
Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

Clasificación ࢑NN de documentos usando GPU

Document ࢑NN Clasification using GPU

Rubén Bresler Camps1 y Reynaldo Gil García2
1Empresa de Desarrollo de Aplicaciones, Tecnologías y Sistemas,

Santiago de Cuba, Cuba
ruben.bressler@cerpamid.co.cu

2Centro de Reconocimiento de Patrones y Minería de Datos,
Santiago de Cuba, Cuba

gil@cerpamid.o.cu

Artículo recibido el 12 de febrero de 2011; aceptado el 30 junio de 2011

Resumen. La búsqueda de los k vecinos más cercanos,
ha sido aplicada a una amplia variedad de aplicaciones
en el campo de la Minería de Textos y la Recuperación de
Información por su simplicidad y precisión. Sin embargo,
estas áreas del conocimiento en general manipulan
objetos con altas dimensiones de rasgos que hacen que
el proceso de encontrar los k objetos más similares a uno
dado tenga una intensidad computacional elevada,
debido a la gran cantidad de operaciones que se realizan
para calcular la semejanza entre todos los objetos
implicados. En este trabajo se proponen dos métodos de
multiplicación paralela de matrices dispersas usando una
GPU, que minimizan el tiempo empleado en el cálculo de
semejanzas entre objetos del algoritmo kNN para
clasificar documentos.
Palabras clave. GPGPU, clasificación de documentos y
multiplicación de matrices dispersas.

Abstract. The search for the k nearest neighbors, has
been applied to a wide variety of applications in the field
of Text Mining and Information Retrieval for its simplicity
and accuracy. However, these general areas of
knowledge in handling high-dimensional objects with
features that make the process of finding the k most
similar objects to a given computer has a high intensity,
due to the large number of operations performed to
calculate the similarity between all the objects involved.
In this paper we propose two methods for parallel sparse
matrix multiplication using a GPU, which minimize the
time spent in the calculation of similarities between
objects in the kNN algorithm to classify documents.
Keywords. GPGPU, document classification and sparse
matrix multiplication.

1 Introducción

Probablemente, el tema más común en el análisis
de documentos complejos es la clasificación o

categorización de textos. De forma general, la tarea
consiste en clasificar un documento de texto en un
conjunto de categorías preestablecidas. Dado por
un conjunto de categorías (materias, temas) y una
colección de documentos de texto, el proceso
consiste en encontrar el tema (o temas) correcto
para cada documento.

La clasificación de textos es un componente
importante en muchos sistemas de administración
de información como el filtrado de correos spam,
enrutamiento y diseminación de documentos,
identificación de tópicos, clasificación de páginas
Web, etc.

En general, la categorización de textos puede
definirse formalmente como la tarea de aproximar
la función de asignación de categorías ܨ: ܦ ൈ ܥ ՜
ሺ0,1ሻ , donde ܦ es el conjunto de todos los
documentos posibles y ܥ es el conjunto de
categorías predefinidas. El valor de ܨሺ݀, ܿሻ es 1 si
el documento ݀ pertenece a la categoría ܥ ó 0 en
caso contrario. La aproximación de la función
:ܯ ܦ ൈ ܥ ՜ ሺ0,1ሻ se llama clasificador. La tarea
consiste en construir un clasificador que produzca
resultados próximos a la verdadera función de
asignación de categorías [4] ܨ.

Existen varios tipos de clasificadores, entre ellos
se encuentran los clasificadores basados en
ejemplos. Estos clasificadores no construyen
representaciones declarativas explícitas de las
categorías, sino que dependen directamente del
cálculo de la similitud entre el documento que se
clasifica y los documentos de entrenamiento. El
conjunto de entrenamiento, para los clasificadores
basados en ejemplos, consiste en almacenar las

64 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

representaciones de los documentos junto con sus
etiquetas de categoría.

El ejemplo más prominente de un clasificador
basado en ejemplos es el ݇ NN (݇ -nearest
neighbor, por su nombre en inglés) [4]. Para decidir
si un documento ݀ pertenece a la categoría ܥ ,
݇ NN comprueba si los ݇ documentos de
entrenamiento más similares a ݀ pertenecen a ܥ.
Si la respuesta es positiva para una proporción
suficientemente grande de ellos, se etiqueta el
documento con esa categoría, de lo contrario, la
decisión es negativa. La distancia de la versión
ponderada de ݇ NN es una variación que pesa
lacontribución de cada vecino por su semejanza
con el documento de prueba.

Afortunadamente, el algoritmo kNN presenta un
paralelismo de datos suficiente para permitir
implementaciones en varias plataformas paralelas
como por ejemplo las GPU. El uso de dispositivos
gráficos para potenciar la aceleración de
algoritmos, ha mostrado un inusitado interés en
muchas comunidades científicas. Actualmente es
común encontrar información sobre
implementaciones de esta índole para resolver
problemas paralelos con gran intensidad aritmética.
Con los métodos propuestos en este trabajo se
obtuvieron reducciones del tiempo de ejecución
entre 65 % y el 85 %, comparados contra los
mejores algoritmos para CPU.

El resto de este artículo está organizado de la
siguiente forma: la sección 2 se describen los
trabajos relacionados y la importancia de nuestras
propuestas, luego se describe brevemente algunas
características de la programación con GPU
específicamente con CUDA en la sección 3, en las
siguientes secciones 4 y 5 se describen las bases
teóricas y la descripción de nuestras propuestas
respectivamente y por último en la sección 6 se
describen los resultados experimentales
alcanzados.

2 Trabajo relacionado

El algoritmo de clasificación kNN ha sido
ampliamente usado en el Reconocimiento de
Patrones y en la Minería de Datos y es uno de los
que mejores resultados obtiene cuando se trabaja
con textos. Es robusto, en el sentido de no exigir a
las categorías ser linealmente separadas. Su único

inconveniente es el costo computacional
relativamente alto de la clasificación, es decir, para
cada documento de prueba, debe ser calculada su
semejanza con todos los documentos de
entrenamiento.

