A Reorder Buffer Design for High Performance Processors

José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas,
Herén Molina Lozano, and Cuauhtémoc Peredo Macias

Microtechnology and Embedded System Laboratory,
Centro de Investigacion en Computacion, Instituto Politécnico Nacional,
Av. Juan de Dios Bétiz, s/n, Zacatenco, 07738, México DF,
Mexico

{jgarcia, mars, Ivilla, hmolina, cperedo}@cic.ipn.mx

Abstract. Modern reorder buffers (ROBs) were
conceived to improve processor performance by
allowing instruction execution out of the original
program order and run ahead of sequential instruction
code exploiting existing instruction level parallelism
(ILP). The ROB is a functional structure of a processor
execution engine that supports speculative execution,
physical register recycling, and precise exception
recovering. Traditionally, the ROB is considered as a
monolithic circular buffer with incoming instructions at
the tail pointer after the decoding stage and
completing instructions at the head pointer after the
commitment stage. The latter stage verifies instructions
that have been dispatched, issued, executed, and are
not completed speculatively. This paper presents a
design of distributed reorder buffer microarchitecture
by using small structures near building blocks which
work together, using the same tail and head pointer
values on all structures for synchronization. The
reduction of area, and therefore, the reduction of
power and delay make this design suitable for both
embedded and high performance microprocessors.

Keywords. Superscalar processors, reorder-buffer,
instruction window, low power consumption.

Disefio de un bufer de reordenamiento
para procesadores de alto desempefio

Resumen. El bufer de reordenamiento de instrucciones
(ROB) fue conceptualizado para mejorar el desempeno
de los procesadores al permitir ejecutar instrucciones
fuera del orden original del programa y en avance al
instante preciso de la ejecucion secuencial, explotando
el paralelismo que existe a nivel de las instrucciones
ILP. EI ROB es una estructura funcional de la maquina
de ejecucion de los procesadores para dar soporte a la
gjecucion especulativa, al reciclado de los registros
fisicos y a la recuperacion precisa de excepciones.
Tradicionalmente el ROB es considerado un bufer

circular monolitico en donde las instrucciones entran
en la direccion especificada por un apuntador de cola
después de la etapa de decodificacion y son
terminadas en la direccion especificada por un
apuntador de cabecera después de la etapa de
finalizacion. El articulo presenta el disefio de un bufer
de reordenamiento de instrucciones distribuido en
pequenas estructuras cercanas a los bloques
funcionales con los cuales interactuan, usando los
mismos valores de apuntadores de cola y cabecera por
sincronia. La reduccion de area y por consecuencia la
reduccion de consumo de energia y retardo hacen de
este disefio apropiado para procesadores embebidos y
procesadores de alto desempeno.

Palabras Clave. Procesadores super escalares, bufer de
reordenamiento, ventana de instrucciones, consumo
de baja potencia.

1 Introduction

Superscalar processors allow the execution of
more than one instruction in a clock cycle; this
goal becomes increasingly complex to achieve in
hardware. The total complexity is distributed
along the pipeline stages in order to make it
manageable. As each stage is designed to
support the parallel execution of N instructions by
a processor, such a processor is referred to as an
N-way processor. Modern superscalar processors
implement deep pipelines by splitting the
established stages (IF instruction fetch, IDe
instruction decode, IR instruction rename, IDi
instruction dispatch, IS issue, EX execute, WB
write back, and IC instruction commitment) into
sub-stages to get more clock frequency and more
in-flight instructions.

Computacion y Sistemas Vol. 16 No.1, 2012 pp.15-25
ISSN 1405-5546

16 José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas...

A processor microarchitecture is divided into
two sections: the front end, covering the IF, IDe,
IR, and IDi stages executing in program order,
and the back end, covering IS, EX, and WB
executing OOO out of order; finally, IC completes
the instructions in order. The OOO execution is
used to exploit Instruction Level Parallelism (ILP)
of in-execution code to enhance the IPC
performance. To be able to perform out-of-order
execution, several scheduling techniques are
implemented along the processor
microarchitecture. Dynamic scheduling
techniques covering from IF to IC are branch
prediction, register renaming, speculative
execution, exception recovering, resources
recycling, amount others. An important structure
that makes the dynamic scheduling possible is
the reorder buffer (ROB).

The ROB unit stores all instructions in
execution and executed. The executed
instructions wait to be committed by the
processor. While instructions fly across the
pipeline stages, several flags are being set in
order to preserve the processor’'s state because
of recovering misspeculation support. Speculative
execution is the execution of instructions on an
optimistic code path chosen by the branch
predictor unit. The instructions of the chosen path
become non-speculative when the branch
condition is computed and the destination
address matches the speculative address offered
by the branch predictor. If a mismatch takes
place, an exception recovery mechanism is
launched.

