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Resumen.  La búsqueda de los k vecinos más cercanos, 
ha sido aplicada a una amplia variedad de aplicaciones 
en el campo de la Minería de Textos y la Recuperación de 
Información por su simplicidad y precisión. Sin embargo, 
estas áreas del conocimiento en general manipulan 
objetos con altas dimensiones de rasgos que hacen que 
el proceso de encontrar los k objetos más similares a uno 
dado tenga una intensidad computacional elevada, 
debido a la gran cantidad de operaciones que se realizan 
para calcular la semejanza entre todos los objetos 
implicados. En este trabajo se proponen dos métodos de 
multiplicación paralela de matrices dispersas usando una 
GPU, que minimizan el tiempo empleado en el cálculo de 
semejanzas entre objetos del algoritmo kNN para 
clasificar documentos.   
Palabras clave.  GPGPU, clasificación de documentos y 
multiplicación de matrices dispersas.  
 
Abstract. The search for the k nearest neighbors, has 
been applied to a wide variety of applications in the field 
of Text Mining and Information Retrieval for its simplicity 
and accuracy. However, these general areas of 
knowledge in handling high-dimensional objects with 
features that make the process of finding the k most 
similar objects to a given computer has a high intensity, 
due to the large number of operations performed to 
calculate the similarity between all the objects involved. 
In this paper we propose two methods for parallel sparse 
matrix multiplication using a GPU, which minimize the 
time spent in the calculation of similarities between 
objects in the kNN algorithm to classify documents. 
Keywords. GPGPU, document classification and sparse 
matrix multiplication. 

 
1 Introducción 
 
Probablemente, el tema más común en el análisis 
de documentos complejos es la clasificación o 

categorización de textos. De forma general, la tarea  
consiste en clasificar un documento de texto en un 
conjunto de categorías preestablecidas. Dado por 
un conjunto de categorías (materias, temas) y una 
colección de documentos de texto, el proceso 
consiste en encontrar el tema (o temas) correcto 
para cada documento. 

La clasificación de textos es un componente 
importante en muchos sistemas de administración 
de información como el filtrado de correos spam, 
enrutamiento y diseminación de documentos, 
identificación de tópicos, clasificación de páginas 
Web, etc. 

En general, la categorización de textos puede 
definirse formalmente como la tarea de aproximar 
la función de asignación de categorías ܨ: ܦ ൈ ܥ ՜
ሺ0,1ሻ , donde ܦ  es el conjunto de todos los 
documentos posibles y ܥ  es el conjunto de 
categorías predefinidas. El valor de ܨሺ݀, ܿሻ es 1 si 
el documento ݀ pertenece a la categoría ܥ ó 0 en 
caso contrario. La aproximación de la función 
:ܯ ܦ ൈ ܥ ՜ ሺ0,1ሻ  se llama clasificador. La tarea 
consiste en construir un clasificador que produzca 
resultados próximos a la verdadera función de 
asignación de categorías [4] ܨ. 

Existen varios tipos de clasificadores, entre ellos 
se encuentran los clasificadores basados en 
ejemplos. Estos clasificadores no construyen 
representaciones declarativas explícitas de las 
categorías, sino que dependen directamente del 
cálculo de la similitud entre el documento que se 
clasifica y los documentos de entrenamiento. El 
conjunto de entrenamiento, para los clasificadores 
basados en ejemplos, consiste en almacenar las 
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representaciones de los documentos junto con sus 
etiquetas de categoría. 

El ejemplo más prominente de un clasificador 
basado en ejemplos es el ݇ NN ( ݇ -nearest 
neighbor, por su nombre en inglés) [4]. Para decidir 
si un documento ݀  pertenece a la categoría ܥ , 
݇ NN comprueba si los ݇  documentos de 
entrenamiento más similares a ݀ pertenecen a ܥ. 
Si la respuesta es positiva para una proporción 
suficientemente grande de ellos, se etiqueta el 
documento con esa categoría, de lo contrario, la 
decisión es negativa. La distancia de la versión 
ponderada de ݇ NN es una variación que pesa 
lacontribución de cada vecino por su semejanza 
con el documento de prueba. 

Afortunadamente, el algoritmo kNN presenta un 
paralelismo de datos suficiente para permitir 
implementaciones en varias plataformas paralelas 
como por ejemplo las GPU. El uso de dispositivos 
gráficos para potenciar la aceleración de 
algoritmos, ha mostrado un inusitado interés en 
muchas comunidades científicas. Actualmente es 
común encontrar información sobre 
implementaciones de esta índole para resolver 
problemas paralelos con gran intensidad aritmética. 
Con los métodos propuestos en este trabajo se 
obtuvieron reducciones del tiempo de ejecución 
entre 65 % y el 85 %, comparados contra los 
mejores algoritmos para CPU. 

El resto de este artículo está organizado de la 
siguiente forma: la sección 2 se describen los 
trabajos relacionados y la importancia de nuestras 
propuestas, luego se describe brevemente algunas 
características de la programación con GPU 
específicamente con CUDA en la sección 3, en las 
siguientes secciones 4 y 5 se describen las bases 
teóricas y la descripción de nuestras propuestas 
respectivamente y por último en la sección 6 se 
describen los resultados experimentales 
alcanzados. 

2 Trabajo relacionado 

El algoritmo de clasificación kNN ha sido 
ampliamente usado en el Reconocimiento de 
Patrones y en la Minería de Datos y es uno de los 
que mejores resultados obtiene cuando se trabaja 
con textos. Es robusto, en el sentido de no exigir a 
las categorías ser linealmente separadas. Su único 

inconveniente es el costo computacional 
relativamente alto de la clasificación, es decir, para 
cada documento de prueba, debe ser calculada su 
semejanza con todos los documentos de 
entrenamiento. 