En grandes bases de datos de entrenamiento la
búsqueda por fuerza bruta no es una opción
acertada. Muchas variantes de algoritmos kNN han
sido propuestas para reducir el tiempo de cómputo.
Ellas, generalmente se orientan a reducir el número
de semejanzas calculadas [11, 9]. En el caso de la
clasificación de documentos de texto, los mejores
resultados se han obtenido a costa de reducir la
calidad de la clasificación y algunos casos haciendo
uso de estructuras de datos muy complejas.

Con el advenimiento de la computación paralela
utilizando dispositivos gráficos, se han publicado
algunos trabajos interesantes sobre optimizaciones
de métodos para acelerar el algebra matricial
dispersa. En particular algunos como [3, 2, 12] han
marcado un punto de comparación en este sentido.
Se han revisado publicaciones de este tipo en el
área de la Minería de Datos, en general orientados
al problema del ordenamiento de las semejanzas
entre objetos que determina los k objetos de
entrenamiento utilizados en el algoritmo para dar un
resultado [1].

Especificamente sobre ݇NN se conocen
algunos trabajos entre los que se destacan [7, 6],
los que en su mayoría aplican varias
optimizaciones en los pasos del algoritmo pero
siempre aplicados a datos densos y de
relativamente poca dimensionalidad como es el
caso de imágenes. No se conoce hasta el momento
trabajos que procesen documentos textuales, los
que constituyen un reto en cualquier arquitectura
por su alta dimensionalidad y dispersidad.

En este trabajo se proponen dos métodos
diseñados tomando en cuenta las peculiaridades
de la representación computacional de los
documentos de texto, que calculan en paralelo la
semejanza entre los objetos de entrenamiento y los
objetos a clasificar. Uno de los métodos calcula la
semejanza entre la matriz de aprendizaje y un
documento de prueba y el segundo entre un
conjunto de documentos de prueba. Ambos
métodos se utilizaron en la implementación de un
proceso de clasificación ݇NN.

Clasificación kNN de documentos usando GPU 65

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

3 CUDA

Los chips gráficos de computadoras son hoy
posiblemente, el hardware computacional más
potente por unidad de dólar. Estos chips conocidos
como Graphic Processing Unit (GPU, por sus siglas
en inglés), han transitado desde periféricos hasta
procesadores modernos, potentes y programables,
por derecho propio.

Medidos con los indicadores tradicionales de
rendimiento gráfico, la tasa de crecimiento de las
GPU supera la muy citada Ley de Moore que se
aplica a los microprocesadores tradicionales; en
comparación con una tasa anual de
aproximadamente 1.4x de rendimiento de CPU
como se muestra en la Figura 11, el rendimiento del
hardware gráfico practicamente se duplica cada 6
meses.

1Basado en la diapositiva 7 de S. Green, “GPU Physics,” SIGGRAPH
2007 GPGPU Course.
http://www.gpgpu.org/static/s2007/slides/15-GPGPU-physics.pdf

Figura 1: Comparación del aumento del rendimiento entre GPU y CPU

Fig. 1. Comparación del aumento del rendimiento entre GPU y CPU

66 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

Este poder computacional está disponible y es
barato. Una tarjeta de última generación se puede
encontrar en los mercados informáticos a precios
que oscilan entre $400 y $500 y el precio cae
rápidamente a medida que se libera un nuevo
hardware en el mercado.

En noviembre de 2006, NVIDIA introdujo CUDA,
una arquitectura de cómputo paralelo de propósito
general, con un nuevo modelo de programación y
un conjunto de instrucciones, que le permite al
motor paralelo de las GPU de NVIDIA resolver
muchos problemas computacionales complejos, de
forma más eficiente que en una CPU.
CUDA, Arquitectura de Cálculo Unificada (Compute
Unified Device Architecture, en inglés), cuenta con
un entorno de desarrollo de software que permite a
los programadores, utilizar C como un lenguaje de
programación de alto nivel.

El modelo de programación de CUDA, está
diseñado para desarrollar aplicaciones de software
que escalen su paralelismo transparentemente y
aprovechen el creciente número de núcleos de
procesador, mientras mantiene una curva de
aprendizaje baja para programadores
familiarizados con la programación en lenguajes
estándar como el C.

CUDA tiene tres abstracciones, una jerarquía de
grupos de hilos, memorias compartidas y barreras
de sincronización, que son expuestas a un
programador como un conjunto mínimo de
extensiones del lenguaje. En este modelo una GPU
ejecuta código implementado en una extensión de
C que permite la transferencia de datos entre la
CPU y la GPU.

El código paralelo, denominado "Kernel" es
asignado al dispositivo como una matriz de bloques
de hilos como se muestra en la Figura 2. Los
bloques de hilos conteniendo cientos de hilos se
despachan a un Stream Multiprocessor (SM) para
su ejecución. Los hilos de un bloque se agrupan en
conjuntos de 32 hilos denominados Warp, estos
avanzan bajo un modelo de ejecución SIMT (Single
Instruction, Multiple Threads) [10].

En cuanto a la memoria, los Registros son la
estructura más rápida pero solo pueden ser
accedidos por hilos. Cada SM posee una Memoria
Compartida de 16KB, que puede ser utilizada por
los bloques de hilos. La Memoria Global es la
memoria principal en el dispositivo gráfico. La
Memoria Constante y de Textura tienen la misma

velocidad de la Memoria Global, pero son de solo
lectura además de estar cacheadas en el SM, lo
que las hace mucho más eficientes en
determinadas situaciones. En la Figura 3 se
muestra gráficamente la distribución de la jerarquía
de memoria en CUDA.

Un kernel ejecuta un mismo código en muchos
hilos organizados en bloques. Los hilos de un
bloque cooperan entre sí mediante una memoria
compartida.

A la ejecución de un kernel se especifican la
cantidad de bloques e hilos por bloques a ejecutar.
La cantidad en cada una de estas dimensiones está
determinada por el problema específico que se
intente resolver, aunque por problemas prácticos
las implementaciones conocidas tienen límites
máximos definidos.