This paper presents a design of distributed
reorder buffer microarchitecture by using small
bit-vector structures near building blocks which
work together, using the same tail and head
pointer values of all structures for synchronization
instead of a monolithic structure. The rest of the
paper is organized as follows. Section 2 presents
related work concerning the development of
today’s processor microarchitectures. Section 3
describes the proposed design, analyzing all
functions performed by the ROB unit. Section 4
analyzes simulation results, and finally, Section 5
presents the concluding remarks.

Computacion y Sistemas Vol. 16 No. 1, 2012 pp 15-25
ISSN 1405-5546

2 Related Work

Since functional units have different latencies and
conditional branches may be in any position of a
fetched instruction group, instruction completion
may be out of order causing imprecise interrupts.
Two techniques were developed to solve this
problem. The first technique is to keep the state of
a processor precise by allowing instructions to
update the register file in program order. The
second one is to tolerate the state of a processor
imprecise by allowing instructions to update the
register file out of order, but with a procedure for
precise state recovery after an exception event.
Four methods are analyzed in [12]:

1) Completion Order. In this method,
processor issues instructions only if all previous
instructions are free of exceptions. The processor
guarantees it by reserving the number of stages
equal to the clock latency instructions in the result
shift register. This simple approach does not
make a full use of multi-latency functional units.

2) Reorder Buffer. This method allows out-of-
order completion but stores the result of each
instruction in a FIFO structure to reorder the
instructions before modifying the processor's
state. Since the processor cannot issue
instructions that depend on results waiting in the
reorder buffer to be written to the register file, this
method has a performance loss.

3) History File. In this method, instructions
can be completed in any order and immediately
updated to the register file. However, a processor
needs to save the previous state of the register
file in a history buffer utilized for exception
recovery. The history file method uses a reorder
buffer structure and a result shift register.

4) Future File. This method uses two
structures of the register file, one called the
architecture file and other called the future file.
Instructions are issued and written back to the
future file which provides the source for
succeeding instructions. The processor updates
the architectural file as in the reorder buffer
method.

When an exception occurs, the architectural
register file is copied to the future file in order to
recover the precise processor’s state. Complexity-

performance comparison results show that the
history file method should be used for high speed
computations to achieve precise exceptions.

The first approaches to the ROB design were
based on a monolithic multiport memory with the
wakeup logic, selection logic, and the register file
working together as proposed in [8]. Additionally,
the future file method is implemented for precise
interrupt recovering. This organization is used in
the Intel P6 microarchitecture design shown in [4].
Several techniques are proposed in [6] to reduce
complexity and power consumption. The first
technique is to eliminate the ROB write ports by
allocating small FIFO queues to store results of
each functional unit. The second technique is to
eliminate the ROB read ports for reading out the
source operand values from FIFO queues using
small sets of associative-addressed retention
latches and forwarding buses to supply results to
the instructions waiting in the issue queue. The
second technique was motivated by the fact that
only a small fraction of source operands read their
values from the reorder buffer slots. The design
results in low performance degradation and
significant power complexity reduction.

The MIPS R10000 microarchitecture is
described in [13], while [7] and [5] specify the
Alpha 21264 microarchitecture. Both
microarchitectures, with a few variations,
represent the core of a modern superscalar
processor, replacing the monolithic ROB of [8]
and [3] for MIPS R1000 with a 32-entry active list
(ROB), two architectural register banks of 64-
entry for integer, 64-entry for floating point and
16-entry queues for integer, floating point and
load-store instructions. In the case of the Alpha
21264, a monolithic-ROB was replaced with an
80-entry ROB, two architectural register banks of
80-entry for integer, 72-entries for floating point
algebraic operations, and compacting queues for
20-entries for integer algebraic operations, 15-
entries for floating point algebraic operations and
load-store instructions. A similar ROB architecture
where the register file is separated from the
reorder buffer is used in the Intel Pentium 4 Burst
microarchitecture [4]. Two techniques analyzed in
[2] allow processors to keep thousands of in-flight
instructions. In the first technique, the normal
ROB structure is replaced with a mechanism to
make check-pointing based on simple heuristics:

A Reorder Buffer Design for High Performance Processors 17

1) at the first branch after each 64 instructions, 2)
after 500 instructions, and 3) after 64 stores. The
second technique termed Slow Lane Instructions
Queuing introduces a secondary buffer used to
store instructions moved from fast instruction
gueues because of issue time length, freeing slots
of instruction queues for more decoded
instructions which will be executed quickly. These
instructions are returned to the fast queue when
ready to issue. With these two mechanisms, the
resultant processor microarchitecture includes
128-entry pseudo-ROB, 128-entry 1Q’s, and 2048-
entry SLIQ, reporting a performance increase of
204% relative to a conventional processor with
128-entry ROB and 128-entry 1Q’s.