En grandes bases de datos de entrenamiento la 
búsqueda por fuerza bruta no es una opción 
acertada. Muchas variantes de algoritmos kNN han 
sido propuestas para reducir el tiempo de cómputo. 
Ellas, generalmente se orientan a reducir el número 
de semejanzas calculadas [11, 9]. En el caso de la 
clasificación de documentos de texto, los mejores 
resultados se han obtenido a costa de reducir la 
calidad de la clasificación y algunos casos haciendo 
uso de estructuras de datos muy complejas. 

Con el advenimiento de la computación paralela 
utilizando dispositivos gráficos, se han publicado 
algunos trabajos interesantes sobre optimizaciones 
de métodos para acelerar el algebra matricial 
dispersa. En particular algunos como [3, 2, 12] han 
marcado un punto de comparación en este sentido. 
Se han revisado publicaciones de este tipo en el 
área de la Minería de Datos, en general orientados 
al problema del ordenamiento de las semejanzas 
entre objetos que determina los k objetos de 
entrenamiento utilizados en el algoritmo para dar un 
resultado [1].  

Especificamente sobre ݇NN  se conocen 
algunos trabajos entre los que se destacan [7, 6], 
los que en su mayoría aplican varias 
optimizaciones en los pasos del algoritmo pero 
siempre aplicados a datos densos y de 
relativamente poca dimensionalidad como es el 
caso de imágenes. No se conoce hasta el momento 
trabajos que procesen documentos textuales, los 
que constituyen un reto en cualquier arquitectura 
por su alta dimensionalidad y dispersidad. 

En este trabajo se proponen dos métodos 
diseñados tomando en cuenta las peculiaridades 
de la representación computacional de los 
documentos de texto, que calculan en paralelo la 
semejanza entre los objetos de entrenamiento y los 
objetos a clasificar. Uno de los métodos calcula la 
semejanza entre la matriz de aprendizaje y un 
documento de prueba y el segundo entre un 
conjunto de documentos de prueba. Ambos 
métodos se utilizaron en la implementación de un 
proceso de clasificación ݇NN. 
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3 CUDA 
 
Los chips gráficos de computadoras son hoy 
posiblemente, el hardware computacional más 
potente por unidad de dólar. Estos chips conocidos 
como Graphic Processing Unit (GPU, por sus siglas 
en inglés), han transitado desde periféricos hasta 
procesadores modernos, potentes y programables, 
por derecho propio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Medidos con los indicadores tradicionales de 
rendimiento gráfico, la tasa de crecimiento de las 
GPU supera la muy citada Ley de Moore que se 
aplica a los microprocesadores tradicionales; en 
comparación con una tasa anual de 
aproximadamente 1.4x de rendimiento de CPU 
como se muestra en la Figura 11, el rendimiento del 
hardware gráfico practicamente se duplica cada 6 
meses. 
 
 
 

 

                                                       
1Basado en la diapositiva 7 de S. Green, “GPU Physics,” SIGGRAPH 
2007 GPGPU Course. 
http://www.gpgpu.org/static/s2007/slides/15-GPGPU-physics.pdf 

Figura 1: Comparación del aumento del rendimiento entre GPU y CPU 

 

 
 
 
 
 

 

Fig. 1. Comparación del aumento del rendimiento entre GPU y CPU 
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Este poder computacional está disponible y es 
barato. Una tarjeta de última generación se puede 
encontrar en los mercados informáticos a precios 
que oscilan entre $400 y $500 y el precio cae 
rápidamente a medida que se libera un nuevo 
hardware en el mercado. 

En noviembre de 2006, NVIDIA introdujo CUDA, 
una arquitectura de cómputo paralelo de propósito 
general, con un nuevo modelo de programación y 
un conjunto de instrucciones, que le permite al 
motor paralelo de las GPU de NVIDIA resolver 
muchos problemas computacionales complejos, de 
forma más eficiente que en una CPU. 
CUDA, Arquitectura de Cálculo Unificada (Compute 
Unified Device Architecture, en inglés), cuenta con 
un entorno de desarrollo de software que permite a 
los programadores, utilizar C como un lenguaje de 
programación de alto nivel. 

El modelo de programación de CUDA, está 
diseñado para desarrollar aplicaciones de software 
que escalen su paralelismo transparentemente y 
aprovechen el creciente número de núcleos de 
procesador, mientras mantiene una curva de 
aprendizaje baja para programadores 
familiarizados con la programación en lenguajes 
estándar como el C. 

CUDA tiene tres abstracciones, una jerarquía de 
grupos de hilos, memorias compartidas y barreras 
de sincronización, que son expuestas a un 
programador como un conjunto mínimo de 
extensiones del lenguaje. En este modelo una GPU 
ejecuta código implementado en una extensión de 
C que permite la transferencia de datos entre la 
CPU y la GPU. 

El código paralelo, denominado "Kernel" es 
asignado al dispositivo como una matriz de bloques 
de hilos como se muestra en la Figura 2. Los 
bloques de hilos conteniendo cientos de hilos se 
despachan a un Stream Multiprocessor (SM) para 
su ejecución. Los hilos de un bloque se agrupan en 
conjuntos de 32 hilos denominados Warp, estos 
avanzan bajo un modelo de ejecución SIMT (Single 
Instruction, Multiple Threads) [10]. 

En cuanto a la memoria, los Registros son la 
estructura más rápida pero solo pueden ser 
accedidos por hilos. Cada SM posee una Memoria 
Compartida de 16KB, que puede ser utilizada por 
los bloques de hilos. La Memoria Global es la 
memoria principal en el dispositivo gráfico. La 
Memoria Constante y de Textura tienen la misma 

velocidad de la Memoria Global, pero son de solo 
lectura además de estar cacheadas en el SM, lo 
que las hace mucho más eficientes en 
determinadas situaciones. En la Figura 3 se 
muestra gráficamente la distribución de la jerarquía 
de memoria en CUDA. 

