
Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

An Operational Approach for Implementing Normative Agents
in Urban Wastewater Systems

Juan Carlos Nieves1, Dario Garcia-Gasulla1, Montse Aulinas2, and Ulises Cortés1
1 Knowledge Engineering and Machine Learning group (KEMLg),

Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain

2 Laboratory of Chemical and Environmental Engineering, University of Girona,
Girona, Spain

{jcnieves,dariog,ia}@lsi.upc.edu, aulinas@lequia.udg.cat

Abstract. Water quality management policies on a river
basin scale are of special importance in order to prevent
and/or reduce environmental pollution caused by
human sources. Industrial effluents are a priority issue
particularly in Urban Wastewater Systems (UWS) that
receive mixed household and industrial wastewaters,
apart from rainfall water. In this paper, we present an
analysis and implementation of normative agents that
capture concrete regulations of the Catalan pollution-
prevention policies. The implementation of the
normative agents is based on Situation Calculus.

Keywords. Rational agents, environmental decision
support systems, practical normative reasoning,
situation calculus.

Un enfoque operacional
para implementar agentes normativos

en sistemas urbanos
de aguas residuales

Resumen. Las políticas de gestión de la calidad del agua
a nivel de cuenca hidrográfica son especialmente
importantes para la prevención y/o reducción de la
polución originada por el hombre en el medio
ambiente. Los efluentes industriales son un elemento
prioritario particularmente en los Sistemas Urbanos de
Aguas Residuales (SUAR) que reciben mezcladas las
aguas residuales provenientes de viviendas particulares
y de industrias, así como el agua de lluvia. En este
artículo, presentamos un análisis y una implementación
de agentes normativos que capturan las regulaciones
específicas de las políticas Catalanas de prevención de
la polución. La implementación de los agentes
normativos está basada en el Cálculo de Situaciones.

Palabras clave. Agentes racionales, sistemas de ayuda a
la toma de decisiones, razonamiento práctico
normativos, cálculo de situaciones.

1 Introduction

Environmental decision-making is a complex,
multidisciplinary, and crucial task. Water
managers have to deal with complex problems
due to characteristics of the processes that occur
within environmental systems and possible
consequences for the environment. In addition to
this, water managers have to deal with normative
regulations that have to be considered in
any decision.

At the European level, [9] was developed to
apply an integrated environmental approach to
the regulation of certain industrial activities. This
means that, at least, emissions to air, water
(including discharges to sewer), and land must be
considered together. It also means that regulators
must set permit conditions so as to achieve a high
level of protection for the environment as a whole.
Several national and regional efforts are being
made in order to improve water quality
management as well as to comply with the
European regulations. Specifically, we analyze
the Catalan experience as a realistic example of
adapting the European guidelines to manage
water taking into account the local/regional reality.

In order to analyze the context of pollution-
prevention policies in Catalonia, we consider a
concrete regulation [5]. It is a regional regulation
developed to follow the Catalan sanitation

28 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

program. One of the aims of this updated program
is to directly link the urban wastewater treatment
program with the industrial wastewater treatment
program. It pays special attention to the industrial
component of urban Wastewater Treatment
Plants (WWTPs) in order to facilitate the
connection to the public system of those
industries and/or industrial parks that accomplish
the requirements.

This regulation is not easy to interpret since
each wastewater management case to be solved
is different and has its particular complex
peculiarities (e.g. flow, loads, frequency, location,
polluting potential, involved agents, etc.). Water
managers have to ensure that their decisions,
given a particular problematic case, are taken on
time and comply with specific regulations to
prevent pollution and to ensure high water quality
standards. For this reason, tools to simplify and
shorten the experts’ decision-making task,
specifically those aimed at understanding and
applying regulations, are required.

Following the perspective that a software
agent is an active entity whose behavior is
described by such mental notions as knowledge,
goals, abilities, commitments, etc. [25], we have
been exploring the definition of intelligent agents
provided with the normative knowledge in order to
manage concrete normative regulations which are
in the context of UWS [2,20].

A central issue to successfully implement a
normative agent is the selection of formalisms for
performing practical normative reasoning. By
practical normative reasoning, we mean a
computable normative inference1 able to infer a
statement α from a normative knowledge base ∑
at a low computational cost. Although several
powerful formalisms exist, finding the right one is
a non-trivial challenge, as it must provide a level
of expressiveness that serves the practical
problems at hand in a tractable way. In the
literature, one can find several approaches for
performing normative reasoning such as deontic
logic, temporal logic, dynamic logic, etc. [16];
however, these approaches have a high
computational cost. An important feature of formal

1 By computable inference, we mean that there exists an
algorithm which implements it. This inference is not necessary
complete with respect to a logic inference; however it has to
be sound.

methods is that they do help in the long run to
develop a clearer understanding of problems and
solutions; hence, the definition of computable
tractable approaches based on formal methods is
relevant for performing practical normative
reasoning.

Since norms in real world are usually defined
at an abstract level [23], the modeling process of
real norms is not straightforward. Therefore, a
relevant issue for performing normative reasoning
is to find an operational representation of norms.
In [1], a declarative representation of norms was
introduced. The main ingredient of this
representation is the consideration of the norm
conditions, which define a life cycle of each norm,
to infer when a norm is violated. According to [1],
the detection of norm violations depends on two
properties of inspection to be done:

1. Observability: the conditions or actions can be
checked by internal agents, given the time
and resources needed;

2. Computability: the conditions of actions can
be checked in a feasible and low cost
manner.

Using these two properties, we can analyze
their impact on the implementation of norm
enforcement. The hypothesis is that by observing
the items which affect the lifecycle of a norm, one
can infer the state of violation of the norm. In this
paper, we explore the life cycle of a norm in terms
of state machines such that each state represents
a state of the world. An important issue in our
approach is a representation of the world in terms
of states/situations. We follow the approach
introduced in [14, 15] for observing the world and
then inferring the state of a norm.

