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Abstract. In the present article the authors describe an 
analysis of data associated to the emotional responses 
to fractal generated music. This analysis is done via 
discovery of rules, and it constitutes the basis to elevate 
computer-assisted creativity: Our ultimate goal is to cre­
ate musical pieces by retrieving the right set of parame­
ters associated to a target emotion. This paper contains 
the description of (i) variables associated to fractal music 
and emotions; (ii) the data gathering method to obtain 
the tuples relating input parameters and emotional re­
sponses; (iii) the rules that where discovered by using 
an algorithm LR-FIR. Even though similar experiments 
whose intention is to elucidate emotional responses from 
music have been reported, this study stands because a 
connection is appointed between fractal-generated mu­
sic and emotional responses, all with the purpose of 
advancing in computer-assisted creativity.

Keywords. Recommender systems, knowledge discov­
ery, rules extraction, fractal music.

1 Introduction

Music is a type of complex sound that promotes 
regulation of emotions, communicative expression, 
identity construction, and interpersonal coordina­
tion [12]. Music not only influences emotions but 
also our cognitive system: the central nervous 
system is deeply involved in the integration and 
interpretation of sounds as well as the peripheral 
auditory processing [11]. However, it is not the 
physical sound parameters underlying music but 
the corresponding auditory qualities perceived by 
the auditory system that cause the effect on emo­
tions. Hence the quantitative relations between 
the auditory stimuliand the perceived emotions

are of particular importance for the realization of 
music [36].

Emotions are defined as episodes of synchro­
nized body responses, indicating the valuation of 
an event and leading to a series of reactions of 
limited duration [34]. Despite being difficult to char­
acterize, they have been framed in several forms. 
The Circumplex Model of Affect (CMoA) developed 
by Rusell [26, 27] classifies them according to two 
dimensions: Valence and Arousal. Valence refers 
to the degree of attractiveness or aversion that an 
individual feels towards, in this case, an emotion. 
Arousal measures to what extent an emotion leads 
to action or to physiological readiness for activity, 
thus defining a state in which bodily resources are 
mobilized, including the peripheral nervous sys­
tem, the endocrine system, and the immune sys­
tem [11].

Attempts to create music by computer systems 
abound. Some developments include the creation 
of musical pieces from the Mandelbrot set [35], 
non-linear models such as cellular automata [21, 
22], evolutionary methods [41, 2, 28], or swarm 
computing [4,5,25]. DNA-like data has been trans­
formed into music [1]. Melodic sequences have 
been generated by using the Chua's circuit [3].

The linguistic approach to create music is given 
in [30, 29]. Classification according to genre by 
using semi-supervised and supervised techniques 
is described in [24]. Our own work on computer 
assisted creativity is reported in [18] and [17].

Provided that emotional reactions were enacted 
by digitally created music, then it could be attain­
able to find the link between the input data (used to 
create musical pieces) and emotions. Hence, we
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proceed to find the relations between the input pa­
rameters on which fractal music is created, and the 
emotions actually felt. This is done through Knowl­
edge Discovery in Databases (KDD). As defined 
in [23], KDD is the nontrivial process of identifying 
valid, novel, useful, and understandable patterns in 
data.

Hence, the first step we took in order to unite 
emotions and computer algorithms consisted in 
developing an evaluation template based on the 
CMoA. This improvement permits to pair emotional 
responses with musical pieces in such a way that 
both, input data leading to musical pieces and 
output data pointing to emotions, are organized 
within a database. Knowledge, consequently, can 
be discovered by processing its contents.

We present in this paper the results of applying 
a particular kind of KDD known as LR-FIR, which 
has originally presented in [6]. The advantage of 
using such approach is the discovery of Linguistic 
Rules, that not only codify the underlying knowl­
edge hidden into large datasets, but it also serves 
as a characterization of the system under study. 
In this case, the resultant set of rules explains the 
relationship between the parameters used to cre­
ate fractal music and the emotions as perceived by 
human listeners. This is an important step towards 
developing intelligent recommender systems.

This paper is organized as follows. Section 2 
presents similar experiments that elucidate emo­
tional responses to music. The explanation of the 
relevant Input Parameters is given in Section 3. 
The activities to acquire emotional responses to 
fractal music are presented in Section 3.1. Next, 
Section 4 contains a brief description of the LR- 
FIR algorithm. The experimental results and their 
interpretation are given in Section 5. Finally, con­
clusions and future work are presented.