Un kernel ejecuta un mismo código en muchos 
hilos organizados en bloques. Los hilos de un 
bloque cooperan entre sí mediante una memoria 
compartida. 

A la ejecución de un kernel se especifican la 
cantidad de bloques e hilos por bloques a ejecutar. 
La cantidad en cada una de estas dimensiones está 
determinada por el problema específico que se 
intente resolver, aunque por problemas prácticos 
las implementaciones conocidas tienen límites 
máximos definidos.  

 
 

 
 

Fig. 2. Jerarquía de hilos en CUDA 
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Fig. 3. Jerarquía de memoria de CUDA 

Los hilos son creados en hardware y se 
planifican hasta que todos terminan su ejecución. 
En los kernel se puede acceder a un conjunto de 
variables que identifican la posición dentro de la 
matriz de hilos de ejecución, con ellas se puede de 
forma muy sencilla implementar un mecanismo de 
ejecución paralela tipo SIMD (Single Instruction 
Multiple Data, en inglés) mediante el cual se 
garantiza aplicar una misma operación a diferentes 
datos simultaneamente.  

En el caso particular de CUDA, la ejecución 
simultánea se realiza dentro de un warp, que no es 
más que un conjunto de 32 hilos de bloque que 
ejecutan atómicamente una operación de forma 
paralela. El tamaño de un warp es fijo en la 
arquitectura y en [10] se exponen algunas 
explicaciones al respecto. El modelo de ejecución 
permite la ejecución simultánea de los 32 hilos a 
nivel de hardware y la duración de la operación se 
determina por el último hilo en terminar. 
 

4 Semejanza entre documentos 
 
Como se menciona anteriormente, la etapa que 
más tiempo consume en los clasificadores NN, es 
el cálculo de la semejanza entre el documento de 
prueba y los documentos del conjunto de 
entrenamiento. Los clasificadores comunes y los 
algoritmos de aprendizaje, no pueden procesar 
directamente los documentos de texto en su forma 
original. Por lo tanto, en un paso de 
preprocesamiento, los documentos se convierten 
en una representación vectorial para el cálculo. 

Normalmente, los documentos se representan 
por vectores de características o rasgos. Un rasgo 
es simplemente una dimensión en el espacio de 
características. El documento es representado 
como un vector en este espacio, es decir, una serie 
de características y sus ponderaciones o valores de 
relevancia. 

El modelo más común utiliza todas las palabras 
en el documento como rasgos, y por lo tanto la 
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dimensión del espacio de características es igual al 
número de palabras diferentes entre todos los 
documentos. Los métodos para asignar peso a los 
rasgos pueden variar. En sistemas más complejos, 
es posible que tengan en cuenta la frecuencia de la 
palabra en el documento, en la categoría, y en toda 
la colección. El esquema más común, TF-IDF, le da 
a la palabra w en el documento d el peso: 
 

ܹሺݓ, ݀ሻ ൌ ,ݓሺܨܶ ݀ሻ ڄ log൫ܰ/ܨܦሺݓሻ൯ (1) 
 
donde TFሺw, dሻ es la frecuencia de la palabra en el 
documento, N es la cantidad de documentos de la 
colección, y DFሺwሻ  es el número de los 
documentos que contienen la palabra w. 

De forma general un documento puede tener 
por sí solo una dimensión relativamente elevada, 
de forma que la dimensionalidad de una colección 
se convierte en un serio problema. Esto hace que el 
proceso de calcular la semejanza entre 
documentos sea extremadamente costoso. 

Para el cálculo de la semejanza en documentos, 
la métrica más popular es la semejanza Coseno. El 
cálculo de la semejanza Coseno entre dos 
documentos está definido por la siguiente fórmula 
[5]:  

ܵ݁݉൫݀௜, ௝݀൯ ൌ ൫ݓ௜ ڄ ௝൯ݓ ൌ ෍  

௠

௞ୀଵ

൫ݓ௜௞ ڄ  ௝௞൯ (2)ݓ

 
 Donde w୩ es el vector normalizado  
 

௞ݓ ൌ
݀௞

צ ݀௞ צ
 (3) 

 
Como se puede apreciar, la fórmula 2 es una 

suma de productos de dos vectores de términos. 
Además, un conjunto de n  documentos en un 
espacio de dimensión m, no es más que una matriz 
M de n filas y m columnas, donde cada columna 
corresponde a un término en particular y el valor 
w୧୨ א M es el peso del término j en el documento i. 
La matriz M es, de forma general, una estructura 
dispersa. 

Si tenemos en cuenta que la dimensión de un 
conjunto de documentos es muy elevada, es lógico 
que cada documento contendrá sólo un número de 
términos relativamente menor a la dimensión del 
conjunto, provocando que por cada fila de la matriz 
M  exista gran cantidad de ceros. Por tanto, es 

posible afirmar que calcular las semejanzas entre 
un documento de prueba y los documentos de 
entrenamiento, puede ser reducido a multiplicar 
una matriz por un vector, además tanto la matriz 
como el vector son dispersos, porque ambos se 
definen sobre el mismo espacio de características. 

Si tenemos en cuenta que la dimensión de un 
conjunto de documentos es muy elevada, es lógico 
que cada documento contendrá sólo un número de 
términos relativamente menor a la dimensión del 
conjunto, provocando que por cada fila de la matriz 
M exista gran cantidad de ceros. Por tanto, es 
posible afirmar que calcular las semejanzas entre 
un documento de prueba y los documentos de 
entrenamiento, puede ser reducido a multiplicar 
una matriz por un vector, además tanto la matriz 
como el vector son dispersos, porque ambos se 
definen sobre el mismo espacio de características. 
 
5 Propuesta 
 
La paralelización de la multiplicación dispersa de 
matrices se ha realizado siguiendo varias 
estrategias y con varias herramientas tanto de 
software como de hardware. Este trabajo, 
concentró su esfuerzo en realizar el proceso de 
cálculo sobre la arquitectura gráfica de una GPU 
con soporte para NVIDIA CUDA. 