In this paper, we extend the work of the earlier
paper [18] in order to present an implementation
of normative agents based on Situation Calculus
for performing practical normative reasoning in
the domain of WWTP. The normative knowledge
structure follows the approach introduced in [1].
Unlike the approach presented in [20], which
extends the action language A to capture norms,
in this paper we explore a norm’s lifecycle by
considering states of the world (situations/sets of
fluents). This means that our main concern will be
to monitor the states of norms being either active
or inactive (monitoring if a norm applies to a

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 29

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

certain agent), and violated or respected
(regulating if a certain agent respects a norm’s
content). We will present an analysis of the
existing specific Catalan regulation of providing
normative knowledge to normative agents. Also,
we will describe an implementation of these
normative agents using Situation Calculus.

The rest of the paper is organized as follows.
In Section 2, a realistic hypothetical scenario is
described in order to illustrate the role of some
regulations for managing industrial discharges. In
Section 4, a brief introduction to Situation
Calculus is presented. This section also describes
how to introduce normative knowledge in a
Situation Calculus specification. In Section 5, we
explain how to implement the approach of Section
4. In Section 6, an operational execution example
of the prototype is presented. Section 7 gives a
summary of related work, and in the last section,
we outline our conclusions.

2 Realistic Scenario

In this section, a realistic hypothetical scenario is
described in order to illustrate the role of some
regulations for managing industrial discharges.

At the municipality of Ecopolis, a new industry
called MILK XXI expects to be set up. As a result
of its production processes, the main
characteristics of its wastewater will be as follows:

 Flow: 60 l/s (5184 m3/day),
 Suspended Solids (SS): 130 mg/l,
 Biochemical Oxygen Demand (BOD5): 450

mg/l,
 Chemical Oxygen Demand (COD): 800 mg/l,
 Oils and greases: 275 mg/l.

The Milk factory plans to work 16 h/day (two
shifts), 225 days per year. It plans to get
connected to the municipal sewer system which
collects wastewater from a population of 12 000
inhabitants and transports it to the municipal
WWTP. WWTP complies with regulations strictly.
The owner of the industry submits a request to
obtain authorization to discharge into the
municipal sewer system, which is compulsory by
law (Decree 130/2003 establishes the public
sewer systems regulations). Moreover, the Milk

industry plans to apply BAT2 in order to reduce
water consumption, so this fact is also declared in
the request for a final authorization decision.

The industry intends to reduce 30% on water
consumption, and consequently, the increment of
pollutant concentrations is projected to be as
follows:

 Flow (reduction): 42 l/s (3628,8 m3/day),
 SS: 200 mg/l,
 BOD5: 600 mg/l,
 COD: 1000 mg/l,
 Oils and greases: 357.5 mg/l.

Several rules are launched to manage this
case, which are included in the regulation
analyzed in this work. In Tables 1 and 2, we list
the agents and the norms involved directly in the
case.

2 BAT: Best Available Techniques [4].

Table 1. Actions and Agents involved

Action Agent

Request authorization,
exceptions in thresholds, etc.

Industry Agent

Give authorization
Water Catalan
Agency Agent

Apply BAT (declare this when
requesting authorization)

Industry Agent

Discharge Industry Agent

Table 2. Agents and Norms involved

Action Type of Norm(Article)

Request authorization,
exceptions in the
thresholds, etc.

Obligation (7.1)

Give authorization

Obligation (13.1)
Obligation (13.2)
Obligation (13.2)

Apply BAT (declare this
when requesting
authorization)

Obligation (8.2)

Discharge Obligation (8.3)

30 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

We omit a detailed description of each agent;
however, a version of these can be found in [2].
Note that the behavior of each agent is fixed by a
set of norms that the agent has to comply with. In
Section 3, we describe how these norms are
expressed in mental notions of an agent.

3 Normative Specification Based on
Situation Calculus

This section describes our approach to
introducing normative knowledge in Situation
Calculus. We begin with a brief introduction to
Situation Calculus.

3.1 Situation Calculus

Situation Calculus [15] is a first order language for
axiomatizing dynamic worlds. Nowadays, it has
been considerably extended beyond the classical
language to include concurrency, continuous
time, normative knowledge, etc. [6, 14, 21, 22];
however, in all cases its basic ingredients are
actions, situations and fluents.

 Actions: Actions are first-order terms
consisting of an action function symbol and its
arguments. In the scenario described in
Section 2, a possible action of the industry is
make_spill(spill_init,milkXXI).

 Situations: A situation is a first-order term
denoting a sequence of actions. These
sequences are represented using a function
symbol do: do(a,s) denotes the sequence
resulting from adding the action a to the
sequence s. The constant s0 denotes the
initial situation, namely an empty action
sequence.

 Fluents: Relations whose values vary from
state to state are called fluent; they are
denoted by functions and predicates symbols.
For relating the values of a fluent in a given
situation, the binary relation hold(f,s) denotes
the value of the fluent f in a situation s.

As any approach for temporal reasoning,
Situation Calculus must deal with the Frame
Problem to make its implementation consistent
[15, 22]. Being aware of that, we present a

specification that fully asserts the effects of all
actions on every norm.

3.2 Norm Specification

In this section, we describe how to express norms
in a specification of situation calculus, that is, a
modeling process of norms at a high level. Since
environmental domains are dynamic, that is, truth-
values change with time, the described approach
must deal with the specification of norms in
dynamic domains. For this purpose, we follow the
approach by states for specifying the world; this
means that each state of the world will be
reached by a finite sequence of actions in terms
of Situation Calculus.

Before working on how to specify norms, we
will analyze them, following [1, 19, 20] and
keeping Situation Calculus particularities in mind.
To fully specify a norm, several aspects must be
identified:

Type of norm: norms that oblige to do
something, norms that allow/permit something
or norms that forbid something.

Conditions and content: the norm conditions
and the norm content must be separated in
order to study the characteristics of situations,
in which the norm is active and in which the
norm is violated.

States: a set of variables the norm refers to. For
each possible value of those variables, the
norm has one and only one activation and
violation state, e.g., if a norm is applied to an
agent then it should have one variable such as
IdAgent, and if it is applied to an agent’s spill
then it should have two variables, IdAgent and
IdSpill.

Actions: a complete list of domain actions which
may influence the activation state and the
violation state, separately, for each norm.

Preconditions: preconditions for each action
must be defined, that is, in which situations it
can be executed and the requirements
regarding its parameters.

