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Abstract. This paper addresses the problem of speaker
verification in two speaker conversations, proposing a
set of confidence measures to assess the quality of a
given speaker segmentation. We study how these
measures can be used to estimate the performance of
a state-of-the-art speaker verification system, the I3A
submission for the core-summed condition in the NIST
SRE 2010. We present a Factor Analysis based speaker
segmentation system, along with three confidence
measures that are fused to obtain a single measure
that we show to constitute a good estimation of the
segmentation accuracy, when evaluated on the
summed-channel telephone data of the NIST SRE
2008. Finally we present speaker verification results
obtained with the I3A submission for the NIST SRE
2010 on several conditions of this evaluation,
involving summed-channel. We show that the
confidence measure also predicts the performance of
a state-of-the art speaker verification system when it
faces two speaker conversations.

Keywords. Confidence measures, speaker
segmentation, speaker verification and telephone
conversations.

Resumen. Este articulo trata el problema de
verificacion de locutor en conversaciones con dos
locutores, proponiendo un conjunto de medidas de
confianza para evaluar la calidad de una
segmentacion de locutores dada. Estudiamos cémo
estas medidas pueden ser utilizadas para estimar el
rendimiento de un sistema de verificacion del locutor
del estado del arte, el sistema del I3A para la
evaluacion de reconocimiento del locutor NIST SRE
2010. Presentamos un sistema de segmentacion de
locutor basado en Anadlisis Factorial y tres medidas de
confianza que son combinadas en una medida que
constituye una buena estimacion de la calidad de la

segmentacion, cuando se evalua en las grabaciones
de canal sumado de la NIST SRE 2008. Finalmente
presentamos resultados de verificacion de locutor
obtenidos con el sistema del I3A en distintas
condiciones de canal sumado de la NIST SRE 2010. Se
demuestra que las medidas de confianza también
predicen el rendimiento de un sistema de verificacion
del locutor cuando se enfrenta a conversaciones de
dos locutores.

Palabras clave. Medidas de confianza, segmentacion
de locutor, verificacion de locutor y conversaciones
telefonicas.

1 Introduction

Recently, there has been a great advance in the
field of speaker identification, in part motivated
by the NIST Speaker Recognition Evaluations
(SRE). One of the main breakthroughs of the last
years has been the formulation of the Joint
Factor Analysis (JFA) for speaker verification
[Kenny, et al., 2008]. Nowadays most state of
the art speaker verification systems are based
on this approach. Since then, researchers have
explored its application to different areas,
especially to study new speaker diarization
methods. One of the most interesting of these
methods is the one presented in [Castaldo et al.,
2008], a novel approach for streaming speaker
diarization, which shows several differences with
traditional diarization systems. This method
makes use of a simple Factor Analysis (FA)
model composed only of eigenvoices [Kuhn et
al., 2000] to obtain high accuracy in a two
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speaker segmentation task on telephone
conversations. However, performance decreases
significantly when the number of speakers is
unknown.

Consequently, the speaker identification
community has focused on improving the
performance in the two speaker segmentation
task on telephone conversations, a task quite
related to speaker verification. In [Reynolds, et
al., 2009] several approaches using JFA and
Variational Bayes are proposed and compared to
a traditional Bayesian Information Criterion (BIC)
based Agglomerative Hierarchical Clustering
(AHC) system [Reynolds and Torres
Carrasquillo, 2005]. In that study, results are
reported in terms of segmentation error on the
NIST SRE 2008 summed dataset. Most
approaches show higher accuracy than the
classical AHC system, including the streaming
eigenvoice based approach; however, this last
system is outperformed by two Variational Bayes
based systems. The first one is a classical AHC
system that makes uses of Variational Bayes to
perform a final resegmentation. The second one
applies Variational Bayes to build iteratively
eigenvoice based speaker models.

In this work we address the problem of
speaker verification in two speaker
conversations and how a set of confidence
measures that assess the quality of a given
speaker segmentation can be used to estimate
the performance of a speaker verification
system, enabling us to identify those test
recordings that will give good results on speaker
verification. We use the eigenvoice based
approach for two speaker segmentation and the
confidence measures presented in [Vaquero et
al.,, 2010], and the state-of-the-art speaker
verification system presented in [Villalba et al.
2010]. Results are presented on the NIST SRE
2010, and such results, combined with those
presented in [Vaquero, et al., 2010] show that
the proposed approaches are valid across
different datasets.

