one.

The problem how fine-grained ‘intensional 
entities’ hence meanings should be was of the 
utmost importance to Church who considered 
several alternatives of constraining these entities.1 
Senses are identical if the respective expressions 
are (A0) ‘synonymously isomorphic’, (A1) 
mutually X-convertible, (A2) logically equivalent.2 
(A2), the weakest criterion, was refuted already 
by Carnap, and was not acceptable to Church as 
well. The alternative (A0) arose from Church’s 
criticism of Carnap’s notion of intensional 
isomorphism, and it is synonymy resting on a- 
equivalence and meaning postulates for 
semantically simple terms.

(A1) is presumably considered to be the right 
criterion of synonymy. Yet it was subjected to a 
fair amount of criticism in particular due to the 
involvement of p-reduction. For instance, Salmon 
in [17] adduces examples of expressions that 
should not be taken as synonymous yet their 
meanings are mutually p-convertible. Moreover, 
partiality throws a spanner in the works; p- 
reduction is not guaranteed to be an equivalent 
transformation as soon as partial functions are 
involved. Though Church’s formal apparatus in 
which meanings are rendered is the typed X- 
calculus of total functions, we cannot avoid the 
work with partial functions, because there are 
meaningful terms like the ‘King of France’ that 
lack a reference in the actual possible world and 
time. Or, in mathematics there are terms like ‘the

1 The concept of hyperintensionality is not exactly new; the
terms ‘hyperintensionality’ and ‘fine-grained intensionality’ 
are. The standard term for this concept was simply 
‘intensionality’ (maybe coined by Leibniz), and is still in use. 
However, possible-world semantics has used the terms 
‘intensionality’, ‘intensional logic’, etc., for its own concept 
of intensionality.

2 For details see [1] and [4].
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greatest prime’ that lack a reference regardless of 
possible worlds and times, they do not denote 
anything. Yet they have meaning.

Church also considered Alternative (A1’) that 
is (A1) plus ^-convertibility. Yet similar defects of 
^-convertibility as those connected with p- 
convertibility are evincible.

Thus the problem of the proper granularity of 
structured meanings remains open. This is a 
pressing issue, because in hyperintensional 
contexts only strictly synonymous expressions 
can be mutually substituted. We encounter the 
problem of hyperintensional contexts in particular 
in sentences expressing propositional attitudes 
like believing, knowing, etc., and objectual 
attitudes of seeking, wishing, solving, designing, 
calculating, and the like. Substitution of (merely) 
equivalent expressions yields the proliferation of 
agent’s knowledge or abilities here, and the 
problem of logical/mathematical omniscience 
crops up.

In my background theory which is Tichy’s 
Transparent Intensional Logic (TIL), 
hyperintensionality is defined in a positive rather 
than negative way.3 Any context in which the 
meaning of an expression is displayed rather than 
executed is hyperintensional. Moreover, we 
explicate hyperintensions as abstract procedures 
rigorously defined as TIL constructions which are 
assigned to expressions as their context-invariant 
meanings.4 The semantics is tailored to the 
hardest hyperintensional contexts, and 
generalized from there to simpler intensional and 
extensional ones. This entirely anti-contextual and 
compositional semantics is, to the best of my 
knowledge, the only one that deals with all kinds 
of context, whether extensional, intensional or 
hyperintensional, in a uniform way. The same 
extensional logical laws are valid invariably in all 
kinds of context. In particular, there is no reason 
why Leibniz’s law of substitution of identicals, and 
the rule of existential generalization were not 
valid. What differ according to the context are not 
the rules themselves but the types of objects to 
which these rules are applicable. In an

3 See [12, §§ 2.6, 2.7], and also [11].
4 Similar conception of meaning has been propagated also by

Moschovakis. For details see [15].

extensional context they are values of the 
functions denoted by the respective expression; in 
an intensional context they are the denoted 
functions themselves; finally in a hyperintensional 
context they are the displayed procedural 
meanings themselves. Due to its stratified 
ontology of entities organized in a ramified 
hierarchy of types, TIL is a logical framework 
within which such an extensional logic of 
hyperintensions has been introduced.5

In an effort to solve the problem of the 
procedural identity we introduced the notion of 
procedural isomorphism. Procedural isomorphism 
is a nod to Carnap’s intensional isomorphism and 
Church’s synonymous isomorphism. Any two 
terms or expressions whose respective meanings 
are procedurally isomorphic are deemed 
semantically indistinguishable, hence 
synonymous and substitutable in any context.

The goal of this paper is to define the rule for 
substitution of identicals in hyperintensional 
contexts. Since in such contexts only 
synonymous expressions can be mutually 
substituted, we need a criterion of synonymy. The 
novel contribution of this paper is the proposal of 
a new criterion of synonymy. It is an adjustment of 
Church’s Alternative (A1). The adjustment 
consists in a more carefully formulated definition 
of a-conversion and the new definition of p- 
conversion, to wit, the p-conversion by value.

The rest of the paper is organized as follows. 
Section 2 sets out the logical foundations of TIL. 
The main results are introduced in Section 3 
where the relation of procedural isomorphism, 
Alternative (A1’’), is defined. I prove that the so 
defined relation is a strict equivalence on the set 
of constructions. Concluding remarks are in 
Section 4.

2 Logical Foundations of TIL
The syntax of TIL is Church’s (higher-order) typed 
X-calculus the terms of which are procedurally 
interpreted, which means that they denote 
structured modes o f presentation (that is, TIL 
constructions) of functions rather than set-

5 See, for instance, [6], [7], [8], [9].
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theoretic functions. Thus, lambda abstraction 
transforms into the molecular procedure of 
forming a function and application into the 
molecular procedure of applying a function to an 
argument. The identity of TIL constructions is 
rigorously determined by a definition. Yet we still 
have to deal with the issue of granularity of 
meanings/procedures, because TIL constructions 
are a bit too fine-grained from the procedural 
point of view. The main issue here is the 
following. Constructions that differ at most by 
using different X-bound variables of the same type 
differ so slightly that from the semantic point of 
view they should be treated as identical 
procedures, because in natural languages we do 
not express X-bound variables and thus do not 
reflect such differences.