It is proposed in [9] to replace the ROB with a
validation buffer structure VB, two structures of
register alias tables (the front-end RATn Used in
the rename stage and the retirement RAT, for
maintaining the architectural state, similar to the
future file method) plus one additional table
necessary to track the physical register status
(RST) for recycling. This microarchitecture allows
retiring instructions out-of-order of VB as soon as
it is known that they are non-speculative, updating
the RAT,, which contains a valid state of register
mapping and is used in recovering, and updating
the RAT;om table. The RST table has, in each
entry, a counter for physical register successors,
a valid remapping bit, and a completed bit to
identify when the corresponding entry contains (0O,
1, 1). These conditions ensure that a specific
register can be safely recycled. Compared with in-
order-commitment, the VB microarchitecture
presents high IPC for FP benchmarks with 32-
entry ROB size. Because of OOO retirement and
early physical register recycling, VB behavior in
modern superscalar processors with major size
structure is more efficient.

3 Distributed ROB Design

The reorder buffer structures are shown in Figure
1. The ROB is composed of 1-bit vectors for
dispatched, branch, branch decision, issued, and
executed flags, 7-bit structures for old destination
and current destination registers plus a 5-bit
structure for the exception pointer, using the
same tail and head pointer. All structures are of

Computacion y Sistemas Vol. 16 No.1, 2012 pp 15-25
ISSN 1405-5546

18 José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas...

Dispatched Flag

4-bit
— LTI TP redy

Issued Flag

Branch Flag
E-Pointer

1
A 4

[OOOC0CC I T I T I TT] brpec.Flag

-

Int. Qi .
Register -
Ready Bit

Instruction Format

WakeUp Logic
(PSre1)

Wakeup Logic
(PSrc2)

A 4

Wakeup Bus

[OOOOOOCOCCC LI IC LI]| Executed Flag

Fig. 1. Integer execution engine

the ROB size. The exception pointers use a 5-bit
structure to index the branch ROB structure to
update the branch predictor unit. All instructions
are dispatched to different queues: integer,
floating point, and load-store; a flag is activated
(set) in the dispatched flag structure indexed by
the tail pointer. At the same time, the tail pointer is
stored in the in-flight tag field of 1Q with the
incoming instruction. When instructions are ready
to be executed, they are issued to the functional
units setting a flag in the issued flag structure
pointed by the previously stored in-flight tag. A
description of 1Q’s operation can be found in
[10, 11], in which the wakeup, allocation, and
issue operations are presented in great detail.
Each functional unit executes instructions and set
a flag at execution ending in the executed flag
structure entry indicated by the in-flight tag
pointer. The number of 1-bit write ports in the
executed flag structure is equal to the number of
execution units of a processor.

3.1 Speculative Execution

The branch predictor unit is responsible for
speculative execution support. In each clock
cycle, the fetch unit calculates the next program
counter next-PC incrementing the PC-register.
Meanwhile, the branch predictor unit uses the
calculated next-PC value to look for branches and
their respective destination addresses in the
branch history buffer BHB in order to offer a

Computacion y Sistemas Vol. 16 No. 1, 2012 pp 15-25
ISSN 1405-5546

4 Instructions

v

RANCH
CLK EDICTO

r

INSTRUCTON

I
+
|4_“
Spec-PC

CACHE

IL1 .

FIFO
Fetch Queue

3
3
Taken 0, Not-taken 1

Address 3

\ 4

Fig. 2. Fetch unit scheme

speculative program counter spec-PC for the next
cycle. In the next clock cycle, instructions are
fetched from a non-speculative or speculative
path depending on the branch predictor decision
(O-taken or 1-not taken) as it is shown in Figure 2.
When branch instructions are decoded, the
dispatch stage sets a flag in the branch flag
structure indexed by the tail pointer.

The superscalar processor schedules branch
instructions in three sub-operations: 1) calculate
the branch address destination, 2) resolve the
branch condition, and finally, 3) verify the decision
chosen by the branch predictor.