Having all that information in mind, we can
start to specify our norms. For the normative
domain, we follow an adapted version of Reiter’s
solution to the frame problem presented in [21].
We propose to split the specification into two

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 31

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

parts corresponding to the main properties that all
norms have:

 Situations in which the norm is active;
 Situations in which the norm is violated.

To specify the situations in which a norm is
active or violated, we will declare a value of
fluents that will define unequivocally a set of
situations which represent those set of states.
The first part of the specification is meant to
contain all possible states in which the norm must
be taken into consideration (it is active). The
second one comprises all the states in which the
norm’s content is violated. In what follows, we
present the first part of the specification.

In our proposal, a norm N, after doing an
action A in a situation S, is active if and only if it
fits one of three cases:

i. N was not active before doing A. There is a
set of conditions under which A changes the
activation state of N from inactive to active.
The conditions needed for A to activate N are
fulfilled in S.

The Activation Condition: Given a certain norm
in a situation where the norm is inactive, the
range of A is a set of actions that may modify the
values of the fluents on which the activation state
of the norm depends, in a way that the resultant
situation (defined by the resultant value of the
fluents) could belong to the situations in which the
norm is active.

ii. N was active before doing A. There is a set
of conditions under which A changes the
activation state of N from active to inactive.
The conditions needed for A to deactivate N
are not fulfilled in S.

The Inertial Condition: Given a certain norm in
a situation where the norm is active, the range of
A is the actions that may modify the values of the
fluents on which the activation state of the norm
depends, in a way that the resultant situation
could belong to the situations in which the norm is
inactive.

iii. N was active. There is no set of conditions
that can make A change the activation state of
N from active to inactivate.

The Non-Termination Condition: Given a
certain norm and a situation where the norm is
active, the domain of A is the actions that may
modify the values of the fluents in a way that the
resultant situation could change the state of the
norm from active to inactive or from inactive to
active.

If we analyze these three rules, we can assure
that every state in which the norm is active fits
into one and only one of these three rules. By
checking a certain situation with a proposed
action, we can assert the activation state of any
norm after that action has been performed in the
situation.

The second part of the specification contains
the situations in which a norm is violated. In this
case, we have decided to make a simpler
specification. In the specification of the activation
condition, we had the temporal progression
integrated into it by the use of a variable that
represents the action just performed (variable A).
This variable allows us to represent
temporariness by joining the current state with the
past state. In the case of the violation state, we
propose a static specification. In it we will omit the
variable A and have the specification of the
violation state solely based on the situation’s
fluents. It is possible to do so without losing
expressivity since the temporal progression in our
domain is represented as well in the fluents
definition (whose specification looks very much
like the Activation Condition specification), which
contains the variable A as well. Otherwise, we
would lose the concept of time. By deleting this
action variable, the specification becomes much
simpler as only the fluents that define the states
where the norm is violated have to be stated.

In our proposal, a norm N is violated in a
situation S if and only if it fits one of these two
cases:

i. N is active in S, N obliges to the value of one
or more fluent, and S does not fulfil all of
those obliged fluents. This rule is intended to
cover violations performed upon norms that
oblige to something.

ii. N is active in S, N forbids the value of one or
more fluent, and S fulfils one of those
forbidden fluents. This rule is intended to

32 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

cover violations performed upon norms that
forbid something.

With those two rules, we cover all possible
violations which can come upon a norm, as norms
that allow something cannot be violated. Since a
norm cannot be forbidding and obliging at the
same time, those two cases are mutually
exclusive. Once having the two parts of the
specification of each norm, we can implement
them to see how they work in a real life domain.

3.3 Permission Norms

Before seeing the resultant implementation, there
is a particular case that must be studied, as it
implies specification and implementation
particularities: it is the case of permission norms.
Following the Deontic Logic definition of
permission, permission norms cannot be violated.
That is because formally the permission deontic
operator specifies something that can be done,
but does not implicitly specify that the opposite
cannot be done. On the other hand, considering
that our objective is to faithfully reproduce an
existing legal framework that regulates a real
world domain, our world is closed such that
everything is allowed unless otherwise regulated.
These two facts together make implicit knowledge
of permission norms an issue, which must be
dealt with specifically.

As an example of the implicit forbidding
content of a permission norm, we can see that the
norm It is allowed to spill black waters into the
river if one has the required authorization
implicitly includes the forbidding norm It is
forbidden to spill black waters into the river
without authorization. When that forbidding part of
a norm does not appear on its own among the
norms and only appears implicitly, it must be
made explicit in order to capture the complete
meaning of a normative system.

Once we have analyzed all implicit norms,
which must be made explicit (ideally with the help
of a legal expert), it is necessary to coordinate
them with the rest of the norms, which cover the
same situation. The permission norms which are
applicable to the same situation as forbidding
norms (the norm may originally contain the
implicit forbidding norm or not) will work as

exceptions to the generic forbidding norm. It is
important to make sure that the activation states
of all those norms are dependent on each other.
That is, one or more permission norms will be
active for a given agent when the forbidding norm
is not active, and no permission norm will be
active for a given agent when the forbidding norm
is active. One of the norms (a permission norm or
a forbidding norm) must always be active, and
two (one permission norm and one forbidding
norm) must never be active at the same time in all
possible situations of the norm to avoid self-
contradiction.

To achieve such merging of norms, it is
necessary to analyze and integrate together all
norms regulating the same situation. One of the
advantages of the specification and
implementation approach presented here is that it
defines generic norms first and allows later
addition of exceptions (usually represented as
permission norms) to the existing norm.
Therefore, it is very easy to integrate new
exceptions to generic norms, thus extending and
enhancing the normative knowledge base.

4 Normative Implementation Based on
Situation Calculus

In the previous section, we proposed a
specification approach for norms working on
dynamic domains using Situation Calculus and
specifying a norm’s lifecycle as active, inactive,
violated, and respected. Now we will show how
this specification can represent real laws in
standard Prolog. First, we consider and justify the
code, which represents the states of a norm, and
then we present an example of its application in
our prototype.

We will discuss in detail only the code of one
norm here, but the interested reader can find the
whole Prolog domain and normative knowledge
base at http://www.lsi.upc.edu/~jcnieves/software/
NormativeKnowledge-PAAMS-2010.pl.