2 Related Work

2.1 Emotions as a Parameter for 
Recommending Music

Mood has been used as a basic feature in music 
recommender and retrieval systems [7]. A listening 
experiment was carried out establishing ratings for 
moods, valence and arousal. 288 songs over 12

musical genres from popular music where evalu­
ated. However, in [34] it is stated that emotions are 
not the same as mood.

A method for creating automatic music mood 
annotation is presented in [14], where a database 
of 1,000 songs was employed. Also, tests of dif­
ferent classification methods, configurations and 
optimizations have been conducted, showing that 
Support Vector Machines perform best. However, 
the researchers restrict the study to four broad 
emotional categories: happiness, sadness, anger, 
and relaxation. They argue that those categories 
reflect basic emotions covering the four quadrants 
of the 2D representation from Russell. Nonethe­
less, it is said that six are the basic human emo­
tions conventionally accepted [34] .

A personalized affective music player (AMP) that 
selects music for mood enhancement is described 
in [10]. They employ bio-signals to measure listen­
ers' personal emotional reactions as input for affec­
tive user models. Regression and kernel density 
estimation are applied to model the physiological 
changes the music elicits. Using these models, 
personalized music selections based on an affec­
tive goal state were made.

MEMSA (Mining Emerging Melody Structure Al­
gorithm), is proposed to discover a new kind of pat­
tern, called Emerging Melody Structure (EMS) [15]. 
It is argued that customization of on-line music 
experiences will improve with the application of this 
technique.

An evaluation of seven multi-label classification 
algorithms was performed in order to rank and 
classify 593 songs according to emotional evalu­
ations [37]. The study was conducted to enhance 
music information retrieval systems that will use a 
target emotion as the most important parameter to 
retrieve music from large collections. In another 
study, impression was used for music information 
retrieval [13].

An intelligent system aimed at creating new mu­
sical pieces is reported in [33], where feature ex­
traction helps discover musical patterns of popular 
songs, and then profit from those patterns to create 
novel compositions. Human evaluation acts as 
feedback to adjust genetic algorithms that create 
pieces of music [38].
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The outstanding difference among those reports 
and our research is that we are not looking to 
recommend what musical piece to reproduce, or 
buy, by a given individual. We intend to use the 
knowledge so an intelligent agent can indeed make 
recommendations according to a target emotion, 
providing input parameters on which a new musical 
piece will be created. Nonetheless, these recom- 
mender systems have inspired us to upgrade the 
capabilities of our Multi-Agent System by including 
a recommender agent which will provide the most 
likely input parameters on which a musical piece 
might provoke a given emotion.

2.2 Classification of Music Clips According to 
Emotions

The emotion detection problem is viewed as multi 
label classification problem where music is clas­
sified into multiple classes simultaneously [16]. 
The classification technique is Support Vector Ma­
chines that were trained to extract acoustic features 
from music clips, ranging from ambient music, clas­
sical, fusion and jazz. One subject participated in 
the experiment. Emotion recognition is also viewed 
as a multi-label classification problem [32]. It is 
proposed a framework where mood is represented 
as either a single multi-dimensional vector or a 
time-series of vectors over a semantic space of 
emotions. Their review considers emotion recogni­
tion on the combination of lyrics and content-based 
audio analysis. We, on the other hand, employ 
clips containing only music and do not perform au­
dio analysis because we know in advance the seed 
parameters under each musical piece is created.

An attempt to establish a link between emotions 
and music genre is presented in [8]. Three data 
sets of classical music, two data sets of film music, 
two data sets of popular music and two data sets 
of mixed genre, all of which define the emotions 
exerted by them, were analyzed. Thirty nine mu­
sical features were obtained and cross referenced. 
However, low correlations were found among the 
music genre and emotions.

The classification of musical pieces according to 
emotions, taking into account both, musical con­
tent and lyrics, was reported in [9]. They employ

fuzzy clustering in order to map such input infor­
mation into a two dimensional model of emotions. 
They also built an affective lexicon, then detected 
the emotion of a sentence, and then found clus­
ters. The musical stimuliconsisted in 981 Chinese 
songs.