Constructions are the key entities of TIL. They 
are algorithmically structured procedures, of one 
or multiple constituent parts and they serve to 
explicate linguistic meanings. Importantly, the 
constituent parts of a construction C are its 
executed subconstructions rather than the 
product (if any) of C which is located beyond C. 
Just to be clear, constructions are not set- 
theoretic mapping/functions, nor are they 
formulae or otherwise linguistic entities. Their 
inductive definition below enumerates six different 
constructions, which is the logical core of TIL. The 
stratified ontology of TIL is organized in the 
ramified hierarchy of types. For the sake of 
simplicity we first define simple types o f order 1, 
then constructions together with the types of their 
products, and finally the ramified hierarchy 
of types.

Definition 1 (types o f o rder 1). Let B be a base, 
where a base is a collection of pair-wise disjoint, 
non-empty sets. Then
(i) every member of B is an elementary type of 

order 1 over B;
(ii) let a, p1, ..., pm (m > 0) be types of order 1 

over B. Then the collection (a p1 ... pm) of all 
m-ary partial mappings from p1 x ... x pm 
into a is a functional type o f order 1 over B;

(iii) nothing else is a type o f order 1 over B.

For the purposes of natural language analysis, 
we are assuming the following base of 
ground types:

o: a set of truth-values {T, F};
i: a set of individuals (constant universe of 

discourse);
t : a set of real numbers (doubling as temporal 

continuum);
w: a set of logically possible worlds (logical 

space).
Within this type system we define possible- 

world intensions and extensions. An a-intension is 
a function of type (aw), or frequently ((ax)ra), the 
types that we abbreviate as axm; an a-extension is 
an object of type p, where p ^  (aw) for any a.
Definition 2 (construction ).
(i) Variable x is a construction that v-constructs 

an object that a valuation v assigns to x.
(ii) The Trivialization 0X  is a construction. Let X  

be any object whatsoever. Then 0X  
constructs X  without any change of X .

(iii) Composition [X  Y1_ Y m] is a construction.
Let X  v-construct a function f  of type (a 
Pi...pm), and let Yi,...,Ym v-construct entities 
B i,...,Bm of types p i,...,pm, respectively. 
Then [X Y1.  Ym] v-constructs the value (an 
entity, if any, of type a) of f  on the tuple 
argument <B1, . , B m>. Otherwise the
Composition [X  Y1. Y m] does not v- 
construct anything and so is v-improper.

(iv) K-Closure [Ax1 ... xm Y] (or Closure) is a 
construction. It v-constructs the following 
function f  of type (a p-|...pm). Let variables 
x1, . x m v-construct entities of types p-i,..., 
pm, and let Y v-construct an entity of type a. 
Let v(B1/x1, . , B m/xm) be a valuation identical 
with v at least up to assigning objects B1/p1, 
..., Bm/pm to variables x1, ..., xm. If Y is 
v(B1/x1, . , B m/xm)-improper (see iii), then f  is 
undefined on <B1, ..., Bm>. Otherwise the 
value of f  on <B1, ..., Bm> is the a-entity 
v(B1/x1, . ,  Bm/xm)-constructed by Y.

(v) Single Execution X  is a construction. Let X  
v-construct object o. Then 1X  v-constructs o. 
Let X  be either a non-construction or a v-
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improper construction. Then X  is v- 
improper.

(vi) Double Execution X  is a construction. Let X  
v-construct a construction Y and let Y v- 
construct an object Z (possibly itself a 
construction). Then the Double Execution X  
v-constructs Z. Otherwise 2X  is v-improper.

(vii) Nothing else is a construction.
Here are some explicative remarks. A variable 

constructs an object by having that object as its 
value dependent on a valuation function v 
arranging variables and objects in a sequence. 
Trivialization is TIL’s objectual counterpart of a 
non-descriptive constant term, which simply 
provides a particular object. Variables and 
Trivializations are the atomic constructions of TIL, 
Composition, Closure and Executions are the 
molecular constructions. An atomic construction is 
a structured whole with but one constituent part, 
namely, the construction itself. A molecular 
construction is a structured whole with more parts 
than just itself. Importantly, the only part of X  is 
0X  and not X, which is located beyond 0X: the 
product of a procedure is no part of 
the procedure.

The definition of the typed universe of TIL 
amounts to a definition of the ramified hierarchy of 
types which is divided into three parts: firstly, 
simple types of order 1, which were already 
defined by Definition 1; secondly, constructions of 
order n; thirdly, types of order n+1.
Definition 3 (ram ified hierarchy o f types).
T1 (types of order 1). See Def. 1.
Cn (constructions of order n).

i) Let x be a variable ranging over a type of 
order n over B. Then x is a construction of 
order n over B.

ii) Let X  be a member of a type of order n 
over B. Then 0X, 1X, 2X  are constructions 
of order n over B.

iii) Let X, X 1,..., X m (m > 0) be constructions of 
order n over B. Then [X X 1... Xm] is a 
construction o f order n over B.

iv) Let x1,...xm, X  (m > 0) be constructions of 
order n over B. Then [Xx1...xm X] is a 
construction o f order n over B.

v) Nothing is a construction o f order n over B

1 unless it follows from Cn  (i)-(iv).
Tn+1 (types o f order n+1) Let * n  be a collection 

of all constructions of order n over B. Then
i) * n  and every type of order n are types of 

order n+1 over B ;
ii) if m > 0 and a, p1,...,pm are types of order 

n+1 over B, then (a p1 ... pm) (see T1 ii)) is 
a type o f order n + 1 over B;

iii) nothing else is a type o f order n + 1 over B.