Para una mejor comprensión de los términos 
expuestos en esta sección, nos referiremos con MA 
a la matriz de documentos de aprendizaje y con MP 
a la matriz de documentos de prueba. 
 
Algoritmo 1: Clasificación kNN multiplicando matrices 
dispersas 

1. Copiar MA al dispositivo GPU     
2. ݊݀ ՚ Cantidad de documentos en MP   
3. for݅ ൌ 0to݊݀do
4. Copiar documento  ݀௜ א  ܲܯ al dispositivo GPU
5. Obtener vector de semejanzas  ௜ݕ ൌ ܣܯ כ ݀௜
6. Copiar  ௜ݕ a CPU   
7. Aplicar regla  ݇NN   
8. Clasificar  ݀௜
9. endfor

 
La implementación propuesta en este trabajo, 

consiste en un proceso de clasificación de 
documentos que realiza el cálculo de semejanzas 
entre documentos mediante una función de 
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multiplicación de matrices dispersas, donde a partir 
de ellas se clasifica atendiendo a los pasos del 
algoritmo ݇NN La descripción de la implementación 
se muestra en el Algoritmo 1. 

Utilizando este esquema se proponen dos 
algoritmos para multiplicar matrices dispersas con 
los que se resuelve de forma paralela el cálculo de 
las semejanzas entre los documentos de prueba y 
los documentos de la matriz de aprendizaje. 
Las implementaciones de algoritmos sobre 
matrices dispersas apoyan gran parte de su 
estrategia en una estructura de datos 
convenientemente seleccionada. En la literatura 
existen varias representaciones como se muestra 
en [3] y se destaca por su generalidad la 
representación dispersa CSR (Compressed Sparse 
Row, en inglés). 

La representación CSR la componen tres 
vectores que almacenan los índices de inicio y fin 
de cada fila, los índices de las columnas y los 
valores distintos de cero existentes en la matriz. La 
figura 4 muestra una ejemplo de matriz dispersa 
que ilustra la estructura CSR; el vector denotado 
por data  almacena los valores distintos de cero 
que contiene la matriz, el vector row almacena los 
índices dentro de data donde comienza cada fila y 
cols el índice de la columna de la matriz A donde 
se encuentra cada uno de los valores de data 
respectivamente. 
 

ܽݐܽ݀  ൌ ሼ1,7,2,8,5,3,9,6,4ሽ;

ܣ ൌ ൦

1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

൪ ݓ݋ݎ ൌ ሼ0,2,4,7,9ሽ; 

ݏ݈݋ܿ  ൌ ሼ0,1,1,2,0,2,3,1,3ሽ;
 

Fig. 4. Ejemplo de una matriz dispersa CSR 

Para establecer un punto de comparación se 
utilizó un resultado obtenido en una publicación 
técnica de NVIDIA [3], donde se propuso un 
algoritmo de multiplicación de una matriz dispersa 
por un vector denso. Este algoritmo propone una 
implementación de multiplicación de una matriz 
dispersa CSR por un vector denso con la que se 
obtuvieron reducciones de tiempo de ejecución de 
hasta 69% comparado con el tiempo secuencial de 
CPU. Los resultados de este algoritmo fueron 
obtenidos con las mismas configuraciones y datos 

que se utilizaron en la evaluación de los algoritmos 
propuestos. 
 
5.1.Multiplicación usando un vector 
disperso y memoria compartida  
 
Resolver el acceso a los datos en la programación 
de algoritmos adaptados para GPU, es uno de los 
puntos que más incidencia tiene en el resultado 
final. La memoria global es la de mayor latencia de 
toda la jerarquía de memoria de un dispositivo 
gráfico y su máximo aprovechamiento está 
condicionado al patrón de acceso de lectura o 
escritura [10]. Por ejemplo en el diseño G80, cada 
instrucción toma 4 ciclos de reloj en procesarse y 
una operación de lectura en la memoria global toma 
200 ciclos. Por tal motivo es recomendable 
garantizar el acceso combinado de los hilos de un 
warp a la memoria, de otra manera, todas las 
operaciones de memoria se serializarán influyendo 
directamente en el rendimiento de la aplicación. 

Paralelizar la multiplicación dispersa no es una 
tarea fácil para arquitecturas gráficas. En nuestro 
caso, los patrones de acceso a la memoria afectan 
con mucha influencia el rendimiento general del 
kernel. En general, es casi imposible para la 
multiplicación dispersa tratar de combinar las 
operaciones de lectura en la memoria global, por 
tanto, una solución es usar alguna de las memorias 
internas del dispositivo para realizar operaciones 
desde ellas. En este caso utilizamos la memoria 
compartida. 

La memoria compartida tiene una latencia 
mucho menor que la memoria global, de modo que 
los problemas ocasionados por los patrones de 
acceso se ocultan, permitiendo alcanzar un buen 
rendimiento. 

Por lo general en este tipo de problema se 
multiplica una matriz dispersa por un vector denso 
para reducir la complejidad del algoritmo desde el 
punto de vista de la programación. En el caso 
particular de las representaciones de documentos 
este vector presentaba un alto grado de 
dispersidad, por lo que nuestra propuesta se 
concentra además en la multiplicación de una 
matriz por un vector ambos dispersos. 

En el Algoritmo 2, se muestran los pasos de la 
nueva implementación. En éste, cada fila de la 
matriz MA, será procesada por un hilo de la GPU. 
Es sencillo notar que las filas de MA se recorrerán 
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una sola vez por un único hilo, mientras que el 
vector a multiplicar será recorrido por todos los hilos 
planificados. Además, cada hilo seguirá un camino 
distinto en dependencia de los datos utilizados. 
 