Automatic mood detection of audio files is pre­
sented in [20]. They report a computational frame­
work that estimates automatically the mood in­
ferred in music clips. However, the authors cor­
rectly make the distinction between emotion and 
mood, as noted by most of psychology books. 
Another difference with our research is that they 
extract features from digital files, on which they 
classify the analyzed clip according to how they 
trained a classifier.

Classification of music with the intention to facili­
tate its retrieval from large collections is presented 
in [40]. They employ audio feature extraction to 
analyze the contents of musical clips, and process 
those features by a multimodal fusion process. The 
emotional model used is Thayer's arousal-valence 
plane.

Even though those reports are extremely valu­
able, we are not using our dataset to classify mu­
sic. Our approach is to discover cluster formation 
of Input Parameters that will further be used to 
recommend and create newer musical fragments 
based on non-linear dynamic systems. Neither we 
process the audio signal, since our intelligent sys­
tem works on the parameters associated to fractal 
equations.

The effects of mode, texture, and tempo on emo­
tions were studied in [39]. A 2 (mode: major vs. 
minor) x 2 (texture: nonharmonized vs. harmo­
nized) x 3 (tempo: 72, 108, 144 beats per min) 
experimental design was employed, in which 177 
college students rated four, brief musical phrases 
on continuous happy-sad scales. It is mentioned 
that major keys, non- harmonized melodies, and 
faster tempos were associated with happier re­
sponses, whereas their respective opposites were 
associated with sadder responses.

The dataset that we employ to discover rules 
displays a rich variation in: (i) tempos, from Ada­
gio (sixty beats per minute), to Prestissimo (220 
beats per minute); (ii) scales (major, minor, natural, 
harmonic and blues); (iii) harmonies (chords) and
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melodies (without chords). Hence, we analyzed 
a wider range of input parameters. Emotions, on 
the other hand, presented in the Valence-Arousal 
plane, which presents four different quadrants. A 
brief description of the relevant variables is given 
next.

3 Variables for the Creation of Fractal 
Musical Fragments

In spite of having the capability to create musical 
fragments based on several recursive, non-linear 
systems, we restricted this study to the Lorenz 
equations [19]. Therefore, musical fragments used 
as auditory stimuli mirror diverse combinations of 
input parameters, including: (i) variables of the 
Lorenz equations, and (ii) musical parameters.

Regarding the Lorenz equations, variables x , y, 
and z are the initial values of the attractor. In 
this case such variables represent initial notes. 
Consequently, they must be confined within the 
valid ranges of MIDI notes, that is to say, integers 
between zero and 127. Variables sigma, r and b 
are determinant for the actual shape of the attrac­
tor. They can take any real value, but our MAS 
is programmed so these values lie between minus 
two hundred and two hundred.

Table 1 displays the range of values that were 
used to compute the Lorenz attractor.

Table 1. Range of Lorenz parameters

Lorenz parameters
x y z sigma r b
[0,127] [-200, 200]

The algorithm we employ to extract rules (Sec­
tion 4) obliges to divide each of the variables into 
discrete groups. We describe how the relevant 
variables for the case at hand were grouped. The 
variables in Table 1 were divided in four classes.

Because the variables of the Lorenz attractor 
must be paired with musical parameters i.e. Tem­
pos, Notes Durations, Musical Scales, Chords and 
Instruments, we review them briefly and describe 
what classes were fixed for each of them. The 
proposed classification for variable Tempo is given

in Table 2. Ten classes are used so the LR-FIR 
algorithm performs accordingly.

Notes Durations are tied to Tempos, so they 
are expressed in values such as whole duration 
(1), half duration (1/2), a quarter (1/4), and so on. 
For the present study, Notes Durations lie between 
1/16 and 1. The Notes Duration variable was 
grouped in four classes.

The entire range of musical parameters is sum­
marized in Table 3.

The Instrument variable is grouped as follows: 
(i) Class 1 (Grand Piano, Bright Acoustic and 
Harpsichord); (ii) Class 2 (Acoustic Guitar, Steel 
String Guitar); (iii) Class 3 (Electric Clean Guitar, 
Electric Jazz Guitar, Guitar Harmonics, Distorted 
Guitar, Overdriven Guitar, Electric Muted Guitar); 
(iv) Class 4 (Violin, Viola, Cello, Tremolo, Pizzicato, 
Orchestral Strings, String Ensembles); and Class 5 
(Acoustic Bass, Electric Bass Finger, Electric Bass 
Pick, Fretless Bass, Slap Basses, Contrabass).