3.1.1 Branch Address Calculation

The fetch unit uses one ACU to increment the
program counter (see Figure 2) and the decode
stage uses another one to compute the branch
address destination (see Figure 3). Since
branches are relative to a given PC, the address
destination is computed using the PC and the
branch instruction offset (PC+ sign extended
offset). Performing the branch predictor updating
at commitment requires both the PC and the
offset values, and furthermore, the branch
condition calculation.

The previous two values demand an area
along the reorder buffer, and this space is not
exploited for all instructions in the window. Our
design utilizes a small structure associated to the
branch predictor unit for storing these values.

A Reorder Buffer Design for High Performance Processors 19

Execute Flag M‘H‘H‘H‘H I H‘H‘H‘H‘H‘I‘I‘I LN
Y T T T LD
Exc-Pointer
|
BranchDecisionFlagM] I|| ||I | EEEEEN|
Non-speculative Flag M IR EEEEEEEEEN|

PC

i
i
Tl

Branch Predictor

Inm

Branch Instruction Format

Acu

HIT/IMISS
ROB Ent

To Recover Mechanism

New PC
To Fetch

Branch-ROB

Fig. 3. Branch ROB scheme

The PC and the calculated destination address
are stored in a structure smaller than the reorder
buffer size, illustrated in Figure 3 as a Branch
ROB. After the branch condition is calculated, the
functional unit sets the branch decision flag (0-
taken or 1-not taken) and the executed flag (see
Figure 1).

Then, the branch and executed flags enable
the exception pointer to select the corresponding
Branch ROB entry. The PC and the branch target
address are used to update the branch predictor.
This action should be accomplished at the write-
back stage to launch a recovery mechanism in
the case of misprediction and reduce wrong path
executions.

3.1.2 Resolving the Branch Condition

The speculative behavior (taken/not-taken) of a
conditional branch (beq rs, rt, offset) is resolved
by comparing the processor registers (rs==rt).
When the condition is computed as illustrated in
Figure 1, the processor writes its result in the
branch decision flag structure. Then, this result is
used for the branch predictor unit to update its
decision machinery and to signal all structures for
recovering in case of misspeculation. In both
cases, the exception pointer is used.

3.1.3 Verifying Branch Predictor Decisions

Since instructions are unknown at the fetch cycle,
a superscalar processor needs to resolve all

branch types in the same cycle via the branch
predictor unit. Subsequently, more pipeline cycles
are necessary to verify if the prediction was
correct. Unconditional branches and return
address are resolved by the branch predictor via
a branch target buffer and a return address stack.
However, conditional branches need to be
predicted.

The last step of turning a branch into a non-
speculative instruction is to verify the decision
chosen by the branch predictor. This action starts
when the conditional instruction has been
executed by the functional unit setting the branch
decision flags and the executed flag. The branch
flag is set at dispatch once a given instruction has
been decoded. These two conditions (the branch
flag and the executed flag) are sufficient to select
the E-pointer and the branch decision flag
calculated by the processor as shown in Figure 3.
The exception pointer is used to index the
corresponding entry of the branch reorder buffer
in order to read the information in the PC and the
computed branch target address. The information
obtained from the exception pointer and the
branch decision flags are used by the branch
predictor to verify past prediction.

If the prediction was satisfactory, branch
predictors set a non-speculative flag in the
corresponding in-flight tag. For misspeculation,
the fetch unit signals in all structures send the
checkpoint for recovery.

3.1.4 Branch Predictor Unit Update

When the predictor hits or misses in the prediction
of conditional branches, the processor feedbacks
to the branch predictor unit with the condition and
the branch destination address calculated to
improve confidence for future predictions. In the
case of misses, together with the update action,
the exception recovery mechanism is launched to
clean the reorder buffer of incorrect path
instructions. In the proposed model, branch
decision flags and executed flags are set by the
processor on the write-back stage.

This condition is sufficient for selecting the
corresponding entry of BROB to make the branch
unit start updating as explained in Section 3.1.3, a
fixed priority circuit can be used for the branch
predictor unit update request logic.

Computacion y Sistemas Vol. 16 No.1, 2012 pp 15-25
ISSN 1405-5546

20 José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas...

3.2 Physical Register Recycling

Another support provided by the ROB is physical
register recycling. The life time of a logical
register is specified by the compiler, when the
logical register is reused in the program, which
means that the last value is no longer necessary
in the execution code. Its associated physical
register is considered old and must be recycled
when the instruction is complete.