In this example, we are going to consider
Decree 130/2003 of the Catalan Water Agency.
Remember, the motivation of this decree was
explained in Section 2. Norms regarding
bureaucracy issues will be avoided deliberately,
as we consider them to be less relevant to the

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 33

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

concrete domain we are trying to represent. We
will formalize and work with the following set of
norms:

 7.1 For the following agents it is obligatory to
obtain an authorization and to respect the
restrictions of Annex I3 and II:
 Non-domestic users whose activity is

included in C, D and E sections of the
Catalan Classification of Economic
Activities (Decree 97/1995) are
considered as potential pollutant agents.

 Those who generate spills > 6000
m3/year.

 7.2 If the agent is a domestic or similar user,
such agent must comply with Annex I.

 7.3 Only if the pertinent agent considers it best
to spill to the environment, then it is possible
not to spill to the sewage system.

 7.4 If a new spill takes place, the pertinent
agent will register it in a census (Article 18)

 8.1 Prohibitions:
 Substances of Annex I.
 To dilute; if there is an emergency or an

imminent risk, it is possible to dilute with
previous warning to the competent agent.

 To spill white waters to the public sewer
system; if there is no alternative, an
authorization to perform such spills must
be obtained.

 8.2 If a domestic agent spills contain
substances included in Annex II, the agent
must respect the established limitations.

 10.2 If one has obtained the authorization, this
agent may spill black waters to the public
sewer system according to the established
regulations.

In order to make the formalizing process
easier to understand, we will see a commented
implementation of only one of those norms;
specifically, we will see the regulation included in
article 7.1. Following the analysis explained in
Section 4, we know that:

3 The mentioned Annex I and II in the laws refer to Annex I
and II of the Catalan Decree 130/2003 that regulates the
public drainage system. Annex I includes a list of limited
substances and specifies these limitations; Annex II includes a
list of forbidden substances.

 Norm 7.1 is an obliging norm.
 The norm is active in the following situations:

 A non-domestic agent is considered
pollutant.

 An agent spills > 6000 m3/year.
 The activation state of the norm can be

changed by the following actions:
 Make a spill: the execution of a spill is

started by the agent thus increasing the
agent’s m3/year production.

 Add substance: a certain amount of a
substance is added to a spill of the agent
thus increasing the agent’s m3/year
production.

 Set agent type: the type (domestic,
industrial...) of the agent is changed.

 Set agent activity: the activity of the agent
is changed; agents performing polluting
activities are considered pollutant.

 Set/Unset an activity as pollutant: the
pollutant consideration of an activity is
changed; agents performing polluting
activities are considered pollutant.

 Cancel a spill: the execution of a spill by
the agent is terminated thus decreasing
the agent’s m3/year production.

 Delete substance: a certain amount of
substance from a spill of the agent is
deleted thus decreasing the agent’s
m3/year production.

 Preconditions of each action will be defined by
a predicate termed poss(A,S) following the
Situation Calculus syntax, where A is an action
and S is a situation.

4.1 A Norm Implementation Example

To implement the previously analyzed norm, we
start with a representation of the activation state
which may be active or inactive depending on the
previous state of the world and what action
occurred in it. In the code given further in this
section, we specify three ways for a norm to
become active in a given situation after an action
occurred, as an adapted version of Reiter’s
simple solution [21]. The code may look too
extensive at first glance, but it is quite simple.
After a thorough look, it can be observed that
since we need to assert all the cases in which the

34 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

norm is active so that the unasserted cases can
be automatically classified as inactive,
understanding the meaning and purpose of each
line of the code is easy. The requirement of
defining unequivocally all the cases in which the
norm is active generates a simple and explicit
representation of each of the possible states in
which the norm is active.

The resultant Prolog implementation of norm
7.1 after applying the specification schema given
before for the activation state of a norm (split into
the three cases; Activation Condition, Inertial
Condition and Non-termination Condition as
explained in Section 4) can be seen in Tables 3
and 4.

Table 3. Prolog code for the activation state of norm 7.1

holds(norm(71,IdAgent),do(A,S)):-

Norm 7.1 is active (holds) for an agent IdAgent after doing action A in situation
S (do(A,S)) if and only if one of the following situations (Activation, Inertial or
Non-termination conditions) takes place.

ACTIVATION CONDITION: Actions which could activate the norm and did so when the norm was inactive.

A=make_spill(IdSpill,IdAgent), holds(spill_total_size(IdSpill,SizeS),S),
holds(agent_spills_total_size(IdAgent,SizeA),S), Total is

SizeA+SizeS,Total>6000, \+holds(norm(71,IdAgent),S), poss(A,S);

The action is make a new spill, and with the
size of this spill, the agent’s total spills are
bigger than 6000 m3/year.

A = add_substance(IdSpill,Sub,Qua),
holds(agent_spill(IdAgent,IdSpill),S),

holds(agent_spills_total_size(IdAgent,Size),S),
6000<Qua+Size,\+holds(norm(71,IdAgent),S), poss(A,S);

The actions is add a substance to a spill of
the agent, and with the added substance,
the agent’s total spills are bigger than 6000
m3/year.

A=set_agent_type(IdAgent,non_domestic),
holds(pollutant_agent(IdAgent),S),\+

holds(norm(71,IdAgent),S) , poss(A,S);

The action is set the agent’s type as non-
domestic, and such agent is pollutant.

A=set_agent_activity(IdAgent,Activity),
holds(pollutant_activity(Activity),S),

holds(agent_type(IdAgent,non_domestic),S),
\+holds(norm(71,IdAgent),S) , poss(A,S);

The action is set the agent’s activity to the
one considered as pollutant and the agent is
non-domestic.

A=set_pollutant_activity(Activity),
holds(agent_activity(IdAgent,Activity),S),

holds(agent_type(IdAgent,non_domestic),S),
\+holds(norm(71,IdAgent),S) , poss(A,S);

The action is set an activity to pollutant, this
activity is of the agent, and the agent is non-
domestic.

