Clasificacion kNN de documentos usando GPU

Document kNN Clasification using GPU

Rubén Bresler Camps’y Reynaldo Gil Garcia®
1Empresa de Desarrollo de Aplicaciones, Tecnologias y Sistemas,
Santiago de Cuba, Cuba
ruben.bressler@cerpamid.co.cu
2Centro de Reconocimiento de Patrones y Mineria de Datos,
Santiago de Cuba, Cuba
gil@cerpamid.o.cu

Articulo recibido el 12 de febrero de 2011; aceptado el 30 junio de 2011

Resumen. La busqueda de los k vecinos mas cercanos,
ha sido aplicada a una amplia variedad de aplicaciones
en el campo de la Mineria de Textos y la Recuperacion de
Informacion por su simplicidad y precision. Sin embargo,
estas areas del conocimiento en general manipulan
objetos con altas dimensiones de rasgos que hacen que
el proceso de encontrar los k objetos mas similares a uno
dado tenga una intensidad computacional elevada,
debido a la gran cantidad de operaciones que se realizan
para calcular la semejanza entre todos los objetos
implicados. En este trabajo se proponen dos métodos de
multiplicacion paralela de matrices dispersas usando una
GPU, que minimizan el tiempo empleado en el calculo de
semejanzas entre objetos del algoritmo KNN para
clasificar documentos.

Palabras clave. GPGPU, clasificacion de documentos y
multiplicacion de matrices dispersas.

Abstract. The search for the k nearest neighbors, has
been applied to a wide variety of applications in the field
of Text Mining and Information Retrieval for its simplicity
and accuracy. However, these dgeneral areas of
knowledge in handling high-dimensional objects with
features that make the process of finding the k most
similar objects to a given computer has a high intensity,
due to the large number of operations performed to
calculate the similarity between all the objects involved.
In this paper we propose two methods for parallel sparse
matrix multiplication using a GPU, which minimize the
time spent in the calculation of similarities between
objects in the kNN algorithm to classify documents.
Keywords. GPGPU, document classification and sparse
matrix muiltiplication.

1 Introduccién

Probablemente, el tema mas comuin en el analisis
de documentos complejos es la clasificacion o

categorizacion de textos. De forma general, la tarea
consiste en clasificar un documento de texto en un
conjunto de categorias preestablecidas. Dado por
un conjunto de categorias (materias, temas) y una
coleccion de documentos de texto, el proceso
consiste en encontrar el tema (o temas) correcto
para cada documento.

La clasificacion de textos es un componente
importante en muchos sistemas de administraciéon
de informacién como el filtrado de correos spam,
enrutamiento y diseminacién de documentos,
identificacion de tdpicos, clasificacién de paginas
Web, etc.

En general, la categorizacién de textos puede
definirse formalmente como la tarea de aproximar
la funcién de asignacion de categorias F:D X C —
(0,1), donde D es el conjunto de todos los
documentos posibles y C es el conjunto de
categorias predefinidas. El valor de F(d,c) es 1 si
el documento d pertenece a la categoria € 6 0 en
caso contrario. La aproximacion de la funciéon
M:D x C - (0,1) se llama clasificador. La tarea
consiste en construir un clasificador que produzca
resultados proximos a la verdadera funcién de
asignacion de categorias F [4].

Existen varios tipos de clasificadores, entre ellos
se encuentran los clasificadores basados en
ejemplos. Estos clasificadores no construyen
representaciones declarativas explicitas de las
categorias, sino que dependen directamente del
célculo de la similitud entre el documento que se
clasifica y los documentos de entrenamiento. El
conjunto de entrenamiento, para los clasificadores
basados en ejemplos, consiste en almacenar las
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representaciones de los documentos junto con sus
etiquetas de categoria.

El ejemplo mas prominente de un clasificador
basado en ejemplos es el k NN ( k -nearest
neighbor, por su nombre en inglés) [4]. Para decidir
si un documento d pertenece a la categoria C,
k NN comprueba si los k documentos de
entrenamiento mas similares a d pertenecen a C.
Si la respuesta es positiva para una proporcion
suficientemente grande de ellos, se etiqueta el
documento con esa categoria, de lo contrario, la
decisién es negativa. La distancia de la version
ponderada de kNN es una variacion que pesa
lacontribucion de cada vecino por su semejanza
con el documento de prueba.

Afortunadamente, el algoritmo KNN presenta un
paralelismo de datos suficiente para permitir
implementaciones en varias plataformas paralelas
como por ejemplo las GPU. El uso de dispositivos
graficos para potenciar la aceleracion de
algoritmos, ha mostrado un inusitado interés en
muchas comunidades cientificas. Actualmente es
comun encontrar informacion sobre
implementaciones de esta indole para resolver
problemas paralelos con gran intensidad aritmética.
Con los métodos propuestos en este trabajo se
obtuvieron reducciones del tiempo de ejecucion
entre 65 % y el 85 %, comparados contra los
mejores algoritmos para CPU.

El resto de este articulo esta organizado de la
siguiente forma: la seccidon 2 se describen los
trabajos relacionados y la importancia de nuestras
propuestas, luego se describe brevemente algunas
caracteristicas de la programaciéon con GPU
especificamente con CUDA en la seccién 3, en las
siguientes secciones 4 y 5 se describen las bases
tedricas y la descripcion de nuestras propuestas
respectivamente y por dltimo en la seccion 6 se
describen los resultados experimentales
alcanzados.