Algoritmo 2: Obtención del vector de semejanzas 

Requiere:݀ܽܽݐ,  ݈݋ܿ ,   ,ݎݐ݌  ݏ݈݋ܿ_݉ݑ݊ representación  CSR  de 
MA     
Requiere:ܽݐܽ݀ݒ,   ݔ݀݅ݒ representación dispersa de  ݀௜
1.  Copiar   ܽݐܽ݀ݒ y   ݔ݀݅ݒ a memoria compartida   
2.  ݓ݋ݎ ՚ ݉݅ܦ݇ܿ݋݈ܾ כ ݔ݀ܫ݇ܿ݋݈ܾ ൅ ݔ݀ܫ݀ܽ݁ݎ݄ݐ
3.  ݉ݑݏ ՚ 0 
4.  ݐݎܽݐݏ_ݓ݋ݎ ՚  ሿݓ݋ݎሾݎݐ݌
5.  ݀݊݁_ݓ݋ݎ ՚ ݓ݋ݎሾݎݐ݌ ൅ 1ሿ 
6.  ݔ݈݀݅ ՚  ݐݎܽݐݏ_ݓ݋ݎ
7.  ݔ݀݅ݎ ՚ 0 
8.  while݈݅݀ݔ ൏ ݔ݀݅ݎand݀݊݁_ݓ݋ݎ ൏ doݏ݈݋ܿ_݉ݑ݊
9.  if݈ܿ݋ሾ݈݅݀ݔሿ ൌ  ሿthenݔ݀݅ݎሾݔ݀݅ݒ
10.  ݉ݑݏ ՚ ݉ݑݏ ൅ ሿݔሾ݈݅݀ܽݐܽ݀ כ ሿݔ݀݅ݎሾܽݐܽ݀ݒ
11.  ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1 
12.  ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1 
13.  elseif݈ܿ݋ሾ݈݅݀ݔሿ ൏  ሿthenݔ݀݅ݎሾݔ݀݅ݒ
14.  ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1 
15.  else 
16.  ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1 
17.  endif 
18.  ሿݓ݋ݎሾݕ ՚  ݉ݑݏ
19.  endwhile 

 
De esta forma, inicialmente colocamos la 

representación dispersa del vector a multiplicar d୧ 
en la memoria compartida, garantizando un acceso 
de muy baja latencia en un patrón de acceso no 
combinado. Luego, dado que la representación del 
d୧ es dispersa, entonces se debe garantizar que se 
multipliquen sólo los elementos que se encuentran 
en el mismo índice de fila respecto a la matriz o al 
vector real, según sea el caso. 

La implementación se realizó mediante un 
mecanismo de pivotes, en el que se fija el mayor 
entre los índices de la fila de MA y el d୧ y se va 
incrementando el menor, de tal forma que cuando 
ambos sean iguales se acumule la multiplicación de 
los valores de cada uno. Si al incrementarse el 
menor de los índices supera al pivote, estos se 
intercambian y se repiten los pasos anteriores de la 
misma forma. El proceso de nivel superior que hace 
uso de este kernel es similar al descrito en el 
Algoritmo 1. 

Todos estos detalles de implementación 
permitieron que aumentara el rendimiento del 

kernel y que en general se hiciera uso de un mayor 
ancho de banda de memoria, además la calidad de 
la clasificación se mantuvo igual. Este algoritmo se 
ajusta al caso en que no se conozcan a priori la 
cantidad de documentos de prueba a clasificar por 
lo que el cálculo de las semejanzas se realizaría 
secuencialmente entre los documentos de prueba. 
 
5.2.Multiplicación de matrices dispersas 
usando caché de texturas 
 
Los dispositivos gráficos están diseñados para 
soportar un alto grado de paralelismo, representado 
a nivel de hardware en varios Stream Processors 
(SP, por sus siglas en inglés), cada uno con la 
capacidad de ejecutar una gran cantidad de hilos 
en paralelo. De forma general estos dispositivos 
organizan este conjunto de hilos en estructuras 
jerárquicas que por lo general pueden tener hasta 
tres dimensiones. 

En particular, los productos de NVIDIA se 
organizan en una jerarquía de tres niveles, donde el 
nivel superior llamado Grid, consiste en una matriz 
de bloques de hilos de dos dimensiones; cada 
bloque de hilos, a su vez, es una matriz de hilos de 
tres dimensiones. 

Esta jerarquía permite distribuir el trabajo, 
dependiendo del algoritmo o la capacidad de 
particionar de manera equitativa los datos sobre los 
que actuará un problema determinado. En el 
algortimo propuesto anterior, se describió una 
solución al problema de la multiplicación de una 
matriz dispersa con un vector disperso. En ella se 
utilizó un bloque de hilos de una sola dimensión y 
se distribuyeron los datos de forma que en cada hilo 
se calcula la multiplicación del vector disperso y 
una fila de la matriz, de modo que, el 
procesamiento de la colección de documentos se 
realiza secuencialmente de uno en uno. 

Este método realiza los cálculos entre varios 
vectores de documentos de prueba y la matriz de 
aprendizaje, lo que se traduce en la multiplicación 
de dos matrices dispersas, la matriz de aprendizaje 
MA y una matriz de vectores de prueba dispersos, 
denominada en lo adelante MV, donde MV ك MP . 

De esta forma, se disminuye en cierta medida la 
latencia de las transferencias de datos entre el 
dispositivo y la CPU, ya que en cada transferencia 
se mueven más vectores dispersos a procesar. Por 
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otro lado el kernel implementado utiliza un bloque 
de hilos de dos dimensiones con el que se emplea 
una mayor cantidad de hilos en ejecución en la 
GPU, aumentando el ancho de banda de memoria, 
y por consiguiente, el rendimiento del proceso 
completo. 