Logical objects like truth-functions and 
quantifiers are extensional: a (conjunction), v  
(disjunction) and 3  (implication) are of type (ooo), 
and -  (negation) of type (oo). The quantifiers Va, 
3a are type-theoretically polymorphous, total 
functions of type (o(oa)), for an arbitrary type a, 
defined as follows. The universal quantifier Va is a 
function that associates a class A of a-elements 
with T if A contains all elements of the type a, 
otherwise with F. The existential quantifier 3a is a 
function that associates a class A of a-elements 
with T if A is a non-empty class, otherwise with F. 
Below all type indications will be provided outside 
the formulae in order not to clutter the notation. 
Furthermore, ‘X /a ’ means that an object X  is (a 
member) of type a. ‘X  a ’ means that the type
of the object valuation-constructed by X  is a. This 
holds throughout: the variables w ^ v  ra and t ^ v 
x. If C axra then the frequently used 
Composition [[Cw] t], which is the intensional 
descent (a.k.a. extensionalization) of the a- 
intension v-constructed by C, will be encoded as 
‘Cwt’. When using constructions of truth-functions, 
we often omit Trivialization and use infix notation 
to conform to standard notation in the interest of 
better readability. Also when using constructions 
of identities of a-entities, =a/(oaa), we omit 
Trivialization, the type subscript, and use infix 
notion when no confusion can arise. Moreover, 
the outermost brackets of Closure will be 
occasionally omitted.
Definition 4 (subconstruction). Let C be a
construction. Then
i) C is a subconstruction o f C;
ii) if C is 0X, 1X  or 2X  and X  is a construction 

then X  is a subconstruction o f C;
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iii) if C is [X X 1 ^X „ ] then X, X|, ..., Xn are 
subconstructions o f C;

iv) if C is [Xx-|...xn V] then Y is a subconstruction 
of C;

v) if A is a subconstruction o f B and B is a 
subconstruction o f C then A is a 
subconstruction o f C;

vi) a construction is a subconstruction o f C only 
if it so follows from (i) -  (v).

There are two modes in which a 
subconstruction D of a construction C may occur, 
to wit, displayed and executed. If the latter, then 
we say that D is a constituent of C. The 
Trivialization 0C of a construction C displays the 
construction C and all the subconstructions of C. 
Hence C is not a constituent part of 0C; it is not 
executed, and so does not obtain an object 
beyond it. We say that C occurs 
hyperintensionally. It is however important to
realize that Double Execution executes a20construction twice over. Thus in C the20subconstruction C is a constituent part of 20C.

If C is an executed constituent of D then C can 
occur intensionally or extensionally. In principle, 
constituent C occurs in D intensionally if C is not 
composed with a construction of the argument of 
the function f  v-constructed by C. Hence the 
whole function f  is an object of predication within 
D. As a limiting case, a constituent C that 
constructs an atomic entity, which is a 0-ary 
function without arguments, occurs intensionally. 
On the other hand, a constituent C of D occurs 
extensionally if it is composed with a construction 
of an argument of the function f , and C does not 
occur within an intensional context of D. Hence 
the value (if any) of the function f  is an object of 
predication within D.

These three ways in which a subconstruction 
C of a construction D can occur give rise to three 
kinds of context within D:6
-  hyperintensional context: a construction C 

occurs displayed and serves itself as a func­
tional argument to be operated on in D 
(though a construction one order higher 
needs to be executed in order to produce the 
displayed construction);

6 Here I present just a summary. For exact definitions see [12, 
§2.6].

-  intensional context: construction C occurs 
executed in order to produce a function f  but 
not the value of f; moreover, the executed 
construction C does not occur within another 
hyperintensional context. (Hence the entire 
function v-constructed by C serves as a func­
tional argument to be operated on in D);

-  extensional context: construction C occurs 
executed in order to produce a particular 
value of the function v-constructed by C; 
moreover, the executed construction does not 
occur within another intensional or 
hyperintensional context. (Hence the value of 
the function v-constructed by C serves as a 
functional argument to be operated on in D).

Higher context is dominant over a lower one. It 
means that all the subconstructions of a displayed 
construction occur hyperintensionally as well, and 
all the subconstructions of an executed 
construction that occurs intensionally occur 
intensionally as well.

Example. Below I analyze three sentences in 
which the meaning of the term ‘temperature in 
Prague’ denoting a magnitude of type xxm occurs 
extensionally, intensionally and hyper- 
intensionally, respectively. Note that there is no 
reference shift and the meaning and denotation of 
this term is the same in all three types of context. 
It is the construction of the denoted magnitude, to 
wit, the Closure

XWkt [0Temperature_inw t  0Prague] ^  xxm .
a) Extensional context:

“The temperature in Prague is 300 Celsius."
The types of the objects that the sentence talks 

about are these: Temperaturejn/(xi)w : attribute; 
Prague/i; XWkt [0Temperature_inw t 0Prague] ^  
xxm: magnitude; 30C/x.

The whole sentence denotes a proposition of 
type oxm constructed by this Closure:
XWXJ [XwXt [0Temperature_inwt 0Prague]w t  = 030C].

In the Composition
[XwXt [0Temperature_inwt 0Prague]w t  = 030C],
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the construction XwXt [0Temperature_inw t 0Prague] 
of the magnitude occurs extensionally, because 
the value of this magnitude in a given world w at 
time t of evaluation is constructed, and this value 
is an object of predication, to wit, this value 
equals 30C. Within this Composition the 
construction 0 Temperature_in of the attribute 
occurs extensionally as well.
b) Intensional context:

“The temperature in Prague is rising."
Additional type. Rising/(oxxra)xra: the property of 

a magnitude.
The analysis of the sentence is the following:

XwXt [0Risingwt XwXt [0Temperature_inw t  0Prague]].
Now, XwXt [0Temperature_inw t 0Prague] occurs 

intensionally in the Composition
[0Risingw  XwXt [0Temperature_inwt 0Prague]].
The function (magnitude) rather than its value 

is an object of predication that this function is 
rising. Due to the dominancy of a higher context 
over a lower one, the construction 
0 Temperature_in of the attribute occurs 
intensionally as well, though it is extensionalized 
(composed with w and t) and composed with the 
construction 0Prague of its argument.
c) Hyperintensional context:

“Tilman believes that the temperature in 
Prague is 300 Celsius."

Additional type. Believe/(oi*n)m: relation-in- 
intension between an individual and a 
hyperproposition.