2 Trabajo relacionado

El algoritmo de clasificacion kNN ha sido
ampliamente usado en el Reconocimiento de
Patrones y en la Mineria de Datos y es uno de los
que mejores resultados obtiene cuando se trabaja
con textos. Es robusto, en el sentido de no exigir a
las categorias ser linealmente separadas. Su Unico
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inconveniente es el costo computacional
relativamente alto de la clasificacion, es decir, para
cada documento de prueba, debe ser calculada su
semejanza con todos los documentos de
entrenamiento.

En grandes bases de datos de entrenamiento la
busqueda por fuerza bruta no es una opcion
acertada. Muchas variantes de algoritmos kNN han
sido propuestas para reducir el tiempo de computo.
Ellas, generalmente se orientan a reducir el nimero
de semejanzas calculadas [11, 9]. En el caso de la
clasificacion de documentos de texto, los mejores
resultados se han obtenido a costa de reducir la
calidad de la clasificacion y algunos casos haciendo
uso de estructuras de datos muy complejas.

Con el advenimiento de la computacién paralela
utilizando dispositivos graficos, se han publicado
algunos trabajos interesantes sobre optimizaciones
de métodos para acelerar el algebra matricial
dispersa. En particular algunos como [3, 2, 12] han
marcado un punto de comparacion en este sentido.
Se han revisado publicaciones de este tipo en el
area de la Mineria de Datos, en general orientados
al problema del ordenamiento de las semejanzas
entre objetos que determina los k objetos de
entrenamiento utilizados en el algoritmo para dar un
resultado [1].

Especificamente sobre kNN se conocen
algunos trabajos entre los que se destacan [7, 6],
los que en su mayoria aplican varias
optimizaciones en los pasos del algoritmo pero
siempre aplicados a datos densos y de
relativamente poca dimensionalidad como es el
caso de imagenes. No se conoce hasta el momento
trabajos que procesen documentos textuales, los
que constituyen un reto en cualquier arquitectura
por su alta dimensionalidad y dispersidad.

En este trabajo se proponen dos métodos
diseflados tomando en cuenta las peculiaridades
de la representacibn computacional de los
documentos de texto, que calculan en paralelo la
semejanza entre los objetos de entrenamiento y los
objetos a clasificar. Uno de los métodos calcula la
semejanza entre la matriz de aprendizaje y un
documento de prueba y el segundo entre un
conjunto de documentos de prueba. Ambos
métodos se utilizaron en la implementacién de un
proceso de clasificacion kNN.



3 CUDA

Los chips gréaficos de computadoras son hoy
posiblemente, el hardware computacional mas
potente por unidad de délar. Estos chips conocidos
como Graphic Processing Unit (GPU, por sus siglas
en inglés), han transitado desde periféricos hasta
procesadores modernos, potentes y programables,
por derecho propio.
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Medidos con los indicadores tradicionales de
rendimiento gréfico, la tasa de crecimiento de las
GPU supera la muy citada Ley de Moore que se
aplica a los microprocesadores tradicionales; en
comparacibn con una tasa anual de
aproximadamente 1.4x de rendimiento de CPU
como se muestra en la Figura 1', el rendimiento del
hardware gréafico practicamente se duplica cada 6
meses.
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Fig. 1. Comparacién del aumento del rendimiento entre GPU y CPU

'Basado en la diapositiva 7 de S. Green, “GPU Physics,” SIGGRAPH
2007 GPGPU Course.
http://www.gpgpu.org/static/s2007/slides/15-GPGPU-physics.pdf
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Este poder computacional esta disponible y es
barato. Una tarjeta de Ultima generacién se puede
encontrar en los mercados informaticos a precios
gue oscilan entre $400 y $500 y el precio cae
rdpidamente a medida que se libera un nuevo
hardware en el mercado.

En noviembre de 2006, NVIDIA introdujo CUDA,

una arquitectura de cémputo paralelo de propdsito
general, con un nuevo modelo de programacion y
un conjunto de instrucciones, que le permite al
motor paralelo de las GPU de NVIDIA resolver
muchos problemas computacionales complejos, de
forma mas eficiente que en una CPU.
CUDA, Arquitectura de Célculo Unificada (Compute
Unified Device Architecture, en inglés), cuenta con
un entorno de desarrollo de software que permite a
los programadores, utilizar C como un lenguaje de
programacion de alto nivel.

El modelo de programacion de CUDA, esta
disefiado para desarrollar aplicaciones de software
que escalen su paralelismo transparentemente y
aprovechen el creciente nimero de nucleos de
procesador, mientras mantiene una curva de
aprendizaje baja para programadores
familiarizados con la programacion en lenguajes
estandar como el C.

CUDA tiene tres abstracciones, una jerarquia de
grupos de hilos, memorias compartidas y barreras
de sincronizacién, que son expuestas a un
programador como un conjunto minimo de
extensiones del lenguaje. En este modelo una GPU
ejecuta codigo implementado en una extension de
C que permite la transferencia de datos entre la
CPUyla GPU.

El cédigo paralelo, denominado "Kernel" es
asignado al dispositivo como una matriz de bloques
de hilos como se muestra en la Figura 2. Los
bloques de hilos conteniendo cientos de hilos se
despachan a un Stream Multiprocessor (SM) para
su ejecucién. Los hilos de un bloque se agrupan en
conjuntos de 32 hilos denominados Warp, estos
avanzan bajo un modelo de ejecucion SIMT (Single
Instruction, Multiple Threads) [10].

En cuanto a la memoria, los Registros son la
estructura mas rapida pero solo pueden ser
accedidos por hilos. Cada SM posee una Memoria
Compartida de 16KB, que puede ser utilizada por
los blogues de hilos. La Memoria Global es la
memoria principal en el dispositivo gréafico. La
Memoria Constante y de Textura tienen la misma
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velocidad de la Memoria Global, pero son de solo
lectura ademéas de estar cacheadas en el SM, lo
que las hace mucho mas eficientes en
determinadas situaciones. En la Figura 3 se
muestra graficamente la distribucién de la jerarquia
de memoria en CUDA.