Each renamed instruction has a current
destination physical register and an old
destination physical register; both registers are
inserted in the ROB with the instruction at
dispatch. The old destination ROB section works
together with the renaming unit of free register list
as shown in Figure 4. At commitment, old
destination register tags are recycled to the free
physical register pool and are used to turn off the
register ready bits which are set by wakeup
events while the current destination physical
register tag is used to set the register valid bit in
order to update the architectural state of the
processor.

3.3 Load/Store Reorder Buffer

LD/ST instructions are split into memory address
calculation and the corresponding read or write
action. A special address queue is used to store
the immediate value, the base address register,
the tag of the source or destination register, the
in-flight tag, and the LS-Buffer entry assigned to
memory instructions. A special LS-Buffer is used
to store memory data, memory address, R/W bit,
and in-flight tag as an interface to the memory
port as shown in Figure 5.

Memory address computations are resolved
by the ACU and the results are written to the
address field of the LS-Buffer. For loads, the
destination register tags appoint the register file,
to write the data read from memory. For stores,
the source register is read from the register file
and written to a LS-Buffer entry data field. Since
memory access involves multi-cycle operations,
the issue flag of the reorder buffer is set when the
address calculation is sent to execution
meanwhile the execute flag is set when the
instruction memory access is complete.

Computacion y Sistemas Vol. 16 No. 1, 2012 pp 15-25
ISSN 1405-5546

O [[=)]
I [] [
[[] [
L] [] []
L e % %
sl 2

30 §H 3 |]
[0 ()

S el dy - L -
%7 @ N 2l |
o || £ 1] >
e s 20 L
8] = S| e
ol sHH iF oF
§H i £ =p
sH = i |

Setto 1
Tag Setto 0

Fig. 4. Physical register recycling and update
architectural state schemes

ExecuteFIagl HEREN |4| L] \uuuuu‘

sserng [T TTITTTTTTT]
Dispatch Flag
g Load/Store Instruction ,
o
L
c
2
3 s
2fPsrc/ |=
2N PDest | Wakeup "
': P > Logic ol
o u (PSrciDest) 3
a -
4 u Ef
Wakeup [
PBasgD_» Logic ﬁ
|| (PBase) <3
Inm |—
sE-
23
o m
Q90
Yo Q

Fig. 5 LOAD/STORE instruction scheduling
(LS-Queue and LS-Buffer)

3.4 Commitment Mechanism

The superscalar processor makes a checkpoint of
its state in each clock cycle through the rename
units, issue queues, and register file by storing

Dispatch Flag Execute Flag

Issue Flag Non:speculative Flag

5-bits 2-bits——

Head Pointer

Fig. 6 Group commitment scheduling

multiples copies in recovery structures. They map
its status in shadow memories. Rename units use
shadow maps, instruction queues use bit-vectors
as valid entries, and the register file uses register
ready bit and valid bit vectors. For example, in a
4-way processor, RATs of rename units maps
four instructions in each cycle. This mapping
corresponds to four instructions which will be
allocated in one entry of the reorder buffer in the
next cycle.

Group commitment is the mechanism
implemented in our design; it assists the
processor's state management and recovery
while reducing design complexities with negligible
impact performance. Figure 6 shows the
structures of a reorder buffer organized in groups;
here the instructions are fetched in a 4-way
processor to llustrate group commitment
scheduling. At dispatch, four instructions are
inserted in the reorder buffer and each instruction
sets a bit in its corresponding bit-vector dispatch
structure. Instructions could be dispatched to any
queue (IQ, FPQ, or LSQ), but when issued, each
gueue can set the corresponding issue flag in a 1-
bit vector issue structure. Executed flags are set
by the functional units at the end of execution. A
non-speculative flag is set by non-speculative
instructions at dispatch and by the branch
predictor unit when verifying the chosen decision
for the branch predictor unit at write-back.

When four consecutive instructions have been
dispatched, issued, executed, and are not

A Reorder Buffer Design for High Performance Processors 21

Table 1. Processor configuration

Element Pt | P2 |P3
ROB 128
B-ROB 08 |16 [32] 64
L/S Queue 32
F-1-C-Width 4-4-4/8-8-8
Int. Functional
Units 4-2-2/8-4-4

F.P. Functional ALU-MUL-DIV

Units

Brach Predictor gshare, 2048-Entries

Branch Penalty 8-Cycles
Memory ports 2
L1 Data Cache
64K 1 Cycle
L1 Inst. Cache
L2 Unified Cache 256K 10 Cycles

8-Entry, 4-Way, 8KB

U pages, 30 Cycles
Memory Latency 100 Cycles
speculative, the commitment mechanism

augments the head pointer register for all
structures of the reorder buffer, freeing resources
such as the corresponding checkpoint copies and
old destination registers. Note that the head
pointer is a register of 7 bits split into a 5-bit part
to index the ROB-entry and a 2-bit offset to select
a precise in-flight instruction. This addressing
mechanism allows fast and exact exception
recovery. The 5-bit ROB entry matches the RAT
copy index of the renaming unit and other
checkpoint structures, while the 2-bit offset
permits selecting the offending instruction exactly.