In Section 2 we describe the proposed
segmentation system, and three reliable
confidence measures to estimate the
segmentation performance are presented in
Section 3. In Section 4, we evaluate the speaker
segmentation system and the confidence
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measures for speaker segmentation, while in
Section 5 we analyze the performance of the
mentioned speaker verification system when
using the segmentation system and confidence
measures proposed. Finally, in Section 6 we
summarize the conclusions of this study.

2 Speaker Segmentation

The proposed speaker segmentation system is
described in [Vaquero, et al., 2010]. We use a
factor analysis approach to model the desired
sources of variability. As a starting point we try to
capture the variability present among different
speakers. For this purpose, we model every
speaker by a Gaussian Mixture Model (GMM)
adapted from a Universal Background Model
(UBM) using an eigenvoice approach [Kuhn et
al., 2008], according to

Ms = Mysm +Vy @

where Mg is the speaker GMM supervector,
obtained concatenating all Gaussian means,
Mugwm is the UBM supervector, V is the low rank
eigenvoice matrix, and y is the set of speaker
factors, which follows a standard normal
distribution N(y|0,I) a priori. This way, every
speaker is represented by a GMM supervector in
a high dimensional space, and in such space we
allow the speakers to lie in the low dimensional
subspace generated by the column vectors of V,
which point to the directions of maximum
variability among speakers. We refer to this
variability as inter-speaker variability and to the
low rank subspace as the speaker subspace.

In our approach we use a 256 Gaussian
UBM, and as feature vectors we use 12 Mel
Frequency Cepstral Coefficients (MFCC)
including CO, computed every 10 ms over a 25
ms window. The dimension of the speaker
subspace is 20, compared to the dimension of
the supervector space that is 256x12=3072. This
way every point estimate for a given speaker is
defined by a set of 20 speaker factors.

To perform speaker segmentation given a
sequence of feature vectors, as in [Castaldo et
al., 2008], we estimate the speaker factors for
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every frame over a 100 frame window, with an
overlap of 990 ms, an we estimate a 2-Gaussian
GMM to model the stream of speaker factors
obtained, after removing silence frames
according to a Voice Activity Detector (VAD).
Each one of these Gaussians will be assigned to
a single speaker. In contrast to [Castaldo et al.,
2008], we estimate the GMM using all available
data in the recording, rather than processing 1
minute slices and applying a clustering
technique. The later allows stream processing
with 1 minute latency but the former yields better
results. A block diagram of the proposed
segmentation system is shown in Figure 1.

INITIALIZATION - PCA - K—means
CORE -~ EM || Viterbil
SEGMENTATION|  ~
FINAL _ Viterbi2 -~ Soft Clust,~

RESEGMENTATION

Fig. 1. Block Diagram of the proposed segmentation
system

2.1 Initialization

We have detected that a good initialization is
quite important to ensure that every Gaussian in
the GMM corresponds to a single speaker. In our
approach, we wuse prior knowledge about
speaker factors proposed in [Kenny et al., 2008]:
A priori, speaker factors are assumed to be
distributed according to the standard normal
distribution N(y|0,l). Since we obtain speaker
factors from a small data sample (100 frames,
which is small compared to the number of
frames that speaker recognition systems usually
manage, around 10000), using MAP estimation,
we can expect the posterior distribution of
speaker factors for a single speaker to keep
some properties of the prior. Assuming that the
posterior variance is close to I, we can perform
PCA to obtain the direction of maximum
variability in the speaker factor space. Such
direction should be the best one to separate

speakers, since both are supposed to have a
variance close to | and a different mean.

This strategy gives two clusters that can be
seen as first speaker segmentation, and then, K-
means clustering is performed to reassign
frames to the two clusters and a single Gaussian
is trained on each of them. Using this frame
assignment as segmentation output gives
reasonably good results, as we will see later, in
Section 4.

2.2 Core Segmentation

The 2 Gaussians previously trained serve as
initial GMM of the whole recording. Then a two
stage iterative process is applied until
convergence: first  several Expectation-
Maximization (EM) iterations are used and then,
every Gaussian is assigned to a single speaker
and a Viterbi segmentation is performed (Viterbi
1 in Figure 1). According to this new frame
assignment, 2 Gaussian models are trained and
the iterative process restarts again.
Convergence is reached when the segmentation
of the current iteration is identical to that
obtained in the previous one.