Un kernel ejecuta un mismo cédigo en muchos
hilos organizados en blogues. Los hilos de un
bloque cooperan entre si mediante una memoria
compartida.

A la ejecucion de un kernel se especifican la
cantidad de bloques e hilos por bloques a ejecutar.
La cantidad en cada una de estas dimensiones esta
determinada por el problema especifico que se
intente resolver, aunque por problemas practicos
las implementaciones conocidas tienen limites
méximos definidos.
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Fig. 2. Jerarquia de hilos en CUDA
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Fig. 3. Jerarquia de memoria de CUDA

Los hilos son creados en hardware y se
planifican hasta que todos terminan su ejecucién.
En los kernel se puede acceder a un conjunto de
variables que identifican la posicion dentro de la
matriz de hilos de ejecucidn, con ellas se puede de
forma muy sencilla implementar un mecanismo de
ejecucion paralela tipo SIMD (Single Instruction
Multiple Data, en inglés) mediante el cual se
garantiza aplicar una misma operacion a diferentes
datos simultaneamente.

En el caso particular de CUDA, la ejecucién
simultanea se realiza dentro de un warp, que no es
mas que un conjunto de 32 hilos de bloque que
ejecutan atébmicamente una operacién de forma
paralela. ElI tamafio de un warp es fijjo en la
arquitectura 'y en [10] se exponen algunas
explicaciones al respecto. EI modelo de ejecucion
permite la ejecucion simultdnea de los 32 hilos a
nivel de hardware y la duracion de la operacion se
determina por el dltimo hilo en terminar.

4 Semejanza entre documentos

Como se menciona anteriormente, la etapa que
mas tiempo consume en los clasificadores NN, es
el célculo de la semejanza entre el documento de
prueba y los documentos del conjunto de
entrenamiento. Los clasificadores comunes y los
algoritmos de aprendizaje, no pueden procesar
directamente los documentos de texto en su forma
original. Por lo tanto, en un paso de
preprocesamiento, los documentos se convierten
en una representacion vectorial para el calculo.

Normalmente, los documentos se representan
por vectores de caracteristicas o rasgos. Un rasgo
es simplemente una dimensién en el espacio de
caracteristicas. El documento es representado
como un vector en este espacio, es decir, una serie
de caracteristicas y sus ponderaciones o valores de
relevancia.

El modelo mas comun utiliza todas las palabras
en el documento como rasgos, y por lo tanto la
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dimension del espacio de caracteristicas es igual al
namero de palabras diferentes entre todos los
documentos. Los métodos para asignar peso a los
rasgos pueden variar. En sistemas mas complejos,
es posible que tengan en cuenta la frecuencia de la
palabra en el documento, en la categoria, y en toda
la coleccién. El esquema méas comun, TF-IDF, le da
a la palabra w en el documento d el peso:

Ww,d) = TF(w,d) - log(N/DF(w)) (1)

donde TF(w,d) es la frecuencia de la palabra en el
documento, N es la cantidad de documentos de la
coleccion, y DF(w) es el numero de los
documentos que contienen la palabra w.

De forma general un documento puede tener
por si solo una dimension relativamente elevada,
de forma que la dimensionalidad de una coleccion
se convierte en un serio problema. Esto hace que el
proceso de calcular la semejanza entre
documentos sea extremadamente costoso.

Para el calculo de la semejanza en documentos,
la métrica mas popular es la semejanza Coseno. El
célculo de la semejanza Coseno entre dos
documentos esta definido por la siguiente formula

[5l: .
Sem(di, dj) = (Wi -W,-) = Z (Wik : ij) (2

Donde wy es el vector normalizado

dy
W =
KT d

®)

Como se puede apreciar, la formula 2 es una
suma de productos de dos vectores de términos.
Ademas, un conjunto de n documentos en un
espacio de dimensién m, no es mas que una matriz
M de n filas y m columnas, donde cada columna
corresponde a un término en particular y el valor
wi; € M es el peso del término j en el documento i.
La matriz M es, de forma general, una estructura
dispersa.

Si tenemos en cuenta que la dimensién de un
conjunto de documentos es muy elevada, es légico
que cada documento contendra sélo un nimero de
términos relativamente menor a la dimensién del
conjunto, provocando que por cada fila de la matriz
M exista gran cantidad de ceros. Por tanto, es
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posible afirmar que calcular las semejanzas entre
un documento de prueba y los documentos de
entrenamiento, puede ser reducido a multiplicar
una matriz por un vector, ademas tanto la matriz
como el vector son dispersos, porque ambos se
definen sobre el mismo espacio de caracteristicas.

Si tenemos en cuenta que la dimensién de un
conjunto de documentos es muy elevada, es légico
gue cada documento contendra sélo un nimero de
términos relativamente menor a la dimensién del
conjunto, provocando que por cada fila de la matriz
M exista gran cantidad de ceros. Por tanto, es
posible afirmar que calcular las semejanzas entre
un documento de prueba y los documentos de
entrenamiento, puede ser reducido a multiplicar
una matriz por un vector, ademas tanto la matriz
como el vector son dispersos, porque ambos se
definen sobre el mismo espacio de caracteristicas.

5 Propuesta

La paralelizacién de la multiplicacion dispersa de
matrices se ha realizado siguiendo varias
estrategias y con varias herramientas tanto de
software como de hardware. Este trabajo,
concentr6 su esfuerzo en realizar el proceso de
célculo sobre la arquitectura grafica de una GPU
con soporte para NVIDIA CUDA.