3.5 Exception Recovery

When misspeculation is detected by the branch
predictor unit, the checkpoint index is sent to all
structures including the reorder buffer unit. This
index is loaded to the tail pointer register
invalidating all entries between the tail pointer and
the head pointer, and their corresponding
checkpoint copies. Finally, the status checkpoint
copies of every processor structure, indexed by

Computacion y Sistemas Vol. 16 No.1, 2012 pp 15-25
ISSN 1405-5546

22 José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas...

the tail pointer, are updated as the -earlier
processor status.

4 Evaluation

The framework for evaluation is the Simplescalar
Suite [1] with modifications presented in
Section 3, compiled for the PISA architecture and
configured with parameters as shown in Table 1.
A subset of SPEC CPU2000 benchmarks were
compiled for PISA and used as input. To explore
the microarchitecture behavior, a dynamic subset
of instructions of each benchmark consisting of
200M committed instructions were simulated,
getting statistics after 100M forward instructions.

AvgIPC
¥ind Commit " Group Commit

25 -

L

Wt}

[T -

g 8/ 8|8 8/383 8 8 8 8

1 14 r 1 1 14 r 1 14 r

(=] (=] — o (=) (=] -— o
Ay 8Way

Fig. 7. Average IPC performance for 4- and 8-way
processors and different BROB size

4.1 Evaluating Commitment in Group

First, we evaluated the impact of group
commitment compared with individual
commitment. For comparison purposes, 08-entry,
16-entry, 32-entry, and 64-entry BROB plus 128-
entry distributed ROB structures defined in
Section 3 have been modeled and were
compared with traditional 128-entry reorder buffer
identified as 00-BROB. Figure 7 shows the
average |IPC performance, the results of
simulating the subset SPEC CPU2000 integer
and floating point benchmarks. The group
commitment model allows the load-store

Computacion y Sistemas Vol. 16 No. 1, 2012 pp 15-25
ISSN 1405-5546

IPC SPEC Int
U00EROE VOBHROB Y16EROB ¥32EROB “G4BROB

bip? opx gip mcf paser fwolf volex wupwise Awg
a) SPECInt simulation results

IPC SPECTp
#00BROE ' 08BROE “16EROB w3I-EROB vG4EROB
3_5 .

mgrid swim wupwise “Avi

ammp appu apsi ar

b) SPECfp simulation results

Fig. 8. 4-ways processor performance

instructions to be committed individually. The
simulation results report a negligible negative
impact on the processor performance. The worst
cases are a 0.5% and 0.7% performance loss for
4-way and 8-way processors.

4.2 Measuring the Impact of the BROB Size

Second, we evaluated the impact of the branch
ROB structure size. Our model stops the fetch

PPCSPECint
E00-BROB UO8BROB “1GBROB 432BROB LG4 BROB

bzip? [-+ oip mof paser Wwolf vorlex wupwise Awg
a) SPECInt simulation results

IPC SPECTp
E0BROB v 08-BROE w16HROB w»32.BROB w64-BROB

5 -

41

?ﬁlllmmlll“

art mgrid swim wupwise “Avg

T T

applu apsi

b) SPECfp simulation results

Fig. 9. 8-way processor performance

activity when BROB becomes full until it has room
to allocate new branches. Figures 8 and 9 show
the processor performance for the four
configurations of the branch-ROB structure a) for
integer and b) for floating point for 4- and 8-way
processors, respectively. We can observe a little
performance loss for 08-BROB and 16-BROB, but
for 32-BROB model there is no performance loss.

The first consideration to select the optimal
size of a Branch ROB is related with in-flight
branch instruction average. Figure 10 shows the
percentage of branches executed. Simulation
reports (on average) 21.5 % of integer executed
instructions and 12.5 % of floating point executed
instructions corresponding to conditional
branches.