Fig. 2. Jerarquía de hilos en CUDA

Clasificación kNN de documentos usando GPU 67

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

Fig. 3. Jerarquía de memoria de CUDA

Los hilos son creados en hardware y se
planifican hasta que todos terminan su ejecución.
En los kernel se puede acceder a un conjunto de
variables que identifican la posición dentro de la
matriz de hilos de ejecución, con ellas se puede de
forma muy sencilla implementar un mecanismo de
ejecución paralela tipo SIMD (Single Instruction
Multiple Data, en inglés) mediante el cual se
garantiza aplicar una misma operación a diferentes
datos simultaneamente.

En el caso particular de CUDA, la ejecución
simultánea se realiza dentro de un warp, que no es
más que un conjunto de 32 hilos de bloque que
ejecutan atómicamente una operación de forma
paralela. El tamaño de un warp es fijo en la
arquitectura y en [10] se exponen algunas
explicaciones al respecto. El modelo de ejecución
permite la ejecución simultánea de los 32 hilos a
nivel de hardware y la duración de la operación se
determina por el último hilo en terminar.

4 Semejanza entre documentos

Como se menciona anteriormente, la etapa que
más tiempo consume en los clasificadores NN, es
el cálculo de la semejanza entre el documento de
prueba y los documentos del conjunto de
entrenamiento. Los clasificadores comunes y los
algoritmos de aprendizaje, no pueden procesar
directamente los documentos de texto en su forma
original. Por lo tanto, en un paso de
preprocesamiento, los documentos se convierten
en una representación vectorial para el cálculo.

Normalmente, los documentos se representan
por vectores de características o rasgos. Un rasgo
es simplemente una dimensión en el espacio de
características. El documento es representado
como un vector en este espacio, es decir, una serie
de características y sus ponderaciones o valores de
relevancia.

El modelo más común utiliza todas las palabras
en el documento como rasgos, y por lo tanto la

68 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

dimensión del espacio de características es igual al
número de palabras diferentes entre todos los
documentos. Los métodos para asignar peso a los
rasgos pueden variar. En sistemas más complejos,
es posible que tengan en cuenta la frecuencia de la
palabra en el documento, en la categoría, y en toda
la colección. El esquema más común, TF-IDF, le da
a la palabra w en el documento d el peso:

ܹሺݓ, ݀ሻ ൌ ,ݓሺܨܶ ݀ሻ ڄ log൫ܰ/ܨܦሺݓሻ൯ (1)

donde TFሺw, dሻ es la frecuencia de la palabra en el
documento, N es la cantidad de documentos de la
colección, y DFሺwሻ es el número de los
documentos que contienen la palabra w.

De forma general un documento puede tener
por sí solo una dimensión relativamente elevada,
de forma que la dimensionalidad de una colección
se convierte en un serio problema. Esto hace que el
proceso de calcular la semejanza entre
documentos sea extremadamente costoso.

Para el cálculo de la semejanza en documentos,
la métrica más popular es la semejanza Coseno. El
cálculo de la semejanza Coseno entre dos
documentos está definido por la siguiente fórmula
[5]:

ܵ݁݉൫݀௜, ௝݀൯ ൌ ൫ݓ௜ ڄ ௝൯ݓ ൌ ෍

௠

௞ୀଵ

൫ݓ௜௞ ڄ ௝௞൯ (2)ݓ

 Donde w୩ es el vector normalizado

௞ݓ ൌ
݀௞

צ ݀௞ צ
 (3)

Como se puede apreciar, la fórmula 2 es una

suma de productos de dos vectores de términos.
Además, un conjunto de n documentos en un
espacio de dimensión m, no es más que una matriz
M de n filas y m columnas, donde cada columna
corresponde a un término en particular y el valor
w୧୨ א M es el peso del término j en el documento i.
La matriz M es, de forma general, una estructura
dispersa.

Si tenemos en cuenta que la dimensión de un
conjunto de documentos es muy elevada, es lógico
que cada documento contendrá sólo un número de
términos relativamente menor a la dimensión del
conjunto, provocando que por cada fila de la matriz
M exista gran cantidad de ceros. Por tanto, es

posible afirmar que calcular las semejanzas entre
un documento de prueba y los documentos de
entrenamiento, puede ser reducido a multiplicar
una matriz por un vector, además tanto la matriz
como el vector son dispersos, porque ambos se
definen sobre el mismo espacio de características.

Si tenemos en cuenta que la dimensión de un
conjunto de documentos es muy elevada, es lógico
que cada documento contendrá sólo un número de
términos relativamente menor a la dimensión del
conjunto, provocando que por cada fila de la matriz
M exista gran cantidad de ceros. Por tanto, es
posible afirmar que calcular las semejanzas entre
un documento de prueba y los documentos de
entrenamiento, puede ser reducido a multiplicar
una matriz por un vector, además tanto la matriz
como el vector son dispersos, porque ambos se
definen sobre el mismo espacio de características.

5 Propuesta

La paralelización de la multiplicación dispersa de
matrices se ha realizado siguiendo varias
estrategias y con varias herramientas tanto de
software como de hardware. Este trabajo,
concentró su esfuerzo en realizar el proceso de
cálculo sobre la arquitectura gráfica de una GPU
con soporte para NVIDIA CUDA.

Para una mejor comprensión de los términos
expuestos en esta sección, nos referiremos con MA
a la matriz de documentos de aprendizaje y con MP
a la matriz de documentos de prueba.

Algoritmo 1: Clasificación kNN multiplicando matrices
dispersas

1. Copiar MA al dispositivo GPU
2. ݊݀ ՚ Cantidad de documentos en MP
3. for݅ ൌ 0to݊݀do
4. Copiar documento ݀௜ א ܲܯ al dispositivo GPU
5. Obtener vector de semejanzas ௜ݕ ൌ ܣܯ כ ݀௜
6. Copiar ௜ݕ a CPU
7. Aplicar regla ݇NN
8. Clasificar ݀௜
9. endfor

La implementación propuesta en este trabajo,

consiste en un proceso de clasificación de
documentos que realiza el cálculo de semejanzas
entre documentos mediante una función de

Clasificación kNN de documentos usando GPU 69

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

multiplicación de matrices dispersas, donde a partir
de ellas se clasifica atendiendo a los pasos del
algoritmo ݇NN La descripción de la implementación
se muestra en el Algoritmo 1.