INERTIAL CONDITION: 4 Actions which could deactivate the norm but did not do it when the norm was active.

holds(norm(71,IdAgent),S), A =
set_agent_type(IdAgent,non_domestic),poss(A,S);

The norm was active for the agent, and the
action is set its type as non-domestic.

holds(norm(71,IdAgent),S), A=set_agent_type(IdAgent,AgentType),
AgentType\=non_domestic,

holds(agent_spills_total_size(IdAgent,SizeA),S)

The norm was active for the agent, the action
is set its type not as non-domestic, and the

4 Only the most significant inertial conditions are seen here. The rest can be found in:
http://www.lsi.upc.edu/~jcnieves/software/NormativeKnowledge-PAAMS-2010.pl

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 35

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

,SizeA>6000, poss(A,S); agent’s spills are bigger than 6000 m3/year.

holds(norm(71,IdAgent),S), A=set_agent_activity(IdAgent,Activity),
holds(pollutant_activity(Activity),S), poss(A,S);

The norm was active for the agent and the
action is set its activity to the one considered
pollutant.

holds(norm(71,IdAgent),S),
A=unset_pollutant_activity(Activity),\+holds

(agent_activity(IdAgent,Activity),S),poss(A,S);

The norm was active for the agent and the
action is set an activity which is not of the
agent as non-pollutant.

holds(norm(71,IdAgent),S), A = cancel_spill(IdSpill,IdAgent),
holds(agent_type(IdAgent,non_domestic),S),
holds(pollutant_agent(IdAgent),S), poss(A,S);

The norm was active for the agent, the action
is cancel a spill of the agent, and the agent is
non-domestic and pollutant.

holds(norm(71,IdAgent),S), A = cancel_spill(IdSpill,IdAgent),
holds(spill_total_size(IdSpill,SizeS),S),

holds(agent_spills_total_size(IdAgent,SizeA),S),
VAR is SizeA -SizeS, VAR> 6000, poss(A,S);

The norm was active for the agent, the action
is cancel a spill of the agent, and the agent’s
spills without the cancelled amount are bigger
than 6000 m3/year.

NON-TERMINATION CONDITION: Actions which could not deactivate the norm when the norm was active.

holds(norm(71,IdAgent),S),

\+A=set_agent_type(IdAgent,Type), \+A=set_agent_activity(IdAgent,Activity),
\+A=unset_pollutant_activity(Activity2), \+A=del_total_substance(IdSpill,Sub),\+

A=del_substance(IdSpill,Sub,Qu),\+A=delete_agent(IdAgent),
\+A=cancel_spill(IdSpill,IdAgent), poss(A,S).

The norm was active for the agent,
and the performed action could not
deactivate the norm in any possible
situation.

Table 4. Prolog code for the violation state of norm 7.1

violated(norm(71,IdAgent),S) :- Norm 7.1 is violated by an agent
IdAgent if and only if one of the
following situations takes place.

sholds(norm(71,IdAgent),S),
holds(agent_spill(IdAgent,IdSpill),S),

holds(spill_violates_limitation(IdSpill,Substance),S)

The norm is active for the agent
IdAgent, and the agent produces a
spill which violates a substance
limitation.

holds(norm(71,IdAgent),S), holds(agent_spill(IdAgent,IdSpill),S),
holds(spill_place(IdAgent,SpillPlace),S),

holds(agent_associated_entity(IdAgent,IdAgentEntity),S),
\+holds(spill_authorized

(IdSpill,SpillPlace,IdAgent,IdAgentEntity),S) .

The norm is active for the agent
IdAgent, and the agent produces a
spill in a place not authorized by
the associated entity agent.

This implementation, as justified in Section 4,
represents fully and in a computable way the
activation states of a norm because it includes all
possible situations in which the norm is active.
Table 4 presents an implementation of the
violation state of the norm as explained in
Section 4.

5 An Operational Example

After having seen how the code of a norm is
implemented within a dynamic domain, we can
consider how agents working on that domain can
interact with it. To achieve this, we developed a

36 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

prototype representing our domain and its norms.
Using it, we can define the events that happen
and observe how the state of world and what
norms change as a result. The internal operation
of the prototype makes use of functions
introduced in Section, i.e., do(A,S) and
holds(X,S). With them, the prototype is able to
represent the world, its norms, interactions
available in it, and the effects caused by the latter.
Nevertheless, in order to interact with the
prototype, we do not need any technical
knowledge because most part of it is handled
internally. To run it, we just need to define an
initial situation, and based on it, a list of one or
more actions to be performed sequentially on the
initial situation. The prototype will then show us
how the world and its norms change, affected by
the actions of the user.

Next, we give an execution example based on
a situation similar to the realistic scenario
introduced in Section 2. In this example, we have
an industry called MILK XXI, which intends to
connect to the local WWTP. The new industry
predicts the main characteristics of its wastewater
to be as follows:

 Flow: 60 l/s (5184 m3/day),
 SS: 130 mg/l,
 BOD5: 450 mg/l,
 COD: 800 mg/l,
 Oils and greases: 275 mg/l.

An industry agent named milkXXI defines the
initial situation. This agent is of type
non_domestic and has no activity assigned. The
activity dairy_farming is considered pollutant in
the Catalan Classification of Economic Activities,
and there is an agent representing the local water
agency called water_agency. There is one spill,
termed spill_init still not associated with milkXXI,
containing the substances described previously.
Figure 1 presents this situation.

In that initial situation, no norm is violated and
only one is active5:

 8.1 It is forbidden to spill forbidden
substances.

5 Norm 8.1 is always active for each agent.

In the active fluents of the initial state, it is
declared that the spill spill_init does not respect
the limitation for the substance oils_and_greases
(which is a forbidden substance). In the rest of the
fluent, certain things can also be certified, which
are true in the initial situation, i.e., that the spill, its
total size (5184 m3/year), and its substances are
registered in the census.

In this situation, we will set the agent’s activity
as dairy_farming which corresponds to the action:

set_agent_activity(milkXXI,dairy_farming).

As a result, we will reach the situation
described in Figure 1b. In this situation, norm 7.1
is activated because the first condition is satisfied.

 7.1 For the following agents, it is obligatory to
obtain an authorization and to respect the
restrictions of Annex I and II:
 Non-domestic users whose activity is

included in C, D and E sections of the
Catalan Classification of Economic
Activities (Decree 97/1995) and who are
considered potential pollutant agents.