Una particularidad añadida por el hecho de 
multiplicar varios vectores dispersos en paralelo, es 
que en cada uno de ellos se accederá a las mismas 
filas de la matriz de aprendizaje ya que cada uno 
debe calcular su semejanza con cada documento 
de ésta. De forma general, no se puede garantizar 
un patrón de acceso eficiente con esta 
implementación, ya que estos patrones están 
diseñados para optimizar los accesos dentro de un 
bloque de hilos y en especial entre hilos de un 
mismo warp. 

Para optimizar este acceso a la memoria hemos 
utilizado la memoria de textura. Esta memoria, está 
optimizada para reducir la demanda de ancho 
banda cuando los datos se encuentran 
espacialmente cercanos, actuando como un caché. 

La esencia del método es similar al expuesto en 
el Algoritmo 2. Las diferencias más importantes se 
encuentran en el uso de la memoria de textura, 
cuando se referencian los datos de las filas de la 
matriz de aprendizaje MA y en el direccionamiento 
de los índices de los hilos de ejecución, ya que los 
bloques de hilos empleados son de dos 
dimensiones y los índices globales de cada hilo se 
tienen que calcular tomando en cuenta esta 
estructura. 

La nueva implementación se muestra en el 
Algoritmo 3, en ella se utilizan bloques de hilos de 
dos dimensiones que se representan por las 
variables internas de CUDA blockIdx. x  y 
blockIdx. y, con las que se identifica la fila de la 
matriz de documentos de prueba (ver línea 1), que 
se va a utilizar para calcular la multiplicación con 
cada fila de MA, referenciada por la segunda 
variable respectivamente (ver línea 4). 

Los pasos a seguir en cada uno de los 
documentos de MV, es similar al descrito en el 
Algoritmo 2 además, la recuperación de los datos 
de MA, se realiza a través del acceso a la memoria 
de textura, como se muestra en las líneas 11 y 13 
mediante la función fetch2. Finalmente, el resultado 

                                                       
2Para facilitar la comprensión, esta función describe el proceso de 
recuperar un dato desde la memoria de textura 

de cada cálculo se almacena en el vector y de 
acuerdo a la posición global de las filas de MV y MA 
multiplicadas, como se muestra en la línea 22. 

Este algortimo es más eficiente cuando se 
conocen a priori la cantidad de documentos de 
prueba, por lo que al utilizar una mayor cantidad de 
hilos de forma simultánea el rendimiento general 
aumenta porque existe más trabajo y disminuye la 
cantidad de hilos inactivos. Los resultados de la 
clasificación fueron los mismos que en el algoritmo 
anterior. 
 
Algoritmo 3: Obtención del vector de semejanzas 

Requiere: ܽݐܽ݀ܣܯ ,  ݈݋ܿܣܯ ,  ݎݐ݌ܣܯ ,  ݏݓ݋ݎ_݉ݑ݊ܣܯ
representación CSR de MA   
Requiere: ܽݐܸܽ݀ܯ ,  ݈݋ܸܿܯ ,  ݎݐ݌ܸܯ   representación  CSR  de 
MV 
1. ݅ ՚ .ݔ݀ܫ݇ܿ݋݈ܾ  Seleccionar el vector a multiplicar en el }ݔ

grid  ݅} 
2. ݏ݈݋ܿ_݉ݑ݊ ՚ ሾ݅ݎݐ݌ܸܯ ൅ 1ሿ െ  ሾ݅ሿݎݐ݌ܸܯ
3. Copiar datos de  ݀௜ a memoria compartida
4. ݓ݋ݎ ՚ .݉݅ܦ݇ܿ݋݈ܾ ݔ כ .ݔ݀ܫ݇ܿ݋݈ܾ ݕ ൅ .ݔ݀ܫ݀ܽ݁ݎ݄ݐ ݔ
5. ݉ݑݏ ՚ 0
6. ݐݎܽݐݏ_ݓ݋ݎ ՚  ሿݓ݋ݎሾݎݐ݌ܣܯ
7. ݀݊݁_w݋ݎ ՚ ݓ݋ݎሾݎݐ݌ܣܯ ൅ 1ሿ 
8. ݔ݈݀݅ ՚ ݐݎܽݐݏ_ݓ݋ݎ
9. ݔ݀݅ݎ ՚ 0
10. while݈݅݀ݔ ൏ ݔ݀݅ݎand݀݊݁_ݓ݋ݎ ൏ doݏ݈݋ܿ_݉ݑ݊
11.       ݈݋ܿ ՚ ,݈݋ܿܣܯሺ݄ܿݐ݂݁  ሻݔ݈݀݅
12.       if݈ܿ݋ ൌ  ሿthenݔ݀݅ݎሾ݈݋ܸܿܯ
13.               ݉ݑݏ ՚ ݉ݑݏ ൅ ,ܽݐܽ݀ܣܯሺ݄ܿݐ݂݁ ሻݔ݈݀݅ כ

ሿݔ݀݅ݎሾܽݐܸܽ݀ܯ
14.               ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1 
15.               ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1 
16.       elseif݈ܿ݋ ൏  ሿthenݔ݀݅ݎሾ݈݋ܸܿܯ
17.               ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1 
18.       else
19.               ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1 
20.       endif
21.               ሿݓ݋ݎሾݕ ՚  ݉ݑݏ
22. endwhile

 
6 Resultados experimentales 
 
Cada uno de los algoritmos propuestos, alcanza en 
mayor o menor grado una ventaja respecto al 
proceso de clasificación en una CPU. En esta 
sección se mostrará como la implementación en 
GPU de los algoritmos propuestos, mejora el 
rendimiento de la clasificación k NN en 
documentos, a través de los resultados 
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experimentales de cada una de las 
implementaciones y una evaluación de los mismos. 
 
6.1 Configuración experimental 
 
Para los experimentos se utilizaron dos 
configuraciones de hardware, la primera una 
computadora personal y la segunda en un servidor 
profesional. Éstas se utilizaron para mostrar la 
diferencia en el rendimiento alcanzado teniendo en 
cuenta la potencia de cálculo en diferentes 
procesadores gráficos. 