Para una mejor comprension de los términos
expuestos en esta seccion, nos referiremos con MA
a la matriz de documentos de aprendizaje y con MP
a la matriz de documentos de prueba.

Algoritmo 1: Clasificacién kNN multiplicando matrices
dispersas

Copiar MA al dispositivo GPU

nd < Cantidad de documentos en MP

fori = Otonddo

Copiar documento d; € MP al dispositivo GPU
Obtener vector de semejanzas y; = MA * d;
Copiar y; aCPU

Aplicar regla kNN

Clasificar d;

endfor

LN UEWNE

La implementacién propuesta en este trabajo,
consiste en un proceso de clasificacion de
documentos que realiza el calculo de semejanzas
entre documentos mediante una funcion de



multiplicacion de matrices dispersas, donde a partir
de ellas se clasifica atendiendo a los pasos del
algoritmo kNN La descripcion de la implementacion
se muestra en el Algoritmo 1.

Utilizando este esquema se proponen dos

algoritmos para multiplicar matrices dispersas con
los que se resuelve de forma paralela el calculo de
las semejanzas entre los documentos de prueba y
los documentos de la matriz de aprendizaje.
Las implementaciones de algoritmos sobre
matrices dispersas apoyan gran parte de su
estrategia en una estructura de datos
convenientemente seleccionada. En la literatura
existen varias representaciones como se muestra
en [3] y se destaca por su generalidad la
representacion dispersa CSR (Compressed Sparse
Row, en inglés).

La representacion CSR la componen tres
vectores que almacenan los indices de inicio y fin
de cada fila, los indices de las columnas y los
valores distintos de cero existentes en la matriz. La
figura 4 muestra una ejemplo de matriz dispersa
que ilustra la estructura CSR; el vector denotado
por data almacena los valores distintos de cero
que contiene la matriz, el vector row almacena los
indices dentro de data donde comienza cada fila 'y
cols el indice de la columna de la matriz A donde
se encuentra cada uno de los valores de data
respectivamente.

data = {1,7,2,8,5,3,9,6,4};

row = {0,2,4,7,9};

o Ul o -
O NN
o W W o
SO O o

cols ={0,1,1,2,0,2,3,1,3};

Fig. 4. Ejemplo de una matriz dispersa CSR

Para establecer un punto de comparacién se
utilizé un resultado obtenido en una publicacién
técnica de NVIDIA [3], donde se propuso un
algoritmo de multiplicacion de una matriz dispersa
por un vector denso. Este algoritmo propone una
implementacion de multiplicacion de una matriz
dispersa CSR por un vector denso con la que se
obtuvieron reducciones de tiempo de ejecucion de
hasta 69% comparado con el tiempo secuencial de
CPU. Los resultados de este algoritmo fueron
obtenidos con las mismas configuraciones y datos
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que se utilizaron en la evaluacion de los algoritmos
propuestos.

5.1 Multiplicacibn usando un vector
disperso y memoria compartida

Resolver el acceso a los datos en la programacion
de algoritmos adaptados para GPU, es uno de los
puntos que mas incidencia tiene en el resultado
final. La memoria global es la de mayor latencia de
toda la jerarquia de memoria de un dispositivo
grafico y su maximo aprovechamiento esta
condicionado al patron de acceso de lectura o
escritura [10]. Por ejemplo en el disefio G80, cada
instruccion toma 4 ciclos de reloj en procesarse y
una operacion de lectura en la memoria global toma
200 ciclos. Por tal motivo es recomendable
garantizar el acceso combinado de los hilos de un
warp a la memoria, de otra manera, todas las
operaciones de memoria se serializaran influyendo
directamente en el rendimiento de la aplicacion.

Paralelizar la multiplicacion dispersa no es una
tarea facil para arquitecturas graficas. En nuestro
caso, los patrones de acceso a la memoria afectan
con mucha influencia el rendimiento general del
kernel. En general, es casi imposible para la
multiplicacion dispersa tratar de combinar las
operaciones de lectura en la memoria global, por
tanto, una solucién es usar alguna de las memorias
internas del dispositivo para realizar operaciones
desde ellas. En este caso utilizamos la memoria
compartida.

La memoria compartida tiene una latencia
mucho menor que la memoria global, de modo que
los problemas ocasionados por los patrones de
acceso se ocultan, permitiendo alcanzar un buen
rendimiento.

Por lo general en este tipo de problema se
multiplica una matriz dispersa por un vector denso
para reducir la complejidad del algoritmo desde el
punto de vista de la programacién. En el caso
particular de las representaciones de documentos
este vector presentaba un alto grado de
dispersidad, por lo que nuestra propuesta se
concentra ademas en la multiplicacion de una
matriz por un vector ambos dispersos.

En el Algoritmo 2, se muestran los pasos de la
nueva implementacién. En éste, cada fila de la
matriz MA, sera procesada por un hilo de la GPU.
Es sencillo notar que las filas de MA se recorreran
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una sola vez por un Unico hilo, mientras que el
vector a multiplicar sera recorrido por todos los hilos
planificados. Ademas, cada hilo seguird un camino
distinto en dependencia de los datos utilizados.