A Reorder Buffer Design for High Performance Processors 23

% Branches
a0,

3
R
2
20
15 |
10

twoll

mef |

apsl|

[T ——
gzlp EE———
parser T

= &
bzlp2 —
vortex NN
emmp ———
y d
art S
swim

epplu -
mgrd I:

equake

wupwlee

Int. Avg E—

2
g
o
L

nt

m
e

Fig. 10. Percentage of branches executed

D ROB-Occupancy M BROB-Occupancy

90
% | B E |
70 —
60 ==
50 — —
40 — —|
30 - — —
20 — 1
10 - — 1t
0
o o o o 1] 1] 1] 1] 1] 1]
o} o} o} o} o o o o o e}
[+ [+ [+ [+ o o o o o o
2 | @ | @ | & | a@| & | a@|@|d)a
o 2] o N < o 2] O o <
o o Lal (4] o o o —] ©
Int. F.P.

Fig. 11 Average ROB and BROB instruction
occupancy

4.3 Measuring the ROB/BROB Occupancy

The second consideration for selecting the
optimal size of a branch ROB is to conserve the
reorder buffer instruction occupancy similar to the
traditional reorder buffer identified as 00-BROB
but modeled with a BROB size equal to the ROB
size in order to compare both ROB and BROB

Computacion y Sistemas Vol. 16 No.1, 2012 pp 15-25
ISSN 1405-5546

24 José R. Garcia Ordaz, Marco A. Ramirez Salinas, Luis A. Villa Vargas...

occupancies. Figure 11 shows the average
instruction occupancy. The baseline instruction
occupancy is reached in the 32-BROB model.
The BROB size is answered in part by the
average of executed branches and it is fully
answered with similar occupancy of the baseline
reorder buffer.

5 Conclusions

This paper presents a simple reorder buffer
design based on distributed five 1-bit flag
multiport structures (the dispatched flag, the
branch flag, the issue flag, the execute flag, and
the branch decision flag), two 7-bit multiport
structures (the old destination register tag and the
current destination register tag), and one 5-bit
multiport structure (the exception pointer), which
presents an easy solution for commitment and
branch misprediction recovery.

The new multiport structures have 1 write
port, 1 read port for the dispatched flag and the
non-speculative flag, 6 write ports, 1 read port for
the issue flag and 14 write ports, 1 read port for
the executed flag and the branch decision flag
structures for a 4-way processor. The use of the
group commitment scheme assists the recovery
and the processor state management while
reducing design complexities.

The design proposes another hardware
simplification by the use of a branch ROB, a small
structure 25% of the ROB size to store the PC
and the destination addresses of conditional
branches. This microarchitecture allows updating
the branch predictor unit as soon as the condition
of the branch is resolved by the processor
reducing unnecessary executions on the wrong
path. The complete design does not cause a
performance loss.

Acknowledgments

This work has been partially supported by grants
under agreements SIP-20101320 and SIP-
20101154 of the Graduate Studies and Research
Department of the National Polytechnic Institute
(IPN), Mexico, and by grants under agreements

Computacion y Sistemas Vol. 16 No. 1, 2012 pp 15-25
ISSN 1405-5546

124104 and 115976 of the National Council for
Science and Technology (CONACYyT), Mexico.

References

1. Burger, D. & Austing, T.M. (1997). The
Simplescalar Tool Set Ver. 2.0. ACM SIGARCH
Computer Architecture news, 25(3), 13—-25.

2. Cristal, A., Ortega, D., Llosa, J., & Valero, M.
(2004). Out-of-Order Commit Processors. 10th
International Symposium on High Performance
Computer Architecture (HPCA '04), 48-59.

3. Edmondson, J.H., Rubinfeld, P., Preston, R., &
Rajagopalan, V. (1995). Superscalar Instruction
Execution in the 21164 Alpha Microprocessor. IEEE
micro,15(2), 33—43.

4. Hinton, G., Sager, D., Upton, M., Boggs, D.,
Carmean, D., Kyker, A., & Roussel, P. (2001).
The Microarchitecture of the Pentium 4 Processor.
Intel Technology Journal, 5(1), 1-13.

5. Kessler, R.E.,, McLellan, E.J., & Webb, D.A.
(1999). The Alpha 21264 Microprocessor
Architecture. IEEE micro, 19(2), 24—36.

6. Kucuk, G., Ponomarev, D.V., Ergin, O., & Ghose,
K. (2004). Complexity-Effective Reorder Buffer
Designs for Superscalar Processors. |IEEE
Transaction on Computers, 53(6), 653—-665.

7. Leibholz, D. & Razdan, R. (1997). The Alpha
21264: A 500mhz out-Of.Order Execution
Microprocessor. IEEE COMPCON 97, San Jose,
CA , USA, 28-36.