Similarly, the Chord variable was grouped as 
follows: Class 1 (Mayor chords); Class 2 (Mi­
nor chords); Class 3 (Augmented chords); Class 
4 (Diminished Chords); Class 5 (Other chords); 
Class 6 (No chords). Musical Scales are grouped 
as follows: Class 1 (Pentatonic Scales); Class 
2 (Harmonic Scales); Class 3 (Natural Scales); 
Class 4 (Blues Scales); Class 5 (Melodic Scales); 
Class 6 (without scale). Before dwelling into the 
experiments, we describe the work done in order to 
obtain the dataset from which rules are discovered.

3.1 Data Gathering

Data gathering was performed through a protocol 
where 42 subjects, all healthy, ranging from fifteen 
to forty-five years old, volunteered to evaluate the 
emotional responses felt after listening short mu­
sical pieces created by the MAS. Each individual 
was asked to select at will, from the entire set of 
pieces, which ones to evaluate. The subject was 
let free to decide when to stop. After listening to 
each musical piece, the individual selected what 
emotion was provoked. Soon after, the subject had 
to quantify Valence and Arousal.

Evaluation was performed by employing our 
MAS. Figure 1 is the GUI associated to Evalua­
tor Agent, which serves as an interface between
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Table 2. Tempo Classes. Values expresses in beats per minute

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
[60,65) [65,70) [70,80) [80,95) [95,10) [110,120) [120,145) [145,180) [180,220) [220,300]

Table 3. Musical parameters

Musical Parameters
Tempo Notes Duration Musical Scale Chord Instrument

[60,260] [1/16, 1] G Major Pentatonic Add9 Pianos(3)
G Minor Pentatonic Augmented Guitars(8)
E Major Pentatonic Diminished String Instruments (9)
E Minor Pentatonic Major Bass (6)
C Major Pentatonic Minor
C Minor Pentatonic Major 7

C Major Natural Minor 7
C Minor Natural Major 9

C Minor Harmonic Minor 9
G Minor Harmonic 7+9+5

G Blues 7-5+9
C Blues 7-5-9

C Melodic Minor 7+5-9
B Melodic Minor

the creative module, users and a database were 
tuples are stored. The referred GUI is a Span­
ish version of Russell's Circumplex Model of Af­
fect. To help understand it, we will describe the 
emotions in english words. The first quadrant 
contains Astonishment, Excitation, Euphoria and 
Happiness. The second quadrant is composed 
of Fear, Anger, Distress and Upset. Sadness, 
Depression, Droopiness and Tiredness constitute 
the third quadrant. Finally, the fourth quadrant 
contains Satisfaction, Serenity, Relaxation and At 
ease. The two dimensions are Valence (expressed 
as Agrado-Desagrado) and Arousal (expressed as 
Activacion). Since all of the evaluators are span­
ish speakers, we decided to develop such GUI in 
spanish, yet those labels are a faithful reflection of 
the original.

Some of the resultant tuples relating input data 
and emotions are shown in Table 4. The entire 
dataset is available upon request. The knowledge 
discovery process was performed on the entire set 
of evaluations that we obtained.

A C T IV A C IO N  ALTA

Miedo Sorpre

En.jo Excitacion

Eitres
Euforia

Dolido Alegria

DESA G RAD O AG R A D O

Tristeza Satisfaction

Depresiwi Sere ni dad

Aletargamiento Relajamiento

M 3 ,

AC T IV A C IO N  BAJA

lidad

Fig. 1. GUI of the Evaluator Agent

4 Algorithm for Extraction of Rules

The algorithm we are employing to discover knowl­
edge via the extraction of linguistic rules has been
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Instrument Scale Chord TempoX TempoY TempoZ DuraX DuraY DuraZ x y z sigma r b Emotion Arousal Valence
Piano PGMayor none 145 145 150 0.1 0.12 0.2 12 15 16 4 23 2 Happiness 6.3 9.3
Piano CNMenor major 140 165 150 0.125 0.1 0.25 23 56 16 4 23 2 Sadness 4.6 3.7