Algoritmo 2: Obtencion del vector de semejanzas

Requiere:data, col, ptr, num_cols representacion CSR de
MA

Requiere:vdata, vidx representacion dispersa de d;

1 Copiar vdata y vidx a memoria compartida
2 row < blockDim * blockldx + threadldx
3 sum < 0

4, row_start « ptr[row]

5. row_end « ptr[row + 1]
6 lidx < row_start

7 ridx < 0

8 whilelidx < row_endandridx < num_colsdo
9. ifcol[lidx] = vidx[ridx]|then

10. sum « sum + data[lidx] * vdata[ridx]

11. lidx < lidx+ 1
12. ridx « ridx + 1
13.  elseifcol[lidx] < vidx[ridx]then
14. lidx « lidx + 1
15. else

16. ridx « ridx + 1
17.  endif

18. y[row] < sum
19. endwhile

De esta forma, inicialmente colocamos la
representacion dispersa del vector a multiplicar d;
en la memoria compartida, garantizando un acceso
de muy baja latencia en un patrén de acceso no
combinado. Luego, dado que la representacion del
d; es dispersa, entonces se debe garantizar que se
multipliqguen sélo los elementos que se encuentran
en el mismo indice de fila respecto a la matriz o al
vector real, seguln sea el caso.

La implementaciéon se realiz6 mediante un
mecanismo de pivotes, en el que se fija el mayor
entre los indices de la fila de MA y el d; y se va
incrementando el menor, de tal forma que cuando
ambos sean iguales se acumule la multiplicacion de
los valores de cada uno. Si al incrementarse el
menor de los indices supera al pivote, estos se
intercambian y se repiten los pasos anteriores de la
misma forma. El proceso de nivel superior que hace
uso de este kernel es similar al descrito en el
Algoritmo 1.

Todos estos detalles de implementacion
permitieron que aumentara el rendimiento del
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kernel y que en general se hiciera uso de un mayor
ancho de banda de memoria, ademas la calidad de
la clasificacion se mantuvo igual. Este algoritmo se
ajusta al caso en que no se conozcan a priori la
cantidad de documentos de prueba a clasificar por
lo que el calculo de las semejanzas se realizaria
secuencialmente entre los documentos de prueba.

5.2 Multiplicacion de matrices dispersas
usando caché de texturas

Los dispositivos graficos estan disefiados para
soportar un alto grado de paralelismo, representado
a nivel de hardware en varios Stream Processors
(SP, por sus siglas en inglés), cada uno con la
capacidad de ejecutar una gran cantidad de hilos
en paralelo. De forma general estos dispositivos
organizan este conjunto de hilos en estructuras
jerarquicas que por lo general pueden tener hasta
tres dimensiones.

En particular, los productos de NVIDIA se
organizan en una jerarquia de tres niveles, donde el
nivel superior llamado Grid, consiste en una matriz
de bloques de hilos de dos dimensiones; cada
bloque de hilos, a su vez, es una matriz de hilos de
tres dimensiones.

Esta jerarquia permite distribuir el trabajo,
dependiendo del algoritmo o la capacidad de
particionar de manera equitativa los datos sobre los
que actuard un problema determinado. En el
algortimo propuesto anterior, se describi6 una
solucién al problema de la multiplicacién de una
matriz dispersa con un vector disperso. En ella se
utilizé un bloque de hilos de una sola dimension y
se distribuyeron los datos de forma que en cada hilo
se calcula la multiplicacion del vector disperso y
una fila de la matriz, de modo que, el
procesamiento de la coleccién de documentos se
realiza secuencialmente de uno en uno.

Este método realiza los célculos entre varios
vectores de documentos de prueba y la matriz de
aprendizaje, lo que se traduce en la multiplicacion
de dos matrices dispersas, la matriz de aprendizaje
MA y una matriz de vectores de prueba dispersos,
denominada en lo adelante MV, donde MV € MP .

De esta forma, se disminuye en cierta medida la
latencia de las transferencias de datos entre el
dispositivo y la CPU, ya que en cada transferencia
se mueven mas vectores dispersos a procesar. Por



otro lado el kernel implementado utiliza un bloque
de hilos de dos dimensiones con el que se emplea
una mayor cantidad de hilos en ejecucién en la
GPU, aumentando el ancho de banda de memoria,
y por consiguiente, el rendimiento del proceso
completo.

Una particularidad afadida por el hecho de
multiplicar varios vectores dispersos en paralelo, es
gue en cada uno de ellos se accedera a las mismas
filas de la matriz de aprendizaje ya que cada uno
debe calcular su semejanza con cada documento
de ésta. De forma general, no se puede garantizar
un patron de acceso eficiente con esta
implementacién, ya que estos patrones estan
disefados para optimizar los accesos dentro de un
bloque de hilos y en especial entre hilos de un
mismo warp.

Para optimizar este acceso a la memoria hemos
utilizado la memoria de textura. Esta memoria, esta
optimizada para reducir la demanda de ancho
banda cuando los datos se encuentran
espacialmente cercanos, actuando como un caché.

La esencia del método es similar al expuesto en
el Algoritmo 2. Las diferencias mas importantes se
encuentran en el uso de la memoria de textura,
cuando se referencian los datos de las filas de la
matriz de aprendizaje MA y en el direccionamiento
de los indices de los hilos de ejecucidn, ya que los
bloques de hilos empleados son de dos
dimensiones y los indices globales de cada hilo se
tienen que calcular tomando en cuenta esta
estructura.

La nueva implementacién se muestra en el
Algoritmo 3, en ella se utilizan bloques de hilos de
dos dimensiones que se representan por las
variables internas de CUDA blockldx.x Yy
blockldx.y, con las que se identifica la fila de la
matriz de documentos de prueba (ver linea 1), que
se va a utilizar para calcular la multiplicaciéon con
cada fila de MA, referenciada por la segunda
variable respectivamente (ver linea 4).

Los pasos a seguir en cada uno de los
documentos de MV, es similar al descrito en el
Algoritmo 2 ademas, la recuperacion de los datos
de MA, se realiza a través del acceso a la memoria
de textura, como se muestra en las lineas 11 y 13
mediante la funcion fetch2. Finalmente, el resultado

?Para facilitar la comprension, esta funcién describe el proceso de
recuperar un dato desde la memoria de textura
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de cada célculo se almacena en el vector y de
acuerdo a la posicién global de las filas de MV y MA
multiplicadas, como se muestra en la linea 22.