To avoid false fast speaker changes, in the
Viterbi segmentation, we modify the speaker turn
duration distribution using a sequence of tied-
states [Levinson, 1986] for every speaker model.
This way, we avoid the state duration to follow a
geometric distribution that cannot accurately
model real speaker turn durations. Each speaker
model is composed of 10 states that share the
same observation distribution, a single Gaussian
in this case. Tied-states are not considered for
the silence, but a single state without an
observation distribution is used, since the
algorithm is forced to go through the silence
state according to the VAD labels. We have
observed that this way of modeling speaker turn
duration yields better results than modifying the
transition probability.

2.3 Viterbi Segmentation and Soft
Clustering

The output of the core segmentation system
gives accurate speaker labels in most cases, but
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these labels can be refined by means of Viterbi
resegmentations (Viterbi 2 in Figure 1).

In this case we model every speaker with a
32 component GMM according to the output of
the core segmentation system using as features
12 MFCC including CO. Again we use 10 tied-
states for speaker models and a single state for
all silence frames.

After this resegmentation we retrain the GMM
models and run a forward backward decoding to
perform a soft reassignment of the frames to the
two speakers. GMM models are retrained
according to the soft reassignment and a final
Viterbi resegmentation is performed. This
approach was first presented in [Reynolds et al.,
2009] as soft-clustering.

3 Confidence Measures

In the following section we describe a set of
confidence measures that aims at determining
the performance of the segmentation system
explained in the previous section for a given
audio recording. These set of confidence
measures is described and analyzed in [Vaquero
et al., 2010].

3.1 Bayesian Information Criterion

BIC has been successfully applied to the task of
speaker diarization, both for  speaker
segmentation and speaker clustering. Currently,
most speaker diarization systems rely on BIC to
perform AHC [Reynolds and Torres Carrasquillo,
2005]. In such systems, BIC is used both to
decide the next pair of closest clusters to merge
and as a stopping criterion, to decide the final
number of speakers in the current audio
recording. In our task the number of speakers is
priorly known, so we do not need a stopping
criterion to make that decision. However, BIC
can be used as a measure of the accuracy of a
given segmentation.

In this approach, given two sequences of
acoustic feature vectors obtained by the
segmentation system, we compute the BIC for
two hypotheses: Each sequence belongs to a
different speaker or both sequences belong to
the same speaker. The confidence measure is
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the difference between BIC values. To avoid
adjusting BIC penalty parameters, we force the
models for both hypotheses to have the same
complexity. That is, we model every speaker in
the first hypothesis with a GMM of N Gaussians,
and the global model in the second hypothesis
with a GMM of 2N Gaussians. In our
experiments we set N to 32 Gaussians.

3.2 Kullback-Leibler Divergence in the
Speaker Factor Space

Another way to measure the accuracy of a given
segmentation is to compute the symmetric
Kullback-Leibler (KL) divergence between the
Gaussian speaker models obtained in the
speaker factor space. In this approach we use
the hypothetic segmentation labels to obtain two
sequences of speaker factors, and Gaussian
models are trained for each sequence. We can
expect higher KL divergences between both
Gaussian models when the segmentation is
correct (i.e. the models are pure).

3.3 Core Segmentation System
Convergence

Previous measures were based on the principle
that if the segmentation is accurate we can build
pure and separate models for every speaker, so
both measures will be quite correlated. In
Section 2 we saw that the core segmentation
runs until convergence. A way to estimate the
quality of the output of the core segmentation
system is to study how long it took to converge.
We can expect the system to converge fast
when it can easily find the correct segmentation
and to converge slowly otherwise. This measure
is probably less correlated with the previous
measures described.

4 Speaker Segmentation Experiments
4.1 Experimental Setup
To evaluate the proposed segmentation system

and the confidence measures, the 2213 five
minute telephone conversations from the NIST
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SRE 2008 summed channel condition are
considered. Performance is measured in terms
of segmentation error rate, obtained as specified
in the NIST SRE 2000 speaker segmentation
task. In all cases speech/non-speech and
reference segmentation labels are derived from
Automatic Speech Recognition (ASR) transcripts
provided by NIST as in [Reynolds et al., 2009].

4.2 Segmentation Performance

As we explained in Section 2, the proposed
segmentation system comprises several steps,
including PCA initialization, K-means clustering,
iterative EM and Viterbi segmentation in the
speaker factor space, a Viterbi resegmentation
using MFCC features and a last soft-clustering
resegmentation. Table 1 shows the results
obtained by the segmentation system after every
step.