The analysis of the sentence is this:
XwXt [0Believew t 0 Tilman 

0[XwXt [0Temperature_inw t 0Prague]wt = 030C]].
Here we construe Believe as a relation-in- 

intension of an individual to a hyperproposition. 
The reason is this: the proposition that the 
temperature in Prague is 300 Celsius can be 
equivalently expressed, e.g., that the temperature 
in Prague is 860 Fahrenheit. Yet one can believe 
the former without believing the latter, and vice 
versa.

Hence XwXt [0Temperature_inwt 0Prague] 
occurs hyperintensionally in the Composition

[0 Believew  0 Tilman 
0[XwXt [0Temperature_inw t 0Prague]wt = 030C]].
This is due to the fact that the mode of 

presentation, or conceptualization, or construction
[XwXt [0Temperature_inwt 0Prague]w t  = 030C]

of the proposition that the temperature in Prague 
is 300C is an object of Tilman’s belief rather than 
the proposition itself. Thus all the 
subconstructions of this construction occur 
hyperintensionally as well. In brief, the left most 
Trivialization in 0[XwXt [0Temperature_inwt 
0Prague]w t  = 030C] raises the context up to the 
hyperintensional level.

3 Procedural Isomorphism
As mentioned at the outset, TIL can be viewed as 
an extensional logic of hyperintensions. By 
‘extensional’ I mean that the extensional rules like 
existential generalization and Leibniz’s laws of 
substitutivity of identicals are validly applicable in 
all contexts, whether extensional, intensional or 
hyperintensional. The rules of existential 
quantification in intensional and hyperintensional 
contexts have been specified by Duzi & 
Jespersen in [8], [9] and [11].

As for the substitution of identicals in an 
extensional or intensional context, there is no 
problem. In an intensional context analytically 
equivalent terms are mutually substitutable, while 
in an extensional context also co-referring terms 
are substitutable.

Terms are co-referring if they refer to the same 
object in a given world w and time t of evaluation. 
More generally, terms are co-referring if their 
meanings are v-congruent, that is v-construct 
functions that happen to have the same value at 
the same argument. Terms are analytically 
equivalent if their meanings v-construct the same 
object for every valuation v. Obviously, equivalent 
terms are co-referring, but not vice versa.

Thus, for instance, the following argument is 
valid.
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The temperature in Amsterdam is 300 Celsius.
The temperature in Amsterdam is the same as in Prague.

The temperature in Prague is 300 Celsius.
The ‘temperature in Amsterdam’ as well as the 

‘temperature in Prague’ occur extensionally both 
in the premises and the conclusion. Moreover, the 
second premise establishes their co-reference, as 
the analysis reveals:

[XwXt [[0Temperature_inwt 0Amsterdam]wt = 
xwxt [0Temperature_inwt 0Prague]wt].

On this assumption the extensional 
occurrences of these two terms are mutually 
substitutable. However, this argument is invalid:7

The temperature in Amsterdam is rising.
The temperature in Amsterdam is the same as in Prague.

The temperature in Prague is rising.
The reason is this: in the first premise ‘the 

temperature in Amsterdam’ occurs intensionally. 
Particular value of the magnitude cannot be 
rising; rather, being rising is a property of the 
whole function, magnitude in this case. However, 
the second premise establishes only co-reference 
of the two terms rather than equivalency. Hence 
the substitution is not valid, because in such an 
intensional context only equivalent terms can 
be substituted.

However, substitution of (analytically) 
equivalent terms is not valid in hyperintensional 
contexts. From a linguistic point of view, in a 
hyperintensional context only synonymous 
expressions can be substituted, because the very 
meaning of expressions is displayed. Our thesis is 
that synonymous expressions have structurally 
isomorphic meanings. And since meaning is a 
procedure, we need to define the relation of 
procedural isomorphism between constructions, 
because constructions are a bit too fine-grained 
from the procedural point of view. The main issue 
here is the following. Constructions that differ at 
most by using different X-bound variables of the 
same type differ so slightly that we wish to say 
that such constructions are one and the same 
procedure. For instance, the Closures

7 I use a variant of Barbara Partee’s example.

xwxt [Xx [[0Happy„ t x] a  [0Childwt x]]],
Xw>J [Xy [fHappywt y] a  [°Child„ t  y]]], 
xwxt [Xz [fHappyw  z] a  [°Childw  z]]], . ,

are by Def. 2 different constructions of the 
property of being a happy child. Yet from the 
procedural point of view they are isomorphic. 
They consist of these procedural steps:
-  in any world w (Xw) at any time t  (Xt) do this:
-  take any individual x (or y, or z, ...),
-  take the property of being happy (by 0 Happy),
-  apply the (extensionalized) property of being 

happy (0Happywt) to the chosen individual x 
([0Happy„ t  x]), or to y, or z, . ,

-  take the property of being a child (by 0 Child),
-  apply the (extensionalized) property of being 

a child (0Childwt) to the chosen individual x (or 
y, or z, ...),

-  check whether the chosen individual has both 
the properties (0a),

-  abstract over the chosen individual (Xx, or 
Xy, or Xz, ...).

Using the terminology of X-calculus, the above 
Closures are a-equivalent. Church’s Alternative 
(A0) includes a-conversion and meaning 
postulates for atomic constants such as ‘bachelor’ 
and ‘fortnight’. Of course, we need meaning 
postulates to specify synonymy of semantically 
simple terms. This is a matter of building up 
linguistic ontology. Now we are, however, 
interested in the synonymy of molecular terms, 
which is structural isomorphism.

a-conversion is certainly the rule that must be 
included. The question is, which other rules (and 
whether any other rules) could be included as 
well. Church’s (A0) and (A1) leave room for 
additional Alternatives. To this end we consider p- 
and ^-conversion. Yet, as explained above, we 
are not content with Church’s Alternatives (A1) or 
(A1’) due to their non-equivalency.

In this paper I suggest a new definition of the 
criterion of structured synonymy, (A1” ). This 
variant is close to Church’s (A1) and includes an 
adjusted versions of a- and p-conversion. Thus 
we exclude ^-conversion, and introduce a new 
version of p-conversion, to wit, the conversion by 
value. In this proposal I follow two necessary
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conditions that the meanings of synonymous 
expressions should meet. They must be (a) 
strictly equivalent in the sense that in every 
possible world at any time they either denote the 
same entity or lack a denotation, and (b) their 
meanings must have the same constituents.