Este algortimo es mas eficiente cuando se
conocen a priori la cantidad de documentos de
prueba, por lo que al utilizar una mayor cantidad de
hilos de forma simultanea el rendimiento general
aumenta porque existe mas trabajo y disminuye la
cantidad de hilos inactivos. Los resultados de la
clasificacion fueron los mismos que en el algoritmo
anterior.

Algoritmo 3: Obtencion del vector de semejanzas

Requiere: MAdata , MAcol , MAnum_rows
representacion CSR de MA

Requiere: MVdata, MVcol, MVptr representacion CSR de
MV

1. i < blockldx.x{ Seleccionar el vector a multiplicar en el
grid i}

num_cols « MVptr[i + 1] — MVptr[i]

Copiar datos de d; a memoria compartida

row < blockDim.x * blockldx.y + threadldx.x

sum < 0

row_start « MAptr[row]

row_end « MAptr[row + 1]

lidx « row_start

ridx < 0

MAptr ,

LN AWN

10.  whilelidx < row_endandridx < num_colsdo

11. col « fetch(MAcol, lidx)

12. ifcol = MVcol[ridx]then

13. sum < sum + fetch(MAdata, lidx) *
MVdata[ridx]

14. lidx < lidx + 1

15. ridx < ridx + 1

16. elseifcol < MVcol[ridx]then

17. lidx « lidx +1

18. else

19. ridx <« ridx + 1

20. endif

21. y[row] < sum

22.  endwhile

6 Resultados experimentales

Cada uno de los algoritmos propuestos, alcanza en
mayor 0 menor grado una ventaja respecto al
proceso de clasificacion en una CPU. En esta
seccion se mostrara como la implementacion en
GPU de los algoritmos propuestos, mejora el
rendimiento de la clasificacion k NN en
documentos, a través de los resultados
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experimentales de cada una de las
implementaciones y una evaluacion de los mismos.

6.1 Configuracion experimental

Para los experimentos se utilizaron dos
configuraciones de hardware, la primera una
computadora personal y la segunda en un servidor
profesional. Estas se utilizaron para mostrar la
diferencia en el rendimiento alcanzado teniendo en
cuenta la potencia de calculo en diferentes
procesadores graficos.

El sistema usado para la evaluacién del
rendimiento en la primera configuracién
(referenciada como Configuracibn #1 en lo
adelante) consiste en, un procesador Intel Core2
Duo E7300 con una frecuencia de reloj de 2.66
GHz, 2 GB de memoria RAM y una tarjeta NVIDIA
GeForce 9800 GT con 112 nucleos y 512 MB de
memoria dedicada. La aplicacién se generé con el
compilador GNU C++ Compiler versién 4.3.4 y
NVIDIA CUDA Compiler Driver version 2.3. La
segunda configuracion  (referenciada como
Configuracion #2 en lo adelante) consta de dos
procesadores Intel Xeon E5405 con una frecuencia
de reloj de 2 GHz para un total de 8 nucleos de
CPU, 7 GB de memoria RAM y cuatro tarjetas
NVIDIA Tesla C870 con 128 nicleos y 1.5 GB de
memoria dedicada; la aplicacién se generé con el
compilador GNU C++ Compiler versién 4.1.2 y
NVIDIA CUDA Compiler Driver version 2.2,

Todos los resultados en la GPU presentados a
continuaciéon incluyen el tiempo requerido de
transferir los datos desde la memoria principal a la
memoria de la GPU y de recuperar los resultados
desde el dispositivo. Los kernel operan en simple
precision para datos reales.

Para las pruebas se utilizé la coleccion estandar
Reuters 2000 RCV1 [8]. Esta coleccién esta
dividida en conjuntos de archivos de entrenamiento
y prueba, cada uno con la distribucion de
documentos por categoria. El conjunto de
entrenamiento contiene 23149 documentos vy
47152 términos diferentes, distribuidos en 101
categorias. La matriz de documentos resultantes
contiene 1091521648 elementos y su
representacién CSR contiene 1757801 elementos
distintos de cero, lo que representa un 0.16% del
total de elementos.

Computacion y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

El conjunto de pruebas se dividi6 en seis
subcolecciones para probar la escalabilidad y el
rendimiento de la implementacién, usando
conjuntos de datos de diferentes tamafios. El
tamafio total del conjunto es de 781265
documentos, divididos en subconjuntos de 10, 100,
1000, 10000, 100000, y 781265 respectivamente.

6.2 Evaluacion del rendimiento

En este estudio, no se muestran los resultados de
la calidad de la clasificacion kNN, porque en cada
prueba, se observé que en ambas arquitecturas
fueron los mismos. Por tanto, nos limitamos soélo a
evaluar el tiempo de ejecuciéon en segundos para el
proceso de categorizacion completo.

Cada prueba ejecutada con un juego de
parametros, se realizo un total de 10 veces y los
resultados finales mostrados son el promedio de
todas ellas. Los resultados obtenidos se muestran
divididos en tres secciones, cada una
representando las tres variantes de algoritmos
descritas anteriormente. De cada una de estas
variantes, se selecciona la de mejor resultado y se
compara con la préxima solucién, siempre tomando
como referencia en cada una de ellas la ejecucion
en CPU.