8. Lenell, J., Wallace, S., & Bagherzadeh, N. (1992).
A 20mhz Cmos Reorder Buffer for a Superscalar
Microprocessor. 4th NASA Symposium on VLSI
DESIGN, Idaho, Moscow, 2.3.1-2.3.12.

9. Marti, S.P., Borras, J.S., Rodriguez, P.L., Tena,
R.U., & Marin, J.D. (2009). A Complexity-Effective
out-of-Order Retirement Microarchitecture. |EEE
Transactions on Computers, 58(12), 1626-1639.

10. Ramirez, M.A., Cristal, A., Veidenbaum, A.V.,
Villa, L., & Valero, M. (2005). A New Pointer-Based
Instruction Queue Design and Its Power-
Performance Evaluation. 2005 IEEE International
Conference on Computer Design: VLSI in
Computers an Processors, San Jose CA, USA,
647-653.

11. Veidenbaum, A.V., Ramirez, M.A., Cristal, A., &
Valero, M. (2008). Pointer-Based Instruction Queue
Design for out of Order Processors. US
2008/0082788A1

12. Wang, C.J. & Emnett, F. (1993). Implementing
Precise Interruptions in Pipeline Risc Processors.
IEEE micro, 13(4), 36—43.

13.Yeaguer, K. C. (1996). The Mips R10000
Superescalar Microprocessors. |IEEE micro, 16(2),
28-41.

José R. Garcia received his
B.Sc. degree in Electronic
Engineering from the
Autonomous University of
Puebla, Mexico, in 2005. He is a
M.Sc. student of the Computer
Engineering Program at the
Microtechnology and Embedded
System Laboratory of the Center for Computing
Research of the National Polytechnic Institute
(CIC-IPN), Mexico. He is also an intern with GDC
Intel Labs, Mexico. His research interests include
high-performance computer microarchitecture and
digital systems design based on HDL, FPGA and
VLSI systems.

Cuauhtémoc Peredo received
his B.Sc. degree in Electrical
Engineering and his M.Sc.
degree in Computer Engineering
from the National Polytechnic
Institute (IPN), Mexico. He is a
member of the Center for

' | Computing Research of IPN and
a Ph.D. student of ESAIl of the Polytechnic
University of Catalonia, Spain. His research
interests are digital systems, fuzzy logic, and
digital control.

Marco A. Ramirez received his
B.Sc. degree in Electronic
Engineering (1995) and a M.Sc.
degree in Computer Engineering
(2002) from the National
Polytechnic Institute (IPN),
Mexico. In 2007, he received his
Ph.D. degree in Computer
Science from the Polytechnic University of
Catalonia, Spain. Since January 1997, he has
been with the Center for Computing Research of
the National Polytechnic Institute (CIC-IPN),

A Reorder Buffer Design for High Performance Processors 25

Mexico. His research interests include high-
performance computer microarchitecture, digital
system design based on HDL and FPGA for
modeling microprocessors, and VLSI design for
energy-efficient computing.

Luis A. Villa received his
B.Sc. degree in Electronic
Engineering (1992) and his
M.Sc. degree in Computer
Engineering (1994) from the
National Polytechnic Institute
(IPN), Mexico. In 1999, he
received a Ph.D. degree in
Computer Science from the
Polytechnic University of Catalonia, Spain. From
December 1999 to February 2001, he was with
the Laboratory for Computer Science as a
Postdoctoral Fellow at the Massachusetts
Institute of Technology, working in the SCALE
project. From October 2001 to January 2007, he
was with the Mexican Petroleum Institute. Since
January 2007, he has been with the Center for
Computing Research at the National Polytechnic
Institute (CIC-IPN), Mexico. His research interests
include high-performance computer
microarchitecture and VLSI design for energy-
efficient computing.

Her6n Molina received his B.Sc.
degree in Electronic Engineering
from the National Polytechnic
Institute (IPN), Mexico, in 1991
and in 1995, his Ph.D. degree in
Electrical Engineering from the
Research Center for Advanced
Studies (CINVESTAYV), Mexico.
From October 1998 to April 2008,
he was with the Interdisciplinary School of
Engineering and Advanced Technologies
(UPIITA). Since May 2008, he has been with the
Center for Computing Research of the National
Polytechnic Institute (CIC-IPN), Mexico. His
research interests include CMOS analog and
digital VLSI circuit design, neuro-fuzzy systems
and bioinformatics.

Article received on 01/02/2010; accepted on 15/04/2011.

Computacion y Sistemas Vol. 16 No.1, 2012 pp 15-25
ISSN 1405-5546