Distortion Guitar PGMayor none 125 135 145 0.125 0.115 0.13 23 34 67 4 8 7 Stress 7.8 1.37
Guitar Harmonics PEMenor none 187 180 199 0.175 0.195 0.145 63 40 77 30 57 11 Excitation 7.9 7.8
PizzicatoStrings PCMenor none 187 180 199 0.205 0.275 0.345 65 41 79 40 23 115 At ease 2.58 7.45
Overdriven Gtr GAMenorr major 255 255 255 1 1 1 80 119 90 43 14 37 Stress 7.2 0.44

String ensemble PGMenor major 255 255 255 0.125 0.13 0.12 67 65 68 100 100 100 Euphoria 7.2 7.6
Electric Muted Gtr PEMenor diminished 255 255 255 0.132 0.137 0.131 12 120 92 200 200 200 Astonishment 8.5 6.12

StringEnsemble PGMayor none 124 124 124 0.55 0.5 0.45 15 15 15 -10 -10 -10 Droopiness 2.65 5.08
Piano PEMenor minor 90 90 90 0.065 0.065 0.065 12 100 45 -3 3 -3 Satisfied 4.7 8.92

Overdriven Gtr PGMenor add9 80 80 80 0.125 0.125 0.125 120 12 24 -65 -65 -65 Tiredness 1.9 1.75
Piano BMelMinor none 60 60 60 .125 .125 .125 23 45 78 -100 -100 -100 At ease 2.07 8.35

Bright Acoustic CMelMinor Minor 60 60 60 .125 .125 .125 67 10 9 -100 -100 -100 At ease 1.88 6.45
Bright Acoustic CMelMinor Minor 60 60 60 .125 .125 .125 67 10 9 -100 -100 -100 Tiredness 2.11 3.24

Piano GBlues Major 220 220 220 0.125 0.125 0.125 61 9 3 -150 -150 -150 Euphoria 7.31 9.15
Cello CBlues Minor 140 140 140 0.125 0.125 0.125 2 2 2 150 150 150 Anger 7.94 4.47

described originally in [6]. It is known as LR- 
FIR, whose main purpose is to serve as a tool for 
decision making. Figure 2 shows the main phases 
of the algorithm. Notice that LR-FIR first creates 
a so-called Pattern Rule Base by using Fuzzy In­
ductive Reasoning (FIR), which characterizes the 
Input-Output relationships. A mask, which denotes 
a dynamic relationship among variables, is also 
required. The Linguistic Rules (LR) are obtained 
on the basis of such Pattern Rule Base. The two 
major processes are:

1. Basic Compaction. The main goal of this 
step is to transform the Pattern Rule Base, R , 
into a reduced set of rules, R'. R  is usually 
very large (almost as large as the number of 
training data available). An iterative proce­
dure evaluates rules in R , and each of their 
premises. R is compacted on the basis of the 
knowledge obtained by FIR. A specific subset 
of rules Rc can be mapped to a compacted 
rule r c  when all premises P  but one ( Pa ) ,  as 
well as the consequence C share the same 
values. Premises, in this context, represent 
the input features, whereas consequence is 
the output feature in a rule. If the subset 
contains all legal values LVa  of P a , all these 
rules can be replaced by a single rule r c  that 
has a value of - 1 in the premise Pa . When 
more than one - 1 value Pn i , is present in a 
compacted rule rc, it is compulsory to evaluate 
the existence of conflicts by expanding all Pni 
to all their legal values LVa , and comparing 
the resultant rules X r with the original rules 
R . If conflicts C f  exist, then the compacted

rule r c  is rejected, otherwise it is accepted. 
In the latter case, the previous subset Rc is 
replaced by the compacted rule rc. Conflicts 
occur when one or more extended rules X r  

have the same values in all its premises but 
different values in the consequence. Thus, 
R' includes all the rc compacted in previous 
iterations and those that cannot be compacted
R n c  .