There are two reasons for not including q- 
conversion. First, it does not satisfy the condition 
(b). The q-expanded construction of the form 
Ax [F x] has two more constituents than the q- 
reduced construction F , because the former adds 
the steps of applying the function v-constructed 
by F to the value v-constructed by the variable x 
followed by the abstraction over the value of x . 
The second reason is the fact that ^-conversion 
does not preserve logical equivalence in a logic of 
partial functions such as TIL. Hence it does not 
satisfy the condition (a). To see this, consider the 
function F ^  ((ap)y) that v-constructs a function 
that is not defined at the argument v-constructed 
by A ^  y. Then the Composition [F A] ^  (ap) is v- 
improper. However, the q-expanded construction 
Ax [[F A] x] ^  (ap), x ^  p, v-constructs a 
degenerate function, which is a function 
undefined at all its arguments. To be sure, due to 
the v-improperness of [F A], the Composition 
[[F A] x] is also v-improper. But A-abstraction 
raises the context to an intensional one, hence 
the Closure Ax [[F A] x] v-constructs a degenerate 
function, which is an object, if a bizarre one. 
Hence the constructions [F A] and Ax [[F A] x] are 
not strictly equivalent.8

In practice the exclusion of q-conversion from 
the definition of procedural isomorphism is going 
to be harmless. When analyzing expressions in 
TIL we apply our method of literal analysis, which 
consists of three steps: (i) assigning types to the 
objects mentioned by the sub-terms of the 
analyzed expression E; (ii) combining the 
Trivializations of the objects mentioned by the 
semantically simple sub-terms of E in order to 
obtain the construction of the object (if any) 
denoted by E; (iii) checking whether the resulting 
construction is type-theoretically coherent. Due to 
step (ii) the application of this method yields a 
construction (namely the meaning of E) that does

8 I am grateful to J. Raclavsky for calling our attention to this 
problem. See also Raclavsky (2010).

not contain q-expanded subconstructions. For 
instance, the literal analysis of “The Pope is wise" 
is the Closure

XwXt [0 Wisew t 0Popewt]
rather than

XwXt [XwXt [Xx [0Wisew x]]wt 0Popewt],
because the literal analysis of the predicate ‘is 
wise’ is the Trivialization W ise  rather than the 
Closure XwXt [Xx [0Wisew t  x]]. The types are
Wise/(oi)xm; Pope/ixm; x  ̂  i.

3.1 p-Conversion: ‘by Name’ vs. ‘by Value’

The reasons for excluding unrestricted p- 
conversion are similar to the above. Though it is 
the fundamental computational rule of the X- 
calculi, it is underspecified by the commonly 
acknowledged rule

[[Xx C(x)] A] |-  C(A/x)9
The procedure of applying the function v- 

constructed by [Xx C(x)] to the argument v- 
constructed by A can be executed in two different 
ways: by value or by name. If by name then the 
procedure A is substituted for all the occurrences 
of x into C. In this case there are two problems.

First, conversion by name is not guaranteed to 
be a strictly equivalent transformation as soon as 
partial functions are involved. This is due to the 
fact that A occurs in an extensional context of the 
left-hand side construction, whereas when 
dragged into C its occurrence may become 
intensional or hyperintensional provided the 
context in which x occurs in C is intensional or 
even hyperintensional. For instance, 
the Composition

[Xx [Xy [0+ x y]] [0: 03 00]]
is improper, because [0: 03 00] is improper. This is 
as it should be, for there is no value that might be 
substituted for the formal parameter x , because 
the Composition [0: 03 00] is improper by failing to

9 For the sake of simplicity, we now consider a unary 
function. Generalization for n-ary functions is obvious.
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produce a result. However, the ‘by-name’ p- 
reduced construction

[Xy [0+ [0: 03 00] y]]
is not improper as it constructs a degenerated 
function undefined at all its arguments. The 
improper construction [0: 03 00] has been drawn 
into the intensional context of the Closure 
[Xy [0+ x y]].

The same problem crops up in the analysis of 
de re attitudes. For instance, the de re attitude 
expressed by

“The Pope is believed by a to be wise"
10obtains on its intensional reading the analysis 

XwXt [Xx [0Believew t a XwXt [0Wisewt x]] 0Popewt].

In a world w and time t when the Pope does 
not exist, the Composition 0Popew t is v-improper 
and the so constructed proposition lacks a truth- 
value, because there is no individual to whom the 
property of being believed by a to be wise would 
be ascribable.

This is as it should be, because in the de re 
case there is an existential presupposition that the 
Pope exists. Yet the p-reduction by name 
transforms this analysis into the de dicto attitude:

XwXt [0Believewt a XwXt' [0Wisew t  °Popewt]].
The so constructed proposition can be true 

even in a (w,t)-pair in which the Pope does not 
exist, which is not correct.

The second reason for refuting an unrestricted 
p-reduction by name is this: even in those cases 
when p-reduction by name is an equivalent 
transformation, it may yield loss of analytic 
information about which function has been 
applied to which argument.11 For instance, 
the Composition

XwXt [[Xx [0Largerwt x x]] a]
which is the meaning of “a is larger than itself" 
reduces to XwXt [0Largerwt a a], the meaning of “a

10 In this case a hyperintensional analysis would be also the 
choice. For the sake of simplicity we consider the 
intensional one.

11 For the notion of analytic information see [5].

is larger than a”. Yet the two sentences are not 
strictly synonymous, because in the former the 
property of being larger than itself is applied to a 
while in the latter the binary relation larger than is 
applied to the pair (a,a).12

The idea of conversion by value is simple. 
Execute the procedure A first, and only if A does 
not fail to produce an argument value on which C 
is to operate, substitute (Trivialization of) this 
value for x. The solution preserves strict logical 
equivalence, avoids the problem of the loss of 
analytic information, and moreover, in practice it 
is more efficient. The efficiency is guaranteed by 
the fact that the procedure A is executed only 
once, whereas if this procedure is substituted for 
all the occurrences of the X-bound variable it can 
subsequently be executed more than once.