Utilizando este esquema se proponen dos
algoritmos para multiplicar matrices dispersas con
los que se resuelve de forma paralela el cálculo de
las semejanzas entre los documentos de prueba y
los documentos de la matriz de aprendizaje.
Las implementaciones de algoritmos sobre
matrices dispersas apoyan gran parte de su
estrategia en una estructura de datos
convenientemente seleccionada. En la literatura
existen varias representaciones como se muestra
en [3] y se destaca por su generalidad la
representación dispersa CSR (Compressed Sparse
Row, en inglés).

La representación CSR la componen tres
vectores que almacenan los índices de inicio y fin
de cada fila, los índices de las columnas y los
valores distintos de cero existentes en la matriz. La
figura 4 muestra una ejemplo de matriz dispersa
que ilustra la estructura CSR; el vector denotado
por data almacena los valores distintos de cero
que contiene la matriz, el vector row almacena los
índices dentro de data donde comienza cada fila y
cols el índice de la columna de la matriz A donde
se encuentra cada uno de los valores de data
respectivamente.

ܽݐܽ݀ ൌ ሼ1,7,2,8,5,3,9,6,4ሽ;

ܣ ൌ ൦

1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4

൪ ݓ݋ݎ ൌ ሼ0,2,4,7,9ሽ;

ݏ݈݋ܿ ൌ ሼ0,1,1,2,0,2,3,1,3ሽ;

Fig. 4. Ejemplo de una matriz dispersa CSR

Para establecer un punto de comparación se
utilizó un resultado obtenido en una publicación
técnica de NVIDIA [3], donde se propuso un
algoritmo de multiplicación de una matriz dispersa
por un vector denso. Este algoritmo propone una
implementación de multiplicación de una matriz
dispersa CSR por un vector denso con la que se
obtuvieron reducciones de tiempo de ejecución de
hasta 69% comparado con el tiempo secuencial de
CPU. Los resultados de este algoritmo fueron
obtenidos con las mismas configuraciones y datos

que se utilizaron en la evaluación de los algoritmos
propuestos.

5.1.Multiplicación usando un vector
disperso y memoria compartida

Resolver el acceso a los datos en la programación
de algoritmos adaptados para GPU, es uno de los
puntos que más incidencia tiene en el resultado
final. La memoria global es la de mayor latencia de
toda la jerarquía de memoria de un dispositivo
gráfico y su máximo aprovechamiento está
condicionado al patrón de acceso de lectura o
escritura [10]. Por ejemplo en el diseño G80, cada
instrucción toma 4 ciclos de reloj en procesarse y
una operación de lectura en la memoria global toma
200 ciclos. Por tal motivo es recomendable
garantizar el acceso combinado de los hilos de un
warp a la memoria, de otra manera, todas las
operaciones de memoria se serializarán influyendo
directamente en el rendimiento de la aplicación.

Paralelizar la multiplicación dispersa no es una
tarea fácil para arquitecturas gráficas. En nuestro
caso, los patrones de acceso a la memoria afectan
con mucha influencia el rendimiento general del
kernel. En general, es casi imposible para la
multiplicación dispersa tratar de combinar las
operaciones de lectura en la memoria global, por
tanto, una solución es usar alguna de las memorias
internas del dispositivo para realizar operaciones
desde ellas. En este caso utilizamos la memoria
compartida.

La memoria compartida tiene una latencia
mucho menor que la memoria global, de modo que
los problemas ocasionados por los patrones de
acceso se ocultan, permitiendo alcanzar un buen
rendimiento.

Por lo general en este tipo de problema se
multiplica una matriz dispersa por un vector denso
para reducir la complejidad del algoritmo desde el
punto de vista de la programación. En el caso
particular de las representaciones de documentos
este vector presentaba un alto grado de
dispersidad, por lo que nuestra propuesta se
concentra además en la multiplicación de una
matriz por un vector ambos dispersos.

En el Algoritmo 2, se muestran los pasos de la
nueva implementación. En éste, cada fila de la
matriz MA, será procesada por un hilo de la GPU.
Es sencillo notar que las filas de MA se recorrerán

70 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

una sola vez por un único hilo, mientras que el
vector a multiplicar será recorrido por todos los hilos
planificados. Además, cada hilo seguirá un camino
distinto en dependencia de los datos utilizados.

Algoritmo 2: Obtención del vector de semejanzas

Requiere:݀ܽܽݐ, ݈݋ܿ , ,ݎݐ݌ ݏ݈݋ܿ_݉ݑ݊ representación CSR de
MA
Requiere:ܽݐܽ݀ݒ, ݔ݀݅ݒ representación dispersa de ݀௜
1. Copiar ܽݐܽ݀ݒ y ݔ݀݅ݒ a memoria compartida
2. ݓ݋ݎ ՚ ݉݅ܦ݇ܿ݋݈ܾ כ ݔ݀ܫ݇ܿ݋݈ܾ ൅ ݔ݀ܫ݀ܽ݁ݎ݄ݐ
3. ݉ݑݏ ՚ 0
4. ݐݎܽݐݏ_ݓ݋ݎ ՚ ሿݓ݋ݎሾݎݐ݌
5. ݀݊݁_ݓ݋ݎ ՚ ݓ݋ݎሾݎݐ݌ ൅ 1ሿ
6. ݔ݈݀݅ ՚ ݐݎܽݐݏ_ݓ݋ݎ
7. ݔ݀݅ݎ ՚ 0
8. while݈݅݀ݔ ൏ ݔ݀݅ݎand݀݊݁_ݓ݋ݎ ൏ doݏ݈݋ܿ_݉ݑ݊
9. if݈ܿ݋ሾ݈݅݀ݔሿ ൌ ሿthenݔ݀݅ݎሾݔ݀݅ݒ
10. ݉ݑݏ ՚ ݉ݑݏ ൅ ሿݔሾ݈݅݀ܽݐܽ݀ כ ሿݔ݀݅ݎሾܽݐܽ݀ݒ
11. ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1
12. ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1
13. elseif݈ܿ݋ሾ݈݅݀ݔሿ ൏ ሿthenݔ݀݅ݎሾݔ݀݅ݒ
14. ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1
15. else
16. ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1
17. endif
18. ሿݓ݋ݎሾݕ ՚ ݉ݑݏ
19. endwhile

De esta forma, inicialmente colocamos la

representación dispersa del vector a multiplicar d୧
en la memoria compartida, garantizando un acceso
de muy baja latencia en un patrón de acceso no
combinado. Luego, dado que la representación del
d୧ es dispersa, entonces se debe garantizar que se
multipliquen sólo los elementos que se encuentran
en el mismo índice de fila respecto a la matriz o al
vector real, según sea el caso.