 Those who generate spills > 6000
m3/year.

If we look at the code of norm 7.1, in the part
of the norm activation commented previously, the
Activation Condition part, we can see one rule to
justify this:

A= set_agent_activity(IdAgent,Activity),
holds(pollutant_activity(Activity),S)
holds(agent_type(IdAgent,non_domestic),S),
\+holds(norm(71,IdAgent),S),
poss(A,S);

As with the action set_agent_activity, we set
the agent’s activity to the one considered
pollutant, and from now on, the agent is
considered pollutant. Since the agent was
non_domestic, which is the other requirement of
the first condition, the norm activates.

The next step is to associate the spill to the
agent. Our intent is to simulate the scenario in
which the company milkXXI produces the spill
defined as spill_init, in our prototype and based
on the previous situation we execute the following
action:

make_spill(spill_init,milkXXI).

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 37

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

By doing this, we reach the situation of
Figure 2a, where there are five norms active, two
of which are violated. The only active norms are
the following:

 7.31. Active for agent milkXXI and spill_init:
only if the pertinent agent considers it best to
spill to the environment, then it is possible to
not spill to the sewage system6.

 8.1.21. Active for agent milkXXI and spill_init:
it is allowed to dilute in order to approach best
levels; if there is an emergency or an
imminent risk, it is possible to dilute with a

6 Since this is a permission norm and the pertinent agent does
not consider it best to spill to the environment, it is forbidden to
not spill “spill_init” to the sewage system.

previous warning given to the competent
agent7.
 10.21. Active for agent milkXXI and

spill_init: if one has obtained the
authorization, this agent may spill black
waters to the public sewer system
according to the established regulations8.

The violated norms are the following:

 8.1 Violated for agent milkXXI and substance
oils_and_greases: forbidden substances must
not be spilled.

7 Since this is a permission norm, the activated unit here is the
forbidding part of the norm. For this agent, it is forbidden to
dilute “spill_init” because the situation is normal.
8 Since this is an permission norm and “milkXXI” does not
have authorization, it cannot spill black waters.

Fig. 1. a) Fig. 1. b)

38 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

 7.1 Violated for agent milkXXI: for the
following agents, it is obligatory to obtain an
authorization and to respect the restrictions of
Annex I and II:
 Non-domestic users whose activity is

included in C, D and E sections of the
Catalan Classification of Economic
Activities (Decree 97/1995) are
considered potential pollutant agents.

 Those who generate spills > 6000
m3/year.

We will focus on norm 7.1 because we have
already analyzed its code. Norm 7.1, after being
set active in the previous situation, is active again
in the situation obtained after the execution of the
action make_spill. We can find the reason for that
in the activation state code, specifically, in the
Non-termination condition:

holds(norm(71,IdAgent),S),
\+A=set_agent_type(IdAgent,Type),
\+A=set_agent_activity(IdAgent,Activity),
\+A=unset_pollutant_activity (Activity2),
\+A=del_total_substance (IdSpill,Sub),
\+A=del_substance(IdSpill,Sub,Qu),
\+A=delete_agent(IdAgent),
\+A=cancel_spill(IdSpill,IdAgent), poss(A,S).

Since the norm was previously active and the
executed action could not deactivate the norm
(which is why make_spill does not appear in the
Non-termination condition code), the norm will be
active after the action is performed. Regarding the
violation state, we can see that one of the
conditions is fulfilled, specifically, the following:

The norm is active for the agent IdAgent and it
produces a spill which violates a substance
limitation.

holds(norm(71,IdAgent),S),
holds(agent_spill(IdAgent,IdSpill),S),
holds(spill_violates_limitation
(IdSpill,Substance),S);

This is why the norm is active and violated in
that state.

As it can be noted in the parameters of the
violated norms, both refer to agent milkXXI. If we
analyze both norms, we will realize that they
regulate the same issue, and therefore, both
violations can be solved by a single action. Such
action deletes the amount of substance causing
the violation. The action to achieve that would be:
del_total_substance(spill_init,oils_and_greases).

After executing the action
del_total_substance, we reach the situation of

Fig. 2. a) Fig. 2. b)

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 39

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

Figure 2b. In this situation, even though all five
norms are still active for milkXXI, none of them is
violated. This can be proved by the fact that the
fluent representing the violation
spill_violates_limitation(IdSpill,Substance) is not
true in that situation, thus, the deactivation of the
norm is justified. Since the situation and the
action performed satisfy the Non-termination
condition again, the norm is still active.

This example demonstrates how to represent
the world and its norms with fluents, how actions
performed on the world change those fluents, and
how a norm’s state is altered as a result of these
changes. The presented prototype was developed
with the objective of making it intuitive for the
user. UWS managers, potential users of the tool,
would require a very short introduction to the
software because they are experts on the specific
subject it works on. The prototype would help in
the decision making process by considering,
thanks to its computational power, all involved
variables and all existing normative details. In
particular, if the chosen actions to be performed
on a UWS are tested with the prototype before
their execution, potential unexpected violations of
norms can be detected, undesired side effects
can be avoided, and future situations can be
analyzed.

6 Related Work

In the literature, different approaches for
performing normative formalization can be found
[7, 8, 13, 17, 24]. Papers more related to our work
are those which use a state machine to represent
the world and its norms, as we do. Such
approaches come from the use of logic
formalisms like Situation Calculus and Event
Calculus, because their actions and fluents
support that kind of representation. Event
Calculus is formalism similar to Situation
Calculus. The former uses actions (or events)
happening on the domain as its main representing
element, while the latter involves mostly with the
world states (or situations). In [3], a normative
formalization based on Event Calculus with the
main objective to detect conflicts between policies
is proposed. It is an interesting approach, and it
deals with contradictory norms – one of the

problems we came across when formalizing the
laws regulating WWTPs. Also based on Event
Calculus, Fornara and Colombetti [10] develop a
more agent-orientated approach to deal with
normative frameworks. They consider methods of
communication between agents and work with
such organizational elements as agent's
institutions. They define a norm's state similar to
our norm's life cycle, although in our case, we
focus on the world situation to define it, while
Fornara & Colombetti use mostly roles and their
available actions for the same purpose (which is
explained by differences between Situation
Calculus and Event Calculus).