El sistema usado para la evaluación del 
rendimiento en la primera configuración 
(referenciada como Configuración #1 en lo 
adelante) consiste en, un procesador Intel Core2 
Duo E7300 con una frecuencia de reloj de 2.66 
GHz, 2 GB de memoria RAM y una tarjeta NVIDIA 
GeForce 9800 GT con 112 núcleos y 512 MB de 
memoria dedicada. La aplicación se generó con el 
compilador GNU C++ Compiler versión 4.3.4 y 
NVIDIA CUDA Compiler Driver versión 2.3. La 
segunda configuración (referenciada como 
Configuración #2 en lo adelante) consta de dos 
procesadores Intel Xeon E5405 con una frecuencia 
de reloj de 2 GHz para un total de 8 núcleos de 
CPU, 7 GB de memoria RAM y cuatro tarjetas 
NVIDIA Tesla C870 con 128 núcleos y 1.5 GB de 
memoria dedicada; la aplicación se generó con el 
compilador GNU C++ Compiler versión 4.1.2 y 
NVIDIA CUDA Compiler Driver versión 2.2. 

Todos los resultados en la GPU presentados a 
continuación incluyen el tiempo requerido de 
transferir los datos desde la memoria principal a la 
memoria de la GPU y de recuperar los resultados 
desde el dispositivo. Los kernel operan en simple 
precisión para datos reales. 

Para las pruebas se utilizó la colección estándar 
Reuters 2000 RCV1 [8]. Esta colección está 
dividida en conjuntos de archivos de entrenamiento 
y prueba, cada uno con la distribución de 
documentos por categoría. El conjunto de 
entrenamiento contiene 23149 documentos y 
47152 términos diferentes, distribuidos en 101 
categorías. La matriz de documentos resultantes 
contiene 1091521648 elementos y su 
representación CSR contiene 1757801 elementos 
distintos de cero, lo que representa un 0.16% del 
total de elementos. 

El conjunto de pruebas se dividió en seis 
subcolecciones para probar la escalabilidad y el 
rendimiento de la implementación, usando 
conjuntos de datos de diferentes tamaños. El 
tamaño total del conjunto es de 781265 
documentos, divididos en subconjuntos de 10, 100, 
1000, 10000, 100000, y 781265 respectivamente. 
 
6.2 Evaluación del rendimiento 
 
En este estudio, no se muestran los resultados de 
la calidad de la clasificación kNN, porque en cada 
prueba, se observó que en ambas arquitecturas 
fueron los mismos. Por tanto, nos limitamos sólo a 
evaluar el tiempo de ejecución en segundos para el 
proceso de categorización completo. 

Cada prueba ejecutada con un juego de 
parámetros, se realizó un total de 10 veces y los 
resultados finales mostrados son el promedio de 
todas ellas. Los resultados obtenidos se muestran 
divididos en tres secciones, cada una 
representando las tres variantes de algoritmos 
descritas anteriormente. De cada una de estas 
variantes, se selecciona la de mejor resultado y se 
compara con la próxima solución, siempre tomando 
como referencia en cada una de ellas la ejecución 
en CPU. 

Las pruebas se etiquetaron de la siguiente 
forma: BaseCSR corresponde a las pruebas del 
algoritmo secuencial en CPU; las ejecuciones 
usando el algoritmo propuesto por [3] se muestran 
con la etiqueta Base y como sufijo la cantidad de 
hilos por bloque utilizados; las pruebas 
correspondientes al algoritmo propuesto en la 
sección 5.1 se etiquetaron como Shared y como 
sufijo la cantidad de hilos por bloque utilizados; por 
último el algoritmo propuesto en la Sección 5.2 se 
muestra como Grid y como sufijo el par que 
especifica la cantidad de documentos y la cantidad 
de hilos por bloque utilizados. 

Las gráficas de rendimiento están en función de 
la cantidad de documentos de prueba y en cada 
uno de los algoritmos se muestra una tabla con los 
tiempos obtenidos en segundos y gráficamente la 
aceleración alcanzada por cada prueba, definida 
como la división entre el tiempo del algoritmo en 
CPU y el obtenido experimentalmente en la prueba. 
En cada discusión de resultados se menciona el 
valor porcentual que representa el tiempo obtenido 
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por la prueba del tiempo secuencial en CPU, lo que 
referencia como porciento de reducción. 

Los resultados de las pruebas de referencia con 
el algoritmo propuesto en [3] se muestran en la 
Tabla 1. En ellas se representan los tiempos de 
ejecución del algoritmo en CPU y las corridas en 
GPU para valores de cantidad de hilos por bloque 
de 32, 64, 128 y 256 hilos respectivamente, en cada 
una de las configuraciones de hardware 
especificadas en la sección 6.1. Además se 
muestra la relación de los tiempos de ejecución 
respecto a la ejecución del algoritmo secuencial en 
CPU en la Figura 5. 

 
Tabla 1. Tiempo de ejecución en segundos para el 

algoritmo propuesto en [3] 

 
 
En esta implementación, se muestra una 

ganancia en la aceleración para la Configuración 
#1, que supera ligeramente los resultados de la 
CPU, obteniendo como promedio una reducción del 
tiempo del 7% respecto al tiempo secuencial en 
CPU. Por otro lado, en la Configuración #2 se nota 
que se logran alcanzar resultados superiores a 3x, 
que representan una reducción del tiempo de 
ejecución de 69.4% como promedio. Los resultados 
de esta propuesta en general son similares en 
cuanto a la aceleración alcanzada para ambas 
configuraciones. 