La implementación se realizó mediante un
mecanismo de pivotes, en el que se fija el mayor
entre los índices de la fila de MA y el d୧ y se va
incrementando el menor, de tal forma que cuando
ambos sean iguales se acumule la multiplicación de
los valores de cada uno. Si al incrementarse el
menor de los índices supera al pivote, estos se
intercambian y se repiten los pasos anteriores de la
misma forma. El proceso de nivel superior que hace
uso de este kernel es similar al descrito en el
Algoritmo 1.

Todos estos detalles de implementación
permitieron que aumentara el rendimiento del

kernel y que en general se hiciera uso de un mayor
ancho de banda de memoria, además la calidad de
la clasificación se mantuvo igual. Este algoritmo se
ajusta al caso en que no se conozcan a priori la
cantidad de documentos de prueba a clasificar por
lo que el cálculo de las semejanzas se realizaría
secuencialmente entre los documentos de prueba.

5.2.Multiplicación de matrices dispersas
usando caché de texturas

Los dispositivos gráficos están diseñados para
soportar un alto grado de paralelismo, representado
a nivel de hardware en varios Stream Processors
(SP, por sus siglas en inglés), cada uno con la
capacidad de ejecutar una gran cantidad de hilos
en paralelo. De forma general estos dispositivos
organizan este conjunto de hilos en estructuras
jerárquicas que por lo general pueden tener hasta
tres dimensiones.

En particular, los productos de NVIDIA se
organizan en una jerarquía de tres niveles, donde el
nivel superior llamado Grid, consiste en una matriz
de bloques de hilos de dos dimensiones; cada
bloque de hilos, a su vez, es una matriz de hilos de
tres dimensiones.

Esta jerarquía permite distribuir el trabajo,
dependiendo del algoritmo o la capacidad de
particionar de manera equitativa los datos sobre los
que actuará un problema determinado. En el
algortimo propuesto anterior, se describió una
solución al problema de la multiplicación de una
matriz dispersa con un vector disperso. En ella se
utilizó un bloque de hilos de una sola dimensión y
se distribuyeron los datos de forma que en cada hilo
se calcula la multiplicación del vector disperso y
una fila de la matriz, de modo que, el
procesamiento de la colección de documentos se
realiza secuencialmente de uno en uno.

Este método realiza los cálculos entre varios
vectores de documentos de prueba y la matriz de
aprendizaje, lo que se traduce en la multiplicación
de dos matrices dispersas, la matriz de aprendizaje
MA y una matriz de vectores de prueba dispersos,
denominada en lo adelante MV, donde MV ك MP .

De esta forma, se disminuye en cierta medida la
latencia de las transferencias de datos entre el
dispositivo y la CPU, ya que en cada transferencia
se mueven más vectores dispersos a procesar. Por

Clasificación kNN de documentos usando GPU 71

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

otro lado el kernel implementado utiliza un bloque
de hilos de dos dimensiones con el que se emplea
una mayor cantidad de hilos en ejecución en la
GPU, aumentando el ancho de banda de memoria,
y por consiguiente, el rendimiento del proceso
completo.

Una particularidad añadida por el hecho de
multiplicar varios vectores dispersos en paralelo, es
que en cada uno de ellos se accederá a las mismas
filas de la matriz de aprendizaje ya que cada uno
debe calcular su semejanza con cada documento
de ésta. De forma general, no se puede garantizar
un patrón de acceso eficiente con esta
implementación, ya que estos patrones están
diseñados para optimizar los accesos dentro de un
bloque de hilos y en especial entre hilos de un
mismo warp.

Para optimizar este acceso a la memoria hemos
utilizado la memoria de textura. Esta memoria, está
optimizada para reducir la demanda de ancho
banda cuando los datos se encuentran
espacialmente cercanos, actuando como un caché.

La esencia del método es similar al expuesto en
el Algoritmo 2. Las diferencias más importantes se
encuentran en el uso de la memoria de textura,
cuando se referencian los datos de las filas de la
matriz de aprendizaje MA y en el direccionamiento
de los índices de los hilos de ejecución, ya que los
bloques de hilos empleados son de dos
dimensiones y los índices globales de cada hilo se
tienen que calcular tomando en cuenta esta
estructura.

La nueva implementación se muestra en el
Algoritmo 3, en ella se utilizan bloques de hilos de
dos dimensiones que se representan por las
variables internas de CUDA blockIdx. x y
blockIdx. y, con las que se identifica la fila de la
matriz de documentos de prueba (ver línea 1), que
se va a utilizar para calcular la multiplicación con
cada fila de MA, referenciada por la segunda
variable respectivamente (ver línea 4).

Los pasos a seguir en cada uno de los
documentos de MV, es similar al descrito en el
Algoritmo 2 además, la recuperación de los datos
de MA, se realiza a través del acceso a la memoria
de textura, como se muestra en las líneas 11 y 13
mediante la función fetch2. Finalmente, el resultado

2Para facilitar la comprensión, esta función describe el proceso de
recuperar un dato desde la memoria de textura

de cada cálculo se almacena en el vector y de
acuerdo a la posición global de las filas de MV y MA
multiplicadas, como se muestra en la línea 22.

Este algortimo es más eficiente cuando se
conocen a priori la cantidad de documentos de
prueba, por lo que al utilizar una mayor cantidad de
hilos de forma simultánea el rendimiento general
aumenta porque existe más trabajo y disminuye la
cantidad de hilos inactivos. Los resultados de la
clasificación fueron los mismos que en el algoritmo
anterior.