2. Improved Compaction. Whereas the previ­
ous step only structures the available knowl­
edge and represents it in a more compact 
form, the improved compaction step extends 
the knowledge base R to cases that have not 
been previously used to build the model R b . 
Thus, step 1 leads to a compacted data base 
that only contains knowledge; the enhanced 
algorithm contains undisputed knowledge and 
uncontested belief. Two options are studied: 
In the first one, using the compacted rule base 
R' obtained in step 1, all input features P 
(premises) are visited once more in all the 
rules r that have nonnegative vales (not com­
pacted), and their values are replaced by - 1. 
An expansion to all possible full sets of rules 
X r  and their comparison with the original rules 
R are carried out. If no conflicts are found, 
then the compacted rule rc is accepted, oth­
erwise it is rejected. The second option is 
an extension of the basic compaction, where 
a consistent minimal ratio M R  of legal values 
LVa  should be present in the candidate subset 
Rc in order to compact it in the form of a single 
rule rc. This option seems more suitable since 
a consistent ratio is used to compact Rc in a
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single rule rc. Hence, the beliefs are mini­
mal and they do not compromise the model 
previously identified by FIR. In option 1 beliefs 
are assumed to be consistent with the original 
rules; nevertheless, this could compromise the 
agreement with model identified, especially 
when the training data is poor and does not 
describe all possible behaviors.

Fig. 2. Main steps of the rule extraction algorithm

Then, the obtained set of rules passes though a 
number of refinement steps: removal of duplicate 
rules and conflicting rules; unification of similar 
rules; evaluation of the obtained rules and removal 
of rules with low specificity and sensitivity.

5 Extraction of Linguistic Rules 
According to Emotions

We present, in Table 5, the resultant set of linguistic 
rules. Their interpretation comes afterwards.

In Table 5, Spec. means Specificity, Sens. 
means Sensitivity, and Acc. means Accuracy, 
which are he accepted metrics to assess the qual­
ity of classifiers.

5.1 Interpretation of the Linguistic Rules

Table 5 contains the linguistic rules that were dis­
covered by applying the algorithm LR-FIR to our 
psychoacoustics dataset.

It can be seen that for the emotions in the first 
quadrant (Q1) of the Valence-Arousal plane (As­
tonished, Excited, Euphoric and Happy), four rules 
were discovered. All of them suggest the usage 
of high values of Tempos, that is to say, Tempos 
between 120 and 145 beats per minute (C7) and 
Tempos between 180 and 220 beats per minute 
(C9). In all of the cases the Chord to use must 
be taken from the class C1 (Major chords).

Two rules recommend the usage of Notes Dura­
tions between 0.125 and 0.25 (C2). The four rules 
lead to employ an Instrument that belongs in C1 
(Piano, Bright Acoustic or Harpsichord), and one 
of the rules also recommends to employ any of the 
electric guitars (belonging to C3).

For the Emotions in the second quadrant of the 
Valence-Arousal plane (Angry, Fear, Distressed, 
Gloomy), the LR-FIR only extracts one rule, whose 
interpretation is straightforward. Chords should be 
minor; Instruments should be one of the Pianos, 
and Tempos must take values between 60 and 65 
beats per minute.

As for the emotions in the third quadrant of the 
Valence-Arousal plane (Sad, Depressed, Tired, 
Droopy) five rules were discovered. Musical frag­
ments could be created on Major chords or no 
chords at all. The Instrument should be picked from 
the Strings class (C4). Notes Durations may take 
a value between 0.125 and 1, which are the values 
contained in classes one, two and three for this 
variable. Even though the variable Tempo might 
be taken from C1 (60-65 bpm), C3 (70-80 bpm), 
C4 (80-95 bpm) or C7 (120-145 bpm), situation 
that might seem too vague, those values should be 
paired to Notes Durations. Thus, combining such 
Tempo values with the Note Duration values, musi­
cal fragments will possess the appropriate rhythm 
to provoke emotions in Q3.

Finally, emotions in the fourth quadrant of the 
Valence-Arousal plane (Satisfied, Serene, Re­
laxed, At ease) will likely be provoked by the Input 
Parameters that the three discovered rules sug­
gest. Musical fragment should be created with
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Table 5. Resultant linguistic rules

Linguistic rules according to Valence-Arousal
Linguistic Rules Spec Sens Acc

IF Instrument IN (C3 OR C4) AND duraZ IN C2 AND r IN C4 and tempoY IN C9 THEN Emotion IN Q1 0.98 0.1 0.69

IF Chord IN C1 AND duraZ IN C2 AND r IN C1 AND tempoY IN C9 THEN Emotion IN Q1 1.0 0.063 0.69

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C9 THEN Emotion IN Q1 0.96 0.047 0.66

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C7 THEN Emotion IN Q1 0.97 0.043 0.67