To elucidate the problem even more, 
comparison with programming languages might 
be useful. Imagine one has a procedure 
(embodied as a program) C(x) with a ‘hole’ x (i.e., 
an unsaturated procedure with a formal 
parameter x), and a subprogram A that specifies 
the material (argument value) to be filled into the 
hole x. There are two ways of going about filling x:

(1) (by name) inserting into the hole x the 
whole subprogram A and then computing C(A/x)

(2) (by value) computing A first in order to 
obtain the argument value a, and then inserting a 
into the hole x and computing C(a/x)

In case (1) there may be undesirable side 
effects. Imagine that the subprogram A is 
somehow garbled and as a result the whole 
procedure C gets garbled as well by the insertion, 
damage being propagated upwards. Moreover, 
instead of the hole x one gets A, and A may 
conflict with C. This is a case of invalid p- 
reduction that fails to preserve equivalence. 
Furthermore, even if A does not damage C when 
computing C(A), after the execution of C(A) one 
will have lost track of A. The two procedures have 
been merged together. Suppose one wants to 
compute another procedure E(x) and to supply 
the same material for x. Even if the execution of 
C(A) turns out to be successful, A may have been 
changed by the execution. There is no guarantee 
that the same material will be supplied for x into

12 See [17].
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E(x). This is the case of p-reduction preserving 
equivalence but yielding loss of 
analytic information.

In case (2) we keep C(x), E(x), and A 
separate. Procedure A is evaluated only if 
needed, and if so, only once. Everything is as it 
should be: no loss of analytic information arises 
and equivalence is preserved.

In programming languages the difference 
between cases 1 and 2 concerns evaluation 
strategy and is often called passing by reference 
vs. passing by value, respectively. Historically, 
call-by-value and call-by-name date back to Algol 
60, a language designed in the late 1950s. Only 
purely functional languages such as Clean and 
Haskell use call-by-name. For instance, Java 
manipulates objects by reference that is by name. 
However, Java does not pass arguments by 
reference, but by value. Call-by-value is not a 
single evaluation strategy, but rather a cluster of 
evaluation strategies in which a function’s 
argument is evaluated before being passed to the 
calling procedure. In call-by-reference evaluation 
(also referred to as call-by name or pass-by- 
reference), a calling procedure receives an 
implicit reference to the argument sub-procedure. 
This typically means that the calling procedure 
can modify the argument sub-procedure. A call- 
by-reference language makes it more difficult for 
a programmer to track the effects of a procedure 
call, and may introduce subtle bugs.

The notion of reduction strategy in the X-calculi 
is similar to the evaluation strategy in 
programming languages. My proposal amounts to 
a specification o f an evaluation strategy by-value 
as adapted to TIL that is to hyperintensional, 
partial typed X-calculus. Similar work has been 
done since the early 1970s, but merely for simple- 
typed or untyped X-calculi. For instance, Plotkin in 
[16] proved that the two strategies are not 
operationally equivalent. Hence the call-by-name 
strategy should not be used in hyperintensional X- 
calculi such as TIL due to operational non­
equivalence. Our substitution method that I am 
going to define below is similar to Chang & 
Felleisen call-by-need reduction by value (see
[2]). But their work is couched in an untyped X- 
calculus. TIL, by contrast, is a hyperintensional, 
partial X-calculus based on ramified theory of

types. First we need to define the 
substitution function:
Definition 5 (Subn). Function Subn/(* n * n * n * n) 
operates on constructions in this way: let 
constructions C1, C2 , C3 v-construct constructions 
(of order n) D1 , D2 , D3 , respectively. Then the 
Composition [° Subn C1 C2 C3] v-constructs the 
construction D that results from D3 by collisionless 
substitution of D1 for all occurrences of D2 in D3 .

Occasionally we also need the polymorphic 
function Tra defined as follows.
Definition 6 (Tr"). The function Tra/(*n  a) returns 
as its value the Trivialization of its a-argument.

In what follows I simply write ‘Sub’ and ‘Tr 
omitting thus the type-superscripts whenever no 
confusion arises.

For instance, let variable y  v-construct 
numbers of type x such as tc. Then [0Tr y] v(n/y)- 
constructs V  Therefore, the Composition

[0Sub [0 Tr y] 0x 0[° Sin x]]
v(rc/y)-constructs the Composition [0Sin 0tc].

Note that there is a substantial difference 
between the construction Trivialization and the 
function Tra. Whereas 0y  constructs just the 
variable y  regardless of valuation, y  being 0-bound 
in 0y, [0Tr y] v-constructs the Trivialization of the 
object v-constructed by y . Hence y  occurs free 
in [0 Tr y].

Definition 7 (p-conversion b y  value) Let Y ^ v

a; ^ , D1 ^ v  p1,■ ■ ■ , xn , Dn  ^ v pm  [Xx1 . xn  Y  ^ v
(ap1...pn). Then the conversion

[[Xx1...xn Y] D1...D„]
2[0Sub [0Tr D 1 ] 0x 1  ... [0Sub [0Tr Dn] °xn 0Y]]

is p-conversion by value.
Note that in the converted construction Double 

Execution is necessary. The function Sub 
operates on argument constructions, and as a 
result it produces again a construction; to wit, the 
construction in which all occurrences of the formal 
parameters x 1, ..., xn  are replaced by the 
Trivializations of the respective argument values. 
In order to obtain an a-value (if any) produced by
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the so pre-processed construction V the resulting 
construction must be executed. Hence, 
Double Execution is performed.
Claim 1: Constructions [[Xx1. xn V] D1. D n] and
2[°Sub [0 Tr D 1] 0x 1 [0Sub [0Tr Dn] °xn 0Y]] are
strictly equivalent in the sense that for any 
valuation v they either v-construct one and the 
same entity or are both v-improper.
Proof. Let C be [[Xx1. xn Y] D1.D n ] and let D be 
2[0Sub [0T rD 1] 0x1 ... [0Sub [ V r Dn] 6xn0V]].