Las pruebas se etiquetaron de la siguiente
forma: BaseCSR corresponde a las pruebas del
algoritmo secuencial en CPU; las ejecuciones
usando el algoritmo propuesto por [3] se muestran
con la etiqueta Base y como sufijo la cantidad de
hilos por bloque utilizados; las pruebas
correspondientes al algoritmo propuesto en la
seccién 5.1 se etiquetaron como Shared y como
sufijo la cantidad de hilos por bloque utilizados; por
ultimo el algoritmo propuesto en la Seccioén 5.2 se
muestra como Grid y como sufijjo el par que
especifica la cantidad de documentos y la cantidad
de hilos por bloque utilizados.

Las gréficas de rendimiento estan en funcion de
la cantidad de documentos de prueba y en cada
uno de los algoritmos se muestra una tabla con los
tiempos obtenidos en segundos y graficamente la
aceleracion alcanzada por cada prueba, definida
como la divisién entre el tiempo del algoritmo en
CPU Yy el obtenido experimentalmente en la prueba.
En cada discusiéon de resultados se menciona el
valor porcentual que representa el tiempo obtenido



por la prueba del tiempo secuencial en CPU, lo que
referencia como porciento de reduccion.

Los resultados de las pruebas de referencia con
el algoritmo propuesto en [3] se muestran en la
Tabla 1. En ellas se representan los tiempos de
ejecucién del algoritmo en CPU y las corridas en
GPU para valores de cantidad de hilos por bloque
de 32, 64, 128y 256 hilos respectivamente, en cada
una de las configuraciones de hardware
especificadas en la seccién 6.1. Ademas se
muestra la relacion de los tiempos de ejecucion
respecto a la ejecucion del algoritmo secuencial en
CPU en la Figura 5.

Tabla 1. Tiempo de ejecucién en segundos para el
algoritmo propuesto en [3]

10 | 100 | 1000 | 10000 | 100000 | 781265

BaseCSR | 009 | 07 | 68 | 67.6 | 674.67 | 5283.84
Base32 | 009 | 0.67 | 64 | 6355 | 63257 | 487335
Base6d | 0.08 | 0.63 | 625 | 621 | 620.72 | 494477
Basel28 | 0.09 | 0.65 | 625 | 6211 | 6205 | 48574
Base256 | 0.08 | 0.64 | 625 | 6211 | 620.78 | 4858.36

(a) Configuracidn #1

| 10 | 100 | 1000 | 10000 | 100000 | 781265|

BaseCSR | 018 | 1.71 17 | 171.22 | 170119 | 133038
Based2 | 0.05 | 052 | 527 | 5216 52385 | 4064.09
Base64 | 009 | 052 | 524 | 5218 521.3 4051.86

Basel28 | 005 | 052 | 525 | 5221 521.63 | 4065.94
Base256 | 0.05 | 0.52 | 528 @ 5113 52355 | 4068.07

(b) Configuracion #2

En esta implementacion, se muestra una
ganancia en la aceleraciéon para la Configuracion
#1, que supera ligeramente los resultados de la
CPU, obteniendo como promedio una reduccioén del
tiempo del 7% respecto al tiempo secuencial en
CPU. Por otro lado, en la Configuracion #2 se nota
que se logran alcanzar resultados superiores a 3x,
gue representan una reduccion del tiempo de
ejecucion de 69.4% como promedio. Los resultados
de esta propuesta en general son similares en
cuanto a la aceleracién alcanzada para ambas
configuraciones.
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La propuesta definida en el Algoritmo 2 obtuvo
mejores resultados, para las dos configuraciones
de hardware. En la Tabla 2 se muestran los tiempos
de la ejecucion para distintos tamafios de bloques
de hilos, representados con los valores de 32, 64,
128 y 256, respectivamente. En la Figura 6 se
muestran los resultados comparativos de las
ejecuciones en CPU y los de la ejecucion de mejor
rendimiento promedio para cada configuracién con
el algoritmo propuesto en [3].

Aceleracion GeForce 8900 GT

ter Ease3z

Baszhid
Basells
Base256

08

Aceleracian

04 -

0.2

1 100 Looo 0000 100000 TEl265

Cantidad de documentos

(a) Configuracion #1

Aceleracion Tesla C870

Ease3z
Baszfid
Basells
Base256

Aceleracian

1 100 Looo 0000

100000 TEl265

Cantidad de documentos

(b) Configuracion #2

Fig. 5. Aceleracién obtenida por el algoritmo propuesto
por [3]
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Se puede observar en las Figuras 6a y 6b un
aumento en la aceleracion respecto al algoritmo en
CPU, alcanzando valores promedio de 1.3x que
representan una disminucién del 28% del tiempo de
ejecucién para la Configuracion #1 y de 4.3x para la
Configuracion #2 que representa un y 78% de
reduccion. Estos resultados demuestran la eficacia
de utilizar memoria compartida, en casos donde el
patron de acceso no combinado a la memoria
afecta el rendimiento de un algoritmo en GPU. Los
mejores resultados promedio se obtuvieron con
bloques de 64 hilos para la Configuracion #1 y de
128 para la Configuracion #2.

Tabla 2. Tiempo de ejecucién en segundos para el

Algoritmo 2
| 10 | 100 | 1000 | 10000 | 100000 | 781265
Shared32 | 0.08 | 0.47 | 493 | d6.14 | 43884 | 336481
Shared6d | 0.07 [ 048 | 512 | 478 | 47589 | 3685.09
Sharedi28 | 0.08 | 0.5 | 534 | 50.04 | 48869 | 378839
Shared236 | 0.07 | 0.5 | 533 | 50.09 | 49766 | 38787
(a) Configuracion #1

| 10 | 100 [ 1000 [ 10000 | 100000 | 781265 |

Shared32 | 0.04 | 04 | 434 | 4085 | 40737 | 3154.76

Shared6d | 0.04 | 04 | 422 | 30.7 | 39544 | 3071.21

Shared128 | 0.04 | 0.39 | 423 | 3977 | 396.16 | 2144.49

Shared256 | 0.04 | 039 | 420 | 4022 | 40005 | 2793.32
{b) Configuracién #2

Para el Algoritmo 3 se obtuvieron los mejores
tiempos como se muestran en la Tabla 3 y en la
Figura 7 se puede comparar graficamente estos
resultados con la ejecucion en CPU y los mejores
valores de las pruebas anteriores.