IF Chord IN C2 AND Instrument IN C1 AND r iN C3 and tempoY IN C1 THEN Emotion IN Q2 0.98 0.076 0.82

IF Chord IN C6 AND duraZ IN C2 AND r iN C1 AND tempoY IN 1 THEN Emotion IN Q3 0.99 0.061 0.82

IF Chord IN C6 AND Instrument IN C4 AND duraZ IN C4 AND tempoY IN C7 THEN Emotion IN Q3 0.98 0.061 0.8

IF Chord IN C6 AND Instrument IN C4 AND duraZ IN C3 AND r IN C4 and tempoY IN C3 THEN Emotion IN Q3 0.99 0.047 0.81

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C1 THEN Emotion IN Q3 0.97 0.047 0.79

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C4 THEN Emotion IN Q3 0.97 0.045 0.79

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C1 THEN Emotion IN Q4 0.98 0.056 0.79

IF Chord IN C1 AND Instrument IN C4 AND r IN C2 AND tempoY IN C9 THEN Emotion IN Q4 0.96 0.052 0.78

IF Chord IN C2 AND Instrument IN C4 AND duraZ IN C1 AND tempoY IN C1 THEN Emotion IN Q4 1 0.045 0.8

Major chords (C1), any of the Strings instruments 
(C4), and rhythms obtained with Notes Durations 
between (0.0625-0.125) paired with Tempos in the 
ranges of (60-65 bpm) or (180-300 bpm).

We emphasize here that the recommended In­
put Parameters according to a target emotional 
response is not done on a rule by rule basis, but by 
taking into consideration the entire subset of rules 
according to the quadrant under analysis. Hence, 
rules that might be contradictory are not, actually, 
because they are part of the solution and not a 
solution per se.

It is also worth noticing that parameter r of the 
Lorenz equations is thought to be determinant for 
the obtention of the proper auditory stimuli, ac­
cording to the results of the LR- FIR algorithm 
employed.

Another point worth mentioning here is that we 
executed several experiments to discover rules. In 
each of them the underlying parameters of LR- 
FIR were changed. However, the set of extracted 
rules did not vary substantially. This could occur

because the dataset actually contains a stable pat­
tern. As future work, we intend to compare the 
knowledge obtained by using LR-FIR with another 
techniques of knowledge discovery i.e. clustering.

We created some fragments of fractal music with 
the Input Parameters suggested by the above set 
of rules, and asked ten of our students (20-24 
years old, male and females) to assess them. In 
80 percent of the cases their emotional response 
matched the emotion intended. Yet, more experi­
mental validation is necessary.

6 Conclusions and Future Work

Even though recommendation of music has been 
reported in [31], our propossal differs because we 
link emotions and parameters via linguistic rules. 
This article depicts how to discover knowledge for 
automating the creation of musical pieces based 
on nonlinear models. With the newly discovered 
knowledge, it is possible to advance towards de­
veloping a recommender system which exploits
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such knowledge. Thus, we can state that the 
enhancement of computer-assisted creation of mu­
sical pieces is achievable by upgrading such sys­
tems with KDD, promoting that Input Parameters 
associated with a desired emotion can be obtained.

Several questions have to be addressed, though. 
If we were to employ more knowledge discovery 
techniques, will the recommendations differ signif­
icantly? More experimentation is needed at this 
regard. Another question has to do with finding the 
right data for a particular subject. It might occur 
that the recommended input data could not match 
the actual response given by an individual. In this 
case, it is necessary to develop meta-computing 
techniques which allow to traverse among several 
possible solutions. That meta computing must 
include (i) weighting several fractal systems, (ii) 
decisions on the most suitable clustering technique 
and (iii) rewarding those solutions that match a 
subject's emotions. Hence, we will explore brain- 
inspired computation to promote plasticity and flex­
ibility in our creative software. A final question 
refers to what extent the present findings can be 
transferred to another chaotic system, specially 
musical parameters such as Tempo and Notes Du­
rations. Could musical fragments created with the 
Marcus-Lyapunov system utilize the Tempo values 
presented in the present article to provoke the 
same emotions?

Necessary and rather-sufficient knowledge has 
been discovered and stated as linguistic rules. We 
will channel our efforts to achieve the unmanned 
creation of musical pieces: users will only set what 
emotion is to be enacted, KDD will then provide 
input parameters, and music will be rendered auto­
matically.
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