Algoritmo 3: Obtención del vector de semejanzas

Requiere: ܽݐܽ݀ܣܯ , ݈݋ܿܣܯ , ݎݐ݌ܣܯ , ݏݓ݋ݎ_݉ݑ݊ܣܯ
representación CSR de MA
Requiere: ܽݐܸܽ݀ܯ , ݈݋ܸܿܯ , ݎݐ݌ܸܯ representación CSR de
MV
1. ݅ ՚ .ݔ݀ܫ݇ܿ݋݈ܾ Seleccionar el vector a multiplicar en el }ݔ

grid ݅}
2. ݏ݈݋ܿ_݉ݑ݊ ՚ ሾ݅ݎݐ݌ܸܯ ൅ 1ሿ െ ሾ݅ሿݎݐ݌ܸܯ
3. Copiar datos de ݀௜ a memoria compartida
4. ݓ݋ݎ ՚ .݉݅ܦ݇ܿ݋݈ܾ ݔ כ .ݔ݀ܫ݇ܿ݋݈ܾ ݕ ൅ .ݔ݀ܫ݀ܽ݁ݎ݄ݐ ݔ
5. ݉ݑݏ ՚ 0
6. ݐݎܽݐݏ_ݓ݋ݎ ՚ ሿݓ݋ݎሾݎݐ݌ܣܯ
7. ݀݊݁_w݋ݎ ՚ ݓ݋ݎሾݎݐ݌ܣܯ ൅ 1ሿ
8. ݔ݈݀݅ ՚ ݐݎܽݐݏ_ݓ݋ݎ
9. ݔ݀݅ݎ ՚ 0
10. while݈݅݀ݔ ൏ ݔ݀݅ݎand݀݊݁_ݓ݋ݎ ൏ doݏ݈݋ܿ_݉ݑ݊
11. ݈݋ܿ ՚ ,݈݋ܿܣܯሺ݄ܿݐ݂݁ ሻݔ݈݀݅
12. if݈ܿ݋ ൌ ሿthenݔ݀݅ݎሾ݈݋ܸܿܯ
13. ݉ݑݏ ՚ ݉ݑݏ ൅ ,ܽݐܽ݀ܣܯሺ݄ܿݐ݂݁ ሻݔ݈݀݅ כ

ሿݔ݀݅ݎሾܽݐܸܽ݀ܯ
14. ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1
15. ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1
16. elseif݈ܿ݋ ൏ ሿthenݔ݀݅ݎሾ݈݋ܸܿܯ
17. ݔ݈݀݅ ՚ ݔ݈݀݅ ൅ 1
18. else
19. ݔ݀݅ݎ ՚ ݔ݀݅ݎ ൅ 1
20. endif
21. ሿݓ݋ݎሾݕ ՚ ݉ݑݏ
22. endwhile

6 Resultados experimentales

Cada uno de los algoritmos propuestos, alcanza en
mayor o menor grado una ventaja respecto al
proceso de clasificación en una CPU. En esta
sección se mostrará como la implementación en
GPU de los algoritmos propuestos, mejora el
rendimiento de la clasificación k NN en
documentos, a través de los resultados

72 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

experimentales de cada una de las
implementaciones y una evaluación de los mismos.

6.1 Configuración experimental

Para los experimentos se utilizaron dos
configuraciones de hardware, la primera una
computadora personal y la segunda en un servidor
profesional. Éstas se utilizaron para mostrar la
diferencia en el rendimiento alcanzado teniendo en
cuenta la potencia de cálculo en diferentes
procesadores gráficos.

El sistema usado para la evaluación del
rendimiento en la primera configuración
(referenciada como Configuración #1 en lo
adelante) consiste en, un procesador Intel Core2
Duo E7300 con una frecuencia de reloj de 2.66
GHz, 2 GB de memoria RAM y una tarjeta NVIDIA
GeForce 9800 GT con 112 núcleos y 512 MB de
memoria dedicada. La aplicación se generó con el
compilador GNU C++ Compiler versión 4.3.4 y
NVIDIA CUDA Compiler Driver versión 2.3. La
segunda configuración (referenciada como
Configuración #2 en lo adelante) consta de dos
procesadores Intel Xeon E5405 con una frecuencia
de reloj de 2 GHz para un total de 8 núcleos de
CPU, 7 GB de memoria RAM y cuatro tarjetas
NVIDIA Tesla C870 con 128 núcleos y 1.5 GB de
memoria dedicada; la aplicación se generó con el
compilador GNU C++ Compiler versión 4.1.2 y
NVIDIA CUDA Compiler Driver versión 2.2.

Todos los resultados en la GPU presentados a
continuación incluyen el tiempo requerido de
transferir los datos desde la memoria principal a la
memoria de la GPU y de recuperar los resultados
desde el dispositivo. Los kernel operan en simple
precisión para datos reales.

Para las pruebas se utilizó la colección estándar
Reuters 2000 RCV1 [8]. Esta colección está
dividida en conjuntos de archivos de entrenamiento
y prueba, cada uno con la distribución de
documentos por categoría. El conjunto de
entrenamiento contiene 23149 documentos y
47152 términos diferentes, distribuidos en 101
categorías. La matriz de documentos resultantes
contiene 1091521648 elementos y su
representación CSR contiene 1757801 elementos
distintos de cero, lo que representa un 0.16% del
total de elementos.

El conjunto de pruebas se dividió en seis
subcolecciones para probar la escalabilidad y el
rendimiento de la implementación, usando
conjuntos de datos de diferentes tamaños. El
tamaño total del conjunto es de 781265
documentos, divididos en subconjuntos de 10, 100,
1000, 10000, 100000, y 781265 respectivamente.

6.2 Evaluación del rendimiento

En este estudio, no se muestran los resultados de
la calidad de la clasificación kNN, porque en cada
prueba, se observó que en ambas arquitecturas
fueron los mismos. Por tanto, nos limitamos sólo a
evaluar el tiempo de ejecución en segundos para el
proceso de categorización completo.

Cada prueba ejecutada con un juego de
parámetros, se realizó un total de 10 veces y los
resultados finales mostrados son el promedio de
todas ellas. Los resultados obtenidos se muestran
divididos en tres secciones, cada una
representando las tres variantes de algoritmos
descritas anteriormente. De cada una de estas
variantes, se selecciona la de mejor resultado y se
compara con la próxima solución, siempre tomando
como referencia en cada una de ellas la ejecución
en CPU.