Even though the system presented here could
be used for both normative monitoring and
reasoning, we consider normative reasoning as
its main use. In particular, we consider of a
special interest the practical reasoning process
for analyzing the scope of a set of norms with
respect to a sequence of actions. In fact, this is
one of the main objectives of the prototype
described in Section 5. Concerning that, practical
normative reasoning can be applied to many
scenarios, from a human society regulating the
behavior of groups of people, like the WWTPs
presented in this article, to a digital interaction unit
controlling, for example, the interaction of Web
Services. Kagal et al. [12] use their own
specification language to define and manage the
policies and constraints regulating the interaction
of Web Services.

7 Conclusions and Future Work

We discussed an integrated approach towards
building real normative systems to be deployed in
scenarios were decision-making is constrained by
the norms in use. The main contribution of this
paper is that our research is a proof of concept for
the advantages of using a normative system to
make decisions in complex real life environments.
In this sense, the most relevant principle is
Accountability: agent-based services should know
what they are doing and why, and they should be
able to explain their actions or recommendations.
Also, the separation of the logic layer from the
user-interface and the dialogue layer is important.
Since norms in real world are usually defined at

40 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

an abstract level [23], modeling real norms is not
a straightforward process. Some authors have
already pointed out that an instantiation of norms
in a context domain helps to represent norms in a
normative knowledge base [23].

In order to capture the scope of a norm in a
dynamic domain like UWS, we have shown that
one can fix the observable items that affect the
lifecycle of a norm (see Section 4). In particular,
the representation of these items in terms of
fluents/predicates can help to infer the state of a
norm. Since the state of a norm will be affected by
changes in observable items, one can analyze the
lifecycle of a norm in parallel to the changes of
the observable items (see Section 4). We
considered the use of Situation Calculus for
implementing our approach. Note that the context
domain can be clearly delimited by a set of fluents
(a situation). This fact has been one of the main
reasons for us to use Situation Calculus. As a
running example, we analyzed the Catalan
Decree 130/2003. It is a realistic example for
managing UWS (see Sections 2 and 5).

In order to incorporate normative knowledge in
a Situation Calculus specification, we proposed to
split the specification of norms into two parts: 1)
situations in which a norm is active and 2)
situations in which a norm is violated.

The first part of the specification is meant to
include all possible states in which the norm must
be taken into consideration (the norm is active).
The second one comprises all the states in which
the norm’s content is violated. Since the norms
are represented in terms of the fluents in a given
domain, the proposed specification represents a
natural extension of a Situation Calculus
specification. Although the integrated framework
has not been completely realized, we expect our
work to lead to a methodology of systematic
development of normative systems for decision-
making in complex real life environments.

Here are some open issues we will pursue in
future:

1. Lifecycle of actions: at the moment, we
have assumed actions as atomic events. This
assumption has its limitations in capturing
temporal aspects as deadlines. Preliminary
results with respect to this issue are
presented in [11].

2. Conflicts between norms: to consider this
issue, we will explore a partial order of norms.

Acknowledgements

Numerous discussions with J. Vázquez-Salceda
helped us to clarify our ideas. This work has been
partially supported by the FP7 European project
ALIVE IST-215890. The views expressed in this
paper are not necessarily those of the ALIVE
consortium.

References

1. Aldewereld, H. (2007). Autonomy vs. Conformity:
an Institutional Perspective on Norms and
Protocols. PhD thesis, Utrecht University, Utrecht,
Netherlands.

2. Aulinas, M. (2009). Management of industrial
wastewater discharges through agents’
argumentation. PhD thesis, University of Girona,
Girona, Catalunya, Spain.

3. Bandara, K., Lupu, E.C., & Russo, A. (2003).
Using Event Calculus to Formalise Policy
Specification and Analysis. 4th IEEE Workshop on
Policies for Distributed Systems and Networks,
Lake Como, Italy, 26–40.

4. Baral, C. (2003). Knowledge Representation,
Reasoning and Declarative Problem Solving. New
York: Cambridge University Press.

5. Decree 130/2003, Reglament dels serveis públics
de sanejament. DOGC, 3894:11143–11158, 2003.

6. Demolombe, R. (2004). From belief change to
obligation change in the situation calculus.
European Conference on Artificial Intelligence,
Valencia, Spain, 991–992.

7. Demolombe, R. & Pozos, P. (2006). Integrating
state constraints and obligations in situation
calculus. Latin American Workshop on Non-
Monotonic Reasoning. Retrieved from
http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-217/.

8. Digmun, F., Dignum, V., Padget, J., & Vázqez-
Salceda, J. (2009). Organizing Web Services to
develop Dynamic, Flexible, Distributed Systems.
11th International Conference on Information
Integration and Web-based Applications and
Services- iiWAS2009, Kuala Lumpur, Malaysia,
225–234.

An Operational Approach for Implementing Normative Agents in Urban Wastewater Systems 41

Computación y Sistemas Vol. 16 No.1, 2012 pp 27-42
ISSN 1405-5546

9. Directive 96/61/EC of 24 September 1996
concerning integrated pollution prevention and
control. Official Journal L, 257(10), 10, 1996.

10. Fornara, N. & Colombetti, M. (2008). Formal
Specification of Artificial Institutions Using the
Event Calculus. (Technical Report 5). Italy:
Institute for Communication Technologies,
Università della Svizzera Italiana, Retrieved from
http://doc.rero.ch/lm.php?url=1000,42,6,20090402
172858-HW/ITC_TR05.pdf

11. Garcia, D., Nieves, J. C., & Cortés, U. (2010).
Reasoning about Actions for the Management of
Urban Wastewater Systems using a Causal Logic.
International Congress on Environmental Model
and Software 2010, Ottawa, Canada, Retrieved
from
http://www.iemss.org/iemss2010/papers/S21/S.21.
04.Reasoning%20about%20Actions%20for%20the
%20Management%20of%20Urban%20Wastewater
%20Systems%20using%20a%20Causal%20Logic
%20-DARIO%20GARCIA%20GASULLA.pdf

12. Kagal, L., Finin, T., & Joshi, A. (2004).
Declarative Polices for Describing Web Services
Capabilities and Constraints, W3C Workshop on
Constraints and Capabilities for Web Services,
Redwood Shores, USA, Retrieved from
http://ebiquity.umbc.edu/paper/html/id/193/Declarat
ive-Policies-for-Describing-Web-Service-
Capabilities-and-Constraints.