Como se explicd en la Seccibn 5.2, este
algoritmo trabaja con dos dimensiones de hilos en
el dispositivo gréfico. Para las pruebas se
realizaron ejecuciones fijando la cantidad de
documentos en paralelo a comparar (tamafio del
grid) en 32, 64, 128 y 256 respectivamente. Por
cada uno de los valores de grid se fij6 el tamafio de
los bloques de hilos en 32, 64, 128, y 256,
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respectivamente. De este modo las pruebas de
este algoritmo equivalen a un total de 16, que por
simplificar se muestran los valores de la mejor
ejecucién por tamafio de grid.
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(a) Configuracion #1
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Fig. 6. Aceleracion obtenida para el Algoritmo 2

Los resultados de esta implementacion superan
los resultados de la ejecucidon secuencial en una
CPU para ambas configuraciones. En la Figura 7,
se muestran los resultados obtenidos, donde se
alcanzan valores promedio de aceleracion para la



Configuracion #1 de 3.6x y para la Configuracion #2
de 9x, que representan una disminucion del tiempo

de ejecucion respecto al algoritmo secuencial en
CPU del 69% y 89% respectivamente.

Tabla 3. Tiempo de ejecucién en segundos para el
Algoritmo 3

|10|10|]|I000|][|000|l[l)000|781265|

Grig3x128 | 005 [ 022 | 21 | 1909 | 19215 | 14874
Grido4x128 | 005 | 021 | 207 | 161 | 16102 | 1120.23
Grid128x128 | 0.05 [ 026 | 201 | 1755 | 17603 | 123833
Grid256x128 | 0.04 [ 026 | 199 | 1738 | 17628 | 137242
(a) Configuracion #1

| 10 | 100 [ 1000 | 10000 [ 100000 | 781265 |
Grid3zx6d | 0.02 [ 021 [ 218 | 1966 | 19761 | 15286
Gridedx6d | 0.02 | 024 | 217 | 19.15 | 19375 | 15013
Gridi28xi28 | 0.02 | 024 | 198 | 17.74 | 177.88 | 137205
Grid256x128 | 0.02 | 024 | 192 | 1682 | 169.58 | 1304.09

(b) Configuracién #2

La comparacion de todos los tiempos de
ejecucion obtenidos con el hardware grafico en las
dos configuraciones, muestra mejores resultados
para la Configuraciéon #2, debido a que el
dispositivo usado en ella cuenta con una mayor
cantidad de nudcleos y de memoria. Ademas este
tipo de hardware esta dedicado al uso en GPGPU,
por ese motivo no cuenta con la salida de video
tradicional en estos dispositivos, dedicando toda su
potencia al célculo aritmético.

7 Conclusiones

A partir de la investigacion realizada, se obtuvieron
los siguientes resultados.

Se propuso un algoritmo para multiplicar una
matriz por un vector, ambos dispersos, que se
puede aplicar a procesos donde se desconozca de
antemano la cantidad de vectores a multiplicar. Con
este algoritmo se implementé un proceso de
clasificacion kNN con el que se alcanzan
reducciones promedio en el tiempo de ejecucién,
para el hardware utilizado, de 28% y 79%
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respectivamente respecto a una implementacion en
CPU.
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Fig. 7. Aceleracion obtenida para el Algoritmo 3

Se implemento un algoritmo para multiplicar dos
matrices dispersas, que se puede aplicar ademas
en procesos donde se deseen multiplicar una
matriz dispersa y un conjunto de vectores de forma
paralela. Con este algoritmo se implementé un
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proceso de clasificacibn kNN, con el que se
alcanzan reducciones promedio en el tiempo de
ejecucion, para el hardware utilizado, de 69% vy
88% respectivamente respecto a una
implementacion en CPU.

Los resultados obtenidos en la investigacion,
constituyen un aporte para tareas de clasificacion
de documentos y ofrecen al programador una
biblioteca de algoritmos de multiplicacion de
matrices dispersas para GPU, que queda
disponible para futuras investigaciones y para
utilizacion en proyectos de software.

Como trabajo futuro se propone un estudio de
otras estructuras de datos para la representacion
de matrices dispersas, que permitan optimizar el
uso de la memoria y el acceso coordinado a la
misma, en dispositivos graficos, para obtener
mejores  aceleraciones en los  procesos
implementados. Ademas se han reportado varios
trabajos [7, 6] que utilizan el poder de la GPU para
realizar el ordenamiento de las semejanzas luego
del computo de las mismas, proponemos la
inclusién de una optimizaciéon al proceso kNN
similar para su utilizacién en aplicaciones reales
que utilicen este algoritmo.

Los algoritmos propuestos en este trabajo se
diseflaron especialmente para el uso en
arquitecturas de hardware grafico, y se utilizaron en
un proceso de clasificacién estatico como es el
kNN, donde la matriz de aprendizaje se mantiene
sin cambios en la memoria grafica. De modo que se
propone el disefio de nuevos algoritmos que
administren dinamica y eficientemente la memoria
gréfica de las GPU, y adicionen filas a la matriz de
aprendizaje. [Esto permitira emplear estos
algoritmos en otras tareas de la Mineria de Textos
como el agrupamiento de documentos.
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