Las pruebas se etiquetaron de la siguiente
forma: BaseCSR corresponde a las pruebas del
algoritmo secuencial en CPU; las ejecuciones
usando el algoritmo propuesto por [3] se muestran
con la etiqueta Base y como sufijo la cantidad de
hilos por bloque utilizados; las pruebas
correspondientes al algoritmo propuesto en la
sección 5.1 se etiquetaron como Shared y como
sufijo la cantidad de hilos por bloque utilizados; por
último el algoritmo propuesto en la Sección 5.2 se
muestra como Grid y como sufijo el par que
especifica la cantidad de documentos y la cantidad
de hilos por bloque utilizados.

Las gráficas de rendimiento están en función de
la cantidad de documentos de prueba y en cada
uno de los algoritmos se muestra una tabla con los
tiempos obtenidos en segundos y gráficamente la
aceleración alcanzada por cada prueba, definida
como la división entre el tiempo del algoritmo en
CPU y el obtenido experimentalmente en la prueba.
En cada discusión de resultados se menciona el
valor porcentual que representa el tiempo obtenido

Clasificación kNN de documentos usando GPU 73

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

por la prueba del tiempo secuencial en CPU, lo que
referencia como porciento de reducción.

Los resultados de las pruebas de referencia con
el algoritmo propuesto en [3] se muestran en la
Tabla 1. En ellas se representan los tiempos de
ejecución del algoritmo en CPU y las corridas en
GPU para valores de cantidad de hilos por bloque
de 32, 64, 128 y 256 hilos respectivamente, en cada
una de las configuraciones de hardware
especificadas en la sección 6.1. Además se
muestra la relación de los tiempos de ejecución
respecto a la ejecución del algoritmo secuencial en
CPU en la Figura 5.

Tabla 1. Tiempo de ejecución en segundos para el

algoritmo propuesto en [3]

En esta implementación, se muestra una

ganancia en la aceleración para la Configuración
#1, que supera ligeramente los resultados de la
CPU, obteniendo como promedio una reducción del
tiempo del 7% respecto al tiempo secuencial en
CPU. Por otro lado, en la Configuración #2 se nota
que se logran alcanzar resultados superiores a 3x,
que representan una reducción del tiempo de
ejecución de 69.4% como promedio. Los resultados
de esta propuesta en general son similares en
cuanto a la aceleración alcanzada para ambas
configuraciones.

La propuesta definida en el Algoritmo 2 obtuvo
mejores resultados, para las dos configuraciones
de hardware. En la Tabla 2 se muestran los tiempos
de la ejecución para distintos tamaños de bloques
de hilos, representados con los valores de 32, 64,
128 y 256, respectivamente. En la Figura 6 se
muestran los resultados comparativos de las
ejecuciones en CPU y los de la ejecución de mejor
rendimiento promedio para cada configuración con
el algoritmo propuesto en [3].

Fig. 5. Aceleración obtenida por el algoritmo propuesto

por [3]

74 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

Se puede observar en las Figuras 6a y 6b un
aumento en la aceleración respecto al algoritmo en
CPU, alcanzando valores promedio de 1.3x que
representan una disminución del 28% del tiempo de
ejecución para la Configuración #1 y de 4.3x para la
Configuración #2 que representa un y 78% de
reducción. Estos resultados demuestran la eficacia
de utilizar memoria compartida, en casos donde el
patrón de acceso no combinado a la memoria
afecta el rendimiento de un algoritmo en GPU. Los
mejores resultados promedio se obtuvieron con
bloques de 64 hilos para la Configuración #1 y de
128 para la Configuración #2.

Tabla 2. Tiempo de ejecución en segundos para el
Algoritmo 2

Para el Algoritmo 3 se obtuvieron los mejores

tiempos como se muestran en la Tabla 3 y en la
Figura 7 se puede comparar gráficamente estos
resultados con la ejecución en CPU y los mejores
valores de las pruebas anteriores.

Como se explicó en la Sección 5.2, este
algoritmo trabaja con dos dimensiones de hilos en
el dispositivo gráfico. Para las pruebas se
realizaron ejecuciones fijando la cantidad de
documentos en paralelo a comparar (tamaño del
grid) en 32, 64, 128 y 256 respectivamente. Por
cada uno de los valores de grid se fijó el tamaño de
los bloques de hilos en 32, 64, 128, y 256,

respectivamente. De este modo las pruebas de
este algoritmo equivalen a un total de 16, que por
simplificar se muestran los valores de la mejor
ejecución por tamaño de grid.

Fig. 6. Aceleración obtenida para el Algoritmo 2

Los resultados de esta implementación superan

los resultados de la ejecución secuencial en una
CPU para ambas configuraciones. En la Figura 7,
se muestran los resultados obtenidos, donde se
alcanzan valores promedio de aceleración para la

Clasificación kNN de documentos usando GPU 75

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

Configuración #1 de 3.6x y para la Configuración #2
de 9x, que representan una disminución del tiempo
de ejecución respecto al algoritmo secuencial en
CPU del 69% y 89% respectivamente.

Tabla 3. Tiempo de ejecución en segundos para el
Algoritmo 3

La comparación de todos los tiempos de

ejecución obtenidos con el hardware gráfico en las
dos configuraciones, muestra mejores resultados
para la Configuración #2, debido a que el
dispositivo usado en ella cuenta con una mayor
cantidad de núcleos y de memoria. Además este
tipo de hardware está dedicado al uso en GPGPU,
por ese motivo no cuenta con la salida de video
tradicional en estos dispositivos, dedicando toda su
potencia al cálculo aritmético.

7 Conclusiones

A partir de la investigación realizada, se obtuvieron
los siguientes resultados.

Se propuso un algoritmo para multiplicar una
matriz por un vector, ambos dispersos, que se
puede aplicar a procesos donde se desconozca de
antemano la cantidad de vectores a multiplicar. Con
este algoritmo se implementó un proceso de
clasificación kNN con el que se alcanzan
reducciones promedio en el tiempo de ejecución,
para el hardware utilizado, de 28% y 79%

respectivamente respecto a una implementación en
CPU.