Table 1. Block Diagram of the proposed segmentation

system

Segsn;:?etzrlon SegrEt::ot:tlon Typical dev
PCA 20.2% 14.3%
+K-means 4.9% 8.8%
+Core . 3.1% 6.6%
segmentation
+Viterbi _ 2.3% 6.2%
resegmentation
+Soft-clustering 2.2% 6.1%

Given these results we can extract several
conclusions. First, speaker factors enable easy
separability between speakers. Just with PCA
and using one dimension to classify the frames
we get 20.2% segmentation error. Compared to
the eigenvoice based system presented in
[Castaldo et al., 2008] and evaluated on the
same dataset in [Reynolds et al., 2009], we can
see that our approach outperforms that one just
using PCA initialization and K-means clustering.

Note that at that point, frames are assigned to
one speaker or the other assuming statistical
independence, no context or temporal

information is used. Completing the core system
gives great improvement and results are
comparable to those obtained with the best
systems presented in [Reynolds et al., 2009].
Moreover, after resegmentations results improve
further. We believe that the key improvements to
outperform the system in [Castaldo et al., 2008]
are the novel PCA initialization and the
modification on the speaker turn duration
distribution.
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Fig. 2. Segmentation error and data distribution for the
fused confidence measure

4.3 Confidence Measures

To analyze the proposed confidence measures,
first we normalize them to be in the range [0,1]
and then we divide the dataset into 3 subsets
according to a uniform division of the confidence
measure range. We combine the confidence
measures applying Linear Logistic Regression
using the FoCal toolkit [Brummer]. For this
purpose we optimize the weights in order to
detect those recordings that have less than 5%
segmentation error, since it has been suggested
that low segmentation errors does not impact in
speaker verification performance [Reynolds et
al., 2009]. Both normalization and Linear Logistic

Computacion y Sistemas Vol. 15 No. 1, 2011 pp 27-37
ISSN 1405-5546



32 Carlos Vaquero Avilés Casco, Jesus Villalba Lopez, Alfonso Ortega Giménez,...

Regression is made using the NIST SRE 2008
data, since we only have ground truth
segmentation labels for this task. However, we
will see in Section 5 that the fused confidence
measure performs as expected in a different
dataset, at least in terms of Speaker Verification
Performance.

Figure 2 represents the distribution of the
recordings and the mean segmentation error
with the 90% confidence interval (Cl) over the
previously proposed confidence measure
ranges, for the fused confidence measure. We
can observe that all confidence measures
proposed follow the expected behavior: as they
increase, the mean segmentation error
decreases and so does the 90% CI. This way,
we can assure that given a segmentation output
with a high value in its confidence measure there
is a high probabilty of having a good
segmentation. However, we cannot assure that
given a low confidence measure the
segmentation is wrong, since the Cl is large is
that case. This behavior does not allow us to
predict the segmentation error given the
confidence measures in all cases, but it is
enough to consider them as an indicator of the
segmentation quality.

5 Speaker Verification Experiments

To evaluate the effect of our speaker
segmentation system and the confidence
measures on the speaker verification
performance we have conducted experiments on
the core-summed and 8summed-core conditions
of the NIST Speaker Recognition Evaluation
2010 [SRE, 2010]. For that purpose, we have
used a state-of-the-art JFA system.

5.1 Speaker Verification System
Description

As speaker verification system, we use the I3A
submission for the NIST SRE 2010 [Villalba et al.
2010]. This is a SV system based on JFA
[Kenny, et al., 2008]. Feature vectors of 20
MFCC (C0-C19) plus first and second
derivatives are extracted. Voice Activity
Detection (VAD) is performed computing the
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Long-Term Spectral Divergence (LTSD) of the
signal every 10 ms, and comparing it against a
threshold [Ramirez, et al., 2004]. After frame
selection and segmentation, every feature
stream is short time Gaussianized as in
[Pelecanos and Sridharan, 2001].

A gender independent Universal Background
Model (UBM) of 2048 Gaussians is trained by
EM iterations. Then 300 eigenvoices v, 100
eigenchannels u and the residual variability
matrix d are trained by EM ML+MD iterations.
We have used all telephone data from SRE04,
SREO5 and SREO06 for UBM and JFA training.