If some of the constructions D1, . , D n is v- 
improper then so are both C and D , according to 
Def. 2, iii) and vi). Otherwise, let D1,...,Dn all be v- 
proper, v-constructing the objects d1, . , d n, 
respectively. Then by Def. 2, iv) the Closure 
[Xx1. xn V] v-constructs the following function f. If 
Y is v(d1/x1, . , d n/xn)-improper, then f  is undefined 
on (d i,...,dn) and thus C is v(d1/x1, . , d n/xn)- 
improper according to Def. 2, iii). Otherwise the 
value of f  on <d1, . , d n) is the a-entity 
v(d1/x1, . , d n/xn)-constructed by Y.

Let the entity v(d1/x1, . , d n/xn)-constructed by Y 
be e. Then by Def. 2, iii) of Composition, the 
construction C v-constructs e. We are to show 
that the construction D also v-constructs e. The 
first Execution of D constructs Y(x1/0d1, . ,  xn/0dn), 
i.e., the construction Y where according to the 
definition of the functions Sub and Tr all the 
occurrences of variables x1, . , x n are replaced by 
0d i,...,0dn, respectively. Since the Trivializations
0d i,...,0dn construct the entities d1,...,dn, 
respectively, the second Execution 
v(d1/x1, . , d n/xn)-constructs the entity e, or else 
nothing in case Y is v(d1/x1, . , d n/xn)-improper. 
Hence C and D come out strictly equivalent.

3.2 A lternative (A1’’)

At the outset of this paper I formulated the 
problem of granularity of individuation meanings. 
Any individuation that is finer than necessary or 
logical equivalence qualifies as hyperintensional. 
Since we explicate hyperintensions procedurally, 
the problem transforms into the issue of 
individuation of procedures. In other words, under 
which conditions are we ready to consider two 
constructions as procedurally isomorphic? Church 
considered a-, p- and q-conversion. In the

previous paragraph I summarized objections 
against Church’s Alternatives (A1) or (A1’), and it 
should be clear now that q-conversion should not 
be included. An obvious plausible candidate is a- 
conversion, which would yield Alternative (A0).

In my opinion, we also need p-conversion, 
because application of a function to an argument 
is the very fundamental computational procedure. 
However, the objections against unrestricted p- 
conversion (by name) are serious. Fortunately 
there is a way out. The above defined p- 
conversion by value is immune against those 
objections. It is the correct way of applying the 
function constructed by the Closure [Xx1. xn  Y] to 
the arguments constructed by D1,...,Dn . According 
to Claim 1, it is a strictly equivalent conversion, 
unlike p-conversion by name. Moreover, it does 
not yield loss of analytic information, because the 
calling procedure Y and argument procedures 
D1,...,Dn  are kept separated.

Now I will demonstrate the thesis that p-value 
equivalent constructions should be considered as 
procedurally isomorphic. For the sake of simplicity
I will again consider a one-argument Composition 
of the form [Xx  [F x] A ]. It is the specification of 
calling the procedure Xx [F x] with the formal 
parameter x at the argument provided by the 
procedure A. My thesis is that the correct way of 
executing this procedure consists of these 
execution steps:
-  execute A in order to obtain the argument

value a; if A fails to v-construct anything (is v-
improper) then abort the execution; else:

-  take the argument value a (by the Trivializa-
tion of a) and substitute it for all the occur­
rences of the variable x in the procedure body 
F , and finally:

-  Execute the result of the substitution.
The Composition 2[0Sub [0Tr A] 0x 0F] has 

exactly the same constituents. These are
-  A: execute A in order to obtain the argument 

value a; if A is v-improper then the entire 
Composition is v-improper; else:

-  [0Tr A]: obtain the Trivialization of a,
-  [0Sub [0Tr A] 0x 0F]: substitute the Trivializa-

tion of a for x in F ,
-  2[0Sub [0Tr A] 0x 0F]: execute the result.

C o m p u tacio n  y S is te m a s  Vol. 18, No. 3, 2 0 1 4  pp. 4 3 9 - 4 5 3

ISSN 1 4 0 5 - 5 5 4 6

DOI: 1 0 .1 3 0 5 3 /C y S -1 8 -3 -2 0 1 8



S tru c tu ra l  Iso m o rp h ism  o f M eaning and  Synonym y 4 5 1

We can see that p-conversion by value is an 
explicit specification of the procedure of applying 
the function constructed by Xx [F x] to the 
argument constructed by A. Yet one might object 
that the above execution steps are not explicitly 
specified by the term ‘[Xx [F x] A]’. This is true but 
this term can be taken as an abbreviation of the 
full-fledged application specification provided by 
‘2[°Sub [0Tr A] 0x 0F]’. In other words, we can 
consider the left-hand side of the p-value rule as 
definiendum and the right-hand side as definiens.

For this reason it is reasonable to claim the 
two terms ‘[Xx [F x] A]’ and ‘2[°Sub [0Tr A] 0x 0F]’ 
ex definitione synonymous and thus substitutable 
in all contexts, including hyperintensional ones.

In order to define procedural isomorphism on 
the set of constructions, we still need another 
definition, to wit, the definition of a-conversion. 
The standard definition that defines a-equivalent 
constructions as those that differ at most by using 
different X-bound variables does not do. The 
reason is this: if p-value equivalent constructions 
of the form [Xx [F x] A] and 2[°Sub [0Tr A] 0x °F(x)] 
are procedurally isomorphic, then it does not 
matter which particular variable of the respective 
type, whether x, or y, or z, ..., has been used as a 
formal parameter. Hence since

[Xx [F x] A], [Xy [F y] A], ... 
are a-equivalent, so should be 
2[°Sub [0TrA] 0x 0F(x)], 2[°Sub [0Tr A] 0y  0F(y)], ...

For instance, constructions
[Xx [0+ x 01] 05]
[Xy [0+ y  01] 05]

are a-equivalent according to the standard 
definition. Yet their p-reduced forms

2[°Sub [0 Tr 05] 0x 0[°+ x 01]]
2[°Sub [0Tr 05] 0y  0[0+ y  01]]

would not be a-equivalent. But they should be, 
because from the procedural point of view it is 
irrelevant which variables are used as formal 
parameters for which the respective argument is 
substituted. Thus we define the following:

Definition 8 (a-equivalence) Let C, D be
constructions. Then C, D are a-equivalent, if 
either C, D differ at most by using different X- 
bound variables (of the same type), or their p- 
value equivalent forms differ at most by using 
different X-bound variables (of the same type).