La propuesta definida en el Algoritmo 2 obtuvo 
mejores resultados, para las dos configuraciones 
de hardware. En la Tabla 2 se muestran los tiempos 
de la ejecución para distintos tamaños de bloques 
de hilos, representados con los valores de 32, 64, 
128 y 256, respectivamente. En la Figura 6 se 
muestran los resultados comparativos de las 
ejecuciones en CPU y los de la ejecución de mejor 
rendimiento promedio para cada configuración con 
el algoritmo propuesto en [3]. 

 
 

 
 
Fig. 5. Aceleración obtenida por el algoritmo propuesto 

por [3] 
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Se puede observar en las Figuras 6a y 6b un 
aumento en la aceleración respecto al algoritmo en 
CPU, alcanzando valores promedio de 1.3x que 
representan una disminución del 28% del tiempo de 
ejecución para la Configuración #1 y de 4.3x para la 
Configuración #2 que representa un y 78% de 
reducción. Estos resultados demuestran la eficacia 
de utilizar memoria compartida, en casos donde el 
patrón de acceso no combinado a la memoria 
afecta el rendimiento de un algoritmo en GPU. Los 
mejores resultados promedio se obtuvieron con 
bloques de 64 hilos para la Configuración #1 y de 
128 para la Configuración #2. 
 

Tabla 2. Tiempo de ejecución en segundos para el 
Algoritmo 2 

 
 
Para el Algoritmo 3 se obtuvieron los mejores 

tiempos como se muestran en la Tabla 3 y en la 
Figura 7 se puede comparar gráficamente estos 
resultados con la ejecución en CPU y los mejores 
valores de las pruebas anteriores. 

Como se explicó en la Sección 5.2, este 
algoritmo trabaja con dos dimensiones de hilos en 
el dispositivo gráfico. Para las pruebas se 
realizaron ejecuciones fijando la cantidad de 
documentos en paralelo a comparar (tamaño del 
grid) en 32, 64, 128 y 256 respectivamente. Por 
cada uno de los valores de grid se fijó el tamaño de 
los bloques de hilos en 32, 64, 128, y 256, 

respectivamente. De este modo las pruebas de 
este algoritmo equivalen a un total de 16, que por 
simplificar se muestran los valores de la mejor 
ejecución por tamaño de grid. 

 

Fig. 6. Aceleración obtenida para el Algoritmo 2 

 
Los resultados de esta implementación superan 

los resultados de la ejecución secuencial en una 
CPU para ambas configuraciones. En la Figura 7, 
se muestran los resultados obtenidos, donde se 
alcanzan valores promedio de aceleración para la 
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Configuración #1 de 3.6x y para la Configuración #2 
de 9x, que representan una disminución del tiempo 
de ejecución respecto al algoritmo secuencial en 
CPU del 69% y 89% respectivamente. 

 

Tabla 3. Tiempo de ejecución en segundos para el 
Algoritmo 3 

 
 
La comparación de todos los tiempos de 

ejecución obtenidos con el hardware gráfico en las 
dos configuraciones, muestra mejores resultados 
para la Configuración #2, debido a que el 
dispositivo usado en ella cuenta con una mayor 
cantidad de núcleos y de memoria. Además este 
tipo de hardware está dedicado al uso en GPGPU, 
por ese motivo no cuenta con la salida de video 
tradicional en estos dispositivos, dedicando toda su 
potencia al cálculo aritmético. 

 
7 Conclusiones 
 
A partir de la investigación realizada, se obtuvieron 
los siguientes resultados. 

Se propuso un algoritmo para multiplicar una 
matriz por un vector, ambos dispersos, que se 
puede aplicar a procesos donde se desconozca de 
antemano la cantidad de vectores a multiplicar. Con 
este algoritmo se implementó un proceso de 
clasificación kNN con el que se alcanzan 
reducciones promedio en el tiempo de ejecución, 
para el hardware utilizado, de 28% y 79% 

respectivamente respecto a una implementación en 
CPU.  

 
 

Fig. 7. Aceleración obtenida para el Algoritmo 3 

Se implementó un algoritmo para multiplicar dos 
matrices dispersas, que se puede aplicar además 
en procesos donde se deseen multiplicar una 
matriz dispersa y un conjunto de vectores de forma 
paralela. Con este algoritmo se implementó un 
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proceso de clasificación k NN, con el que se 
alcanzan reducciones promedio en el tiempo de 
ejecución, para el hardware utilizado, de 69% y 
88% respectivamente respecto a una 
implementación en CPU.  

Los resultados obtenidos en la investigación, 
constituyen un aporte para tareas de clasificación 
de documentos y ofrecen al programador una 
biblioteca de algoritmos de multiplicación de 
matrices dispersas para GPU, que queda 
disponible para futuras investigaciones y para 
utilización en proyectos de software.  

Como trabajo futuro se propone un estudio de 
otras estructuras de datos para la representación 
de matrices dispersas, que permitan optimizar el 
uso de la memoria y el acceso coordinado a la 
misma, en dispositivos gráficos, para obtener 
mejores aceleraciones en los procesos 
implementados. Además se han reportado varios 
trabajos [7, 6] que utilizan el poder de la GPU para 
realizar el ordenamiento de las semejanzas luego 
del computo de las mismas, proponemos la 
inclusión de una optimización al proceso k NN 
similar para su utilización en aplicaciones reales 
que utilicen este algoritmo. 

Los algoritmos propuestos en este trabajo se 
diseñaron especialmente para el uso en 
arquitecturas de hardware gráfico, y se utilizaron en 
un proceso de clasificación estático como es el 
kNN, donde la matriz de aprendizaje se mantiene 
sin cambios en la memoria gráfica. De modo que se 
propone el diseño de nuevos algoritmos que 
administren dinámica y eficientemente la memoria 
gráfica de las GPU, y adicionen filas a la matriz de 
aprendizaje. Esto permitirá emplear estos 
algoritmos en otras tareas de la Minería de Textos 
como el agrupamiento de documentos. 
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