Fig. 7. Aceleración obtenida para el Algoritmo 3

Se implementó un algoritmo para multiplicar dos
matrices dispersas, que se puede aplicar además
en procesos donde se deseen multiplicar una
matriz dispersa y un conjunto de vectores de forma
paralela. Con este algoritmo se implementó un

76 Rubén Bresler Camps y Reynaldo Gil García

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

proceso de clasificación k NN, con el que se
alcanzan reducciones promedio en el tiempo de
ejecución, para el hardware utilizado, de 69% y
88% respectivamente respecto a una
implementación en CPU.

Los resultados obtenidos en la investigación,
constituyen un aporte para tareas de clasificación
de documentos y ofrecen al programador una
biblioteca de algoritmos de multiplicación de
matrices dispersas para GPU, que queda
disponible para futuras investigaciones y para
utilización en proyectos de software.

Como trabajo futuro se propone un estudio de
otras estructuras de datos para la representación
de matrices dispersas, que permitan optimizar el
uso de la memoria y el acceso coordinado a la
misma, en dispositivos gráficos, para obtener
mejores aceleraciones en los procesos
implementados. Además se han reportado varios
trabajos [7, 6] que utilizan el poder de la GPU para
realizar el ordenamiento de las semejanzas luego
del computo de las mismas, proponemos la
inclusión de una optimización al proceso k NN
similar para su utilización en aplicaciones reales
que utilicen este algoritmo.

Los algoritmos propuestos en este trabajo se
diseñaron especialmente para el uso en
arquitecturas de hardware gráfico, y se utilizaron en
un proceso de clasificación estático como es el
kNN, donde la matriz de aprendizaje se mantiene
sin cambios en la memoria gráfica. De modo que se
propone el diseño de nuevos algoritmos que
administren dinámica y eficientemente la memoria
gráfica de las GPU, y adicionen filas a la matriz de
aprendizaje. Esto permitirá emplear estos
algoritmos en otras tareas de la Minería de Textos
como el agrupamiento de documentos.

Referencias

1. Barrientos, R. J., Gómez, J. I., Tenllado, C. & Prieto

M. (2010). Heap Based k-Nearest Neighbor Search on
GPUs. XXI Jornadas de Paralelismo, Valencia,
España, 559-566.

2. Baskaran, M.M. & Bordawekar, R. (2009). Optimizing
Sparse Matrix-Vector Multiplication on GPUs (IBM
Technical Report RC24704). USA: IBM Research
Division.

3. Bell, N. & Garland, M. (2008). Efficient Sparse
Matrix-Vector Multiplication on CUDA (NVIDIA
Technical ReportNVR-2008-004). USA: NVIDIA

Corporation.
4. Feldman, R. & Sanger, J. (2006). The Text Mining

Handbook: Advanced Approaches in Analyzing
Unstructured Data. Cambridge; New York: Cambridge
University Press.

5. Frakes, W. B. & Baeza-Yates, R. (1992). Information
Retrieval, Data Structure and Algorithms. Englewood
Cliffs, N.J.: Prentice Hall.

6. Garcia, V., Debreuve, E., Nielsen, F. & Barlaud, M.
(2010). K-nearest neighbor search: Fast GPU-based
implementations and application to high-dimensional
feature matching. 17th IEEE International Conference
on Image Processing. Hong Kong, China, 3757-3760.

7. Kuang, Q. & Zhao, L. (2009). A Practical GPU Based
KNN Algorithm. Second Symposium International
Computer Science and Computational Technology,
Huangshan, China,151-155.

8. Lewis, D. D., Yang, Y., Rose, T. G. & Li, F. (2004).
RCV1: A New Benchmark Collection for Text
Categorization Research. Journal of Machine Learning
Research, 5(2004), 361-397.

9. Moreno-Seco, F., Micó, L. & Oncina, J. (2003).
Approximate Nearest Neighbour Search with the
Fukunaga and Narendra Algorithm and Its Application
to Chromosome Classification. Progress in Pattern
Recognition, Speech and Image Analysis. Lecture
Notes in Computer Science, 2905, 322-328.

10. NVIDIA CUDA™ 2.3 Programming Guide, Version
2.3.1, 2009

11. Hernández-Rodríguez, S., Carrasco-Ochoa, J. A &
Martínez-Trinidad, J. F. (2007). Fast k Most Similar
Neighbor Classifier for Mixed Data Based on a Tree
Structure and Approximating-Eliminating. Progress in
Pattern Recognition, Image Analysis and Applications.
Lecture Notes in Computer Science, 5197, 364-371.

12. Wang, Z., Xu, X., Zhao, W., Zhang, Y. & He, S.
(2010). Optimizing sparse matrix-vector multiplication
on CUDA. 2ndInternational Conference on Education
Technology and Computer (ICETC), 109-113.

Rubén Bresler Camps

Es graduado de Ciencia de la Computación en 2005 en la
Universidad de Oriente, Cuba. Obtuvo el título de M.S en
Ciencia de la Computación en la propia Universidad de
Oriente en el año 2010. Profesionalmente comenzó en la
empresa DATYS dedicada al desarrollo de software como
programador, actualmente es Jefe de Proyecto en la misma

Clasificación kNN de documentos usando GPU 77

Computación y Sistemas Vol. 15 No. 1, 2011 pp 63-77
ISSN 1405-5546

empresa y sus áreas de intereses son el Reconocimiento de
Patrones, la Minería de Datos y la Paralelización y
Distribución de aplicaciones. Los trabajos en los que ha
participado han tenido el asesoramiento del Centro de
Reconocimiento de Patrones y Minería de Datos
(CERPAMID) asociado a la Universidad de Oriente.

Reynaldo Gil García

Es Profesor Titular del Departamento de Ciencia de la
Computación en la Universidad de Oriente, Cuba. Figura
como parte de los autores en varios artículos científicos
presentados en eventos de importancia internacional, la
mayor parte se encuentran publicados en LNCS. Sus áreas
de interes son los Algoritmos de Agrupamiento y
Clasificación de documentos y la Paralelización de
algoritmos.