Claim 2. a-equivalent constructions are strictly 
equivalent being either v-improper or v- 
constructing one and the same entity.
Proof. Due to Claim 1 it suffices to prove that 
Closures of the form [Xx1. x n Y(x1, . , x n)], [Xy1. y n 
Y(y1, . , y n)], where Y(x1, . , x n) differs from 
Y(y1, . , y n) only by collisionless substitution of 
variables x1, . . ,x n  for y1,...,yn , respectively, v- 
construct one and the same function. But this 
immediately follows from Def. 2, iv).
Definition 9 (procedural isom orphism ) Let C, D
be constructions. Then C, D are procedurally 
isomorphic iff either C and D are identical or there 
are constructions C1, . ,  Cn (n > 1) such that 0C = 
0C1, 0D = 0Cn , and for each Ci, Ci+1 (1 < i < n) it
holds that Ci, Ci+1 
value equivalent.

are either a- or p-

Corollary. Procedural isomorphism is an 
equivalence relation defined on a set of 
constructions such that procedurally isomorphic 
constructions are strictly equivalent in the sense 
that for any valuation v they either v-construct one 
and the same entity or they are v-improper.
Proof. It follows immediately from Claims 1 and 2.

Having defined procedural isomorphism, we 
can now specify the rule o f substitution in 
hyperintensional contexts.

In a hyperintensional context only procedurally 
isomorphic constructions are mutually 
substitutable.

Example. Consider the analysis of the 
sentence “Tilman is calculating the value of the 
function sin(x):cos(x) at the argument equal to the 
(principal) square root of 2" that comes down to

XwXt [0Calculatewt 0Tilman 
0[Xx [0: [0Sin x] [0Cos x]] [0V 02]]]. (1)
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Types. Calculate/(oi*n)xm; Tilman/i; :/(xxx); Sin, 
Cos/(xx); V/(xx): the principal, non-negative
square root.

Since the construction
[Xx [0: [0Sin x] [0Sin x]] [0V 02]]

is procedurally isomorphic with its p-value 
equivalent form

2[0Sub [0Tr [0V 02]] 0x 0[0: [0Sin x] [0Sin x]]],
it follows that Tilman calculates this Composition 
as well as its p-value and a-equivalent 
procedurally isomorphic variants:

XwXt [0Calculatewt °Tilman 
02[0Sub [0Tr [0V 02]] 0x 0[0: [0 Sin x] [0Cos x]]]], ( ’

XwXt [0Calculatewt °Tilman
02[0Sub [0Tr [0V 02]] 0y  0[0: [0 Sin y] [0Cos y]]]]. ( ’

But it does not follow that Tilman calculates 
the ratio of Sine at V2 and Cosine at V2:

XwXt [0Calculatewt °Tilman
0[0: [0Sin [0V 02]] [0Cos [0V 02]]]].

Note that [0: [0Sin [0V 02]] [0Cos [0V 02]]] is the 
result of p-reduction by name of the original 
Composition [Xx [0: [0Sin x] [0Cos x]] [0V 02]]. While 
in the latter the square root of 2 is calculated only 
once, in the reduced construction it is calculated 
twice. Hence the two constructions are not 
procedurally isomorphic.

Since Calculate is a relation(-in-intension) of 
an individual to a construction, and the application 
of Sub produces a construction, a question arises 
here. Could we omit in (2) or (3) the Trivialization 
and Double Execution preceding the application 
of the function Sub? In other words, are the 
constructions (2) and (3) equivalent with this one:

XwXt [0Calculatewt 0Tilman 
[0Sub [0Tr [0V 02]] 0x 0[0: [0Sin x] [0Cos x]]]] ? ( ’

Our answer is no, it is not. The reason is this. 
In (4) Tilman is related to the product of

[0Sub [0Tr [0V 02]] 0x 0[0: [0Sin x] [0Cos x]]] 
which is the following Composition:

[0: [0Sin 01.4142 1 3 5 .] [0Cos 01.4142135...]].

Obviously, (4) follows from (2) but not vice versa.
Yet there are other interesting issues 

concerning the interplay between Trivialization 
and Double Execution. While Trivialization raises 
the context up to the hyperintensional level, 
Double Execution decreases it back to the
intensional one. Hence for any construction C it20holds that 20C is logically equivalent to C. The 
question is whether the two constructions, 20C 
and C, are not procedurally isomorphic as well. In 
our opinion they are not. The former contains two 
additional executive steps, to wit, Double 
Execution and Trivialization. Though in an 
ordinary vernacular this slight difference would 
most probably not matter, in the semantics of a 
programming language it does matter.

Thus we are considering whether it is 
philosophically wise to adopt several notions of 
procedural isomorphism. The definition I pro­
posed in this paper is a very strict criterion of 
synonymy, and it is not improbable that several 
degrees of hyperintensional individuation are 
called for, depending on which sort of discourse 
happens to be analyzed. Thus we admit that 
slightly different definitions of procedural 
isomorphism are still thinkable. What appears to 
be synonymous in an ordinary vernacular might 
not be synonymous in a professional language 
like the language of, for instance, logic, 
mathematics or physics.

4 Conclusion
I demonstrated how to validly apply Leibniz’s Law 
of the substitution of identicals in hyperintensional 
contexts. Since in such a context the meaning of 
an expression is displayed, only synonymous 
expressions with the same meaning can be 
mutually substituted. Our criterion of synonymy is 
procedural isomorphism of the constructions 
expressed by the respective expressions. The 
paper offers a formally worked-out and 
philosophically motivated criterion of 
hyperintensional individuation, which is the 
relation of procedural isomorphism. The definition 
of procedural isomorphism includes a slightly 
more carefully stated version of a-conversion and
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p-conversion by value, which amounts to a 
modification of Church’s Alternative (A1).
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