13. Kaponis, D. & Pitt, P. (2007). Dynamic
specifications in norm-governed open
computational societies. Engineering Societies in
the Agents World VII, Lecture Notes in Computer
Science, 4457, 265–283.

14. Lesperance, Y., Levesque, H. J., & Reiter, R.
(1999). A Situation Calculus approach to modeling
and programming agents. In Michael Woodridge &
Anand Rao (Eds.) Foundations and theories of
rational agents (275–299).The Netherlands: Kluwer
Academic Publishers.

15. McCarthy, J. & Hayes, P.J. (1969). Some
philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie
(Eds.) Machine Intelligence, vol. 4 (463–502),
Edinburgh: Edinburgh University Press.

16. Meyer, J.J.C. & Wieringa, R. J. (1993). Deontic
Logic in Computer Science: Normative System
Specification. Chichester: John Wiley and Sons
Ltd.

17. Modgil, S., Faci, N., Meneguzzi, F.R., Oren, N.,
Miles, S., & Luck, M. (2009). A framework for
monitoring agent-based normative systems.

Eighth International Conference on Autonomous
Agents and Multi-Agent Systems –AAMAS 2009,
Budapest, Hungary, 153–160.

18. Nieves, J.C., Garcia, D., Aulinas, M., & Cortés,
U. (2010). Using Situation Calculus for Normative
Agents in Urban Wastewater Systems. 8th
International Conference on Practical Applications
of Agents and Multi-Agent Systems, Advances in
Soft Computing, vol.70, Salamanca, Spain, 247–
257.

19. Oren, N., Panagiotidi, S., Vázquez-Salceda, J.,
Modgil, S., Luck, M., & Miles, S. (2008). Towards
a formalisation of electronic contracting
environments. Coordination, Organization,
Institutions and Norms in Agent Systems IV,
Lecture Notes in Computer Science, 5428, 156–
171.

20. Panagiotidi, S., Nieves, J.C., & Vázquez-
Salceda, J. (2009). A framework to model norm
dynamics in answer set programming. Multi-Agent
Logics, Languages, and Organisations Federated
Workshops (MALLOW-FAMAS’09). Retrieved from
http://ceur-ws.org/Vol-494/famaspaper8.pdf.

21. Reiter, R. (1991). The frame problem in situation
the calculus: a simple solution (sometimes) and a
completeness result for goal regression. Artificial
intelligence and mathematical theory of
computation: papers in honor of John McCarthy,
Boston: Academic Press, 59–380.

22. Shanahan, M. (1997). Solving the Frame Problem:
A Mathematical Investigation of the Common
Sense Law of Inertia. Massachusetts:
Massachusetts Institute Technology Press.

23. Vázquez-Salceda, J. (2003). The Role Of Norms
And Electronic Institutions In Multi-Agent Systems
Applied To Complex Domains The Harmonia
Framework. Ph. D. Thesis, Universitat Politècnica
de Catalunya , Barcelona, Spain.

24. Vázquez-Salceda, J., Aldewereld, H., Grossi, D.,
& Dignum, F. (2008). From human regulations to
regulated software agents’ behavior. Journal
Artificial Intelligence and Law, 16(1), 73–87.

25. Wooldridge, M. (1999). Intelligent Agents. In G.
Weiss (Eds), Multiagent Systems A Modern
Approach to Distributed Artificial Intelligence (27–
78), Massachusetts: Massachusetts Institute
Technology Press.

42 Juan Carlos Nieves, Dario Garcia-Gasulla, Montse Aulinas, and Ulises Cortés

Computación y Sistemas Vol. 16 No. 1, 2012 pp 27-42
ISSN 1405-5546

Juan Carlos Nieves is a
postdoctoral researcher in the
Knowledge Engineering and
Machine Learning Group at the
Department of Llenguatges i
Sistemes Informàtics (LSI) of the
Technical University of Catalonia
(UPC). He explores reasoning

approaches for defining reasoning skills of individual
agents in such domains as Wastewater Treatment
Plants. His general research domain is knowledge
representation and reasoning, mainly using the
argumentation theory and answer set programming, a
declarative logic programming approach.

Dario Garcia-Gasulla is a Ph. D.
student at the Technical University
of Catalonia (UPC) and a junior
researcher in the Knowledge
Engineering and Machine Learning
Group of the Department of
Llenguatges i Sistemes Informàtics
(LSI). He is interested in dynamic

domain representation, normative reasoning and
knowledge discovery in semantic networks.

Montse Aulinas has been a partial
time associate teacher of the
University of Girona (UdG) since
2008. Since 2004, she has been
working on several areas of
environmental engineering: solid
waste management, water and
wastewater management. Her
interests include intelligent

environmental decision support systems and use of
knowledge representation techniques for environmental
data and knowledge. She has a Ph. D. in
Environmental Sciences, particularly, in multi-agent
systems and argumentation processes to improve
water management in river basins.

Ulises Cortés has been a
professor of the Technical
University of Catalonia (UPC)
since 2007. Since 1982, he has
been working on several areas of
Artificial Intelligence: knowledge
acquisition and concept formation
in knowledge-based systems,
machine learning, and

autonomous intelligent agents. He was awarded with
the CLUSTER chair at the École Polytecnique Fédérale
de Laussane (EPFL) for 1998-1999. He has been a
guest editor of special issues in several international

journals: AiCommunications, Journal of Computer-
aided and Civil Engineering, Computación y Sistemas,
Environmental Modeling & Software, Applied
Intelligence, Neural Networks, and Complex Problem-
Solving Technologies, International Journal of
Approximate Reasoning. From July 2002 to 2008, he
was a member of the European Coordinating
Committee for Artificial Intelligence (ECCAI).

Article received on 27/03/2010; accepted on 14/12/2010.