Speakers are enrolled using MAP estimates
of their speaker factors (y, z) so that the speaker
means super vector is given by

Ms =mypnm +vy +dz )

For the 8 summed-channel training condition,
we have clustered the streams belonging to the
target speaker prior to the estimation of the
model. First, we calculate the speaker factors of
each of the streams separately and then, we use
a criterion based on the cosine distances
between the factors of the different streams for
selecting the ones belonging to the same
speaker. Given a set 0 possible stream
selections

S = {(31352’"'53N) |Si € {152}} 3)

where N is the number of conversations. We
choose the stream combination I,y such as

N-1 N

!lhs)'!liu)
I,y = arg max T P |
=g ), X Tolluol @

Finally, we accumulate the statistics of the
selected streams to estimate the target speaker
model.

Trial scoring is performed using first order
Taylor approximation of the LLR between the
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target and the UBM Models like in [Glembek et
al., 2009].

LLR =~ (vyirn + dztrn)tz _I(Ftst — Nist(uzest + muBn))  (5)

Finally, scores are gender dependent ZT
Normalized using data from SRE04, SRE04 and
SREO06 (628 male speakers and 858 female
speakers with 4 segments by speaker). For the
core-summed condition, the maximum score of
the two automatic segmented speakers is
chosen.

5.2 Results Core-summed

Figure 3 shows Detection Error Trade-off (DET)
curves for the NIST SRE10 core-summed det5
condition. On the one hand, we present results
for the full trial list and, on the other, for three
different subsets of trials split according to the
fused confidence measure described in section
4.3. Minimum and actual NIST Detection Cost
Function (Cwmiss=10, Cga=1, Prage=0.01) are
marked on the curve with a point and a cross
respectively. Output scores have been calibrated
to log-likelihood ratios by linear logistic
regression using the FoCal package [Brummer]
with the matching condition of the NIST SRE08
short2-summed condition. In this manner, actual
costs are calculated applying the Bayesian
threshold of 2.29. Table 2 presents the EER and
cost values for the different confidence intervals,
together with the number of trials belonging to
each subset.

The performance of the system on the core-
summed condition is not far from the
performance on the core-core condition in which
we have a 2.4% of EER. We can appreciate a
fair correlation between the confidence and the
performance. The subset with higher confidence
is a 48% better than the subset with lower
confidence in terms of EER and a 26% better in
terms of actual DCF. These results prove that if
we have a high confidence on the segmentation
of the test speech segment we can expect a
good speaker verification performance. If we
analyze, the number of trials of each subset, we
observe that 85% of the trials have a confidence

bigger than 0.33. This implies that trials with
lower confidence do not have a big effect on the
performance of the full trial list.

Table 2. Performance on SRE10 core-summed
condition for different confidence intervals

Confidence | 4 | 933 | 0.33-067 | 0.67-1
range

EER(%) 338 | 435 3.59 2.25

min 0.192 | 0.230 0.177 0.148

DCF(x10)

act 0.193 | 0.238 0.188 0.174

DCF(x10)

Target trials 633 94 390 137

Non target | 26487 | 3884 18041 4533

trials

—— core-summed |

.| == conf0.67-1.00

10 +

Miss probability (in %)

T2 NSO U U TN SO UL | SO

B e st oo e 5

e conf 0.00-0.33
= = conf(.33-0.67

1 1 1 |
0102 05 1 2 5 10 20 40
False Alarm probability (in %)

Fig. 3. DET plot for the SRE10 core-summed
condition
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5.3 Results 8summed-core

Figure 4 compares the DET curves of the NIST
SRE10 8conv-core and 8summed-core det5
conditions. Minimum NIST detection costs are
marked on the curves with a point. Table 3
presents the EER and cost values, and the
number of trials of each condition. According to
these results, having perfect segmentation and
knowledge of the streams where the target
speaker is present leads to an improvement of
28% in terms of EER and 37% in terms of DCF.
However, we must take into account that we
have achieved very low error rates for both
conditions (under 1% of EER). With the number
of trials available, this means that, in the EER
operating point, we have only 3 absolute misses
for both conditions. For the min DCF operating
point, we have 6 misses and 32 false alarms on
the 8conv-core condition, and 10 misses and 22
false alarms for 8summed core. Doddington 's
"rule of 30" [Doddington, 2000], affirms that to be
90% confident that the true error rate is £30% of
the true error rate there needs to be at least 30
errors. Therefore, the degradation between
8conv and 8summed condition is inside the
confidence range of the estimated error rates so
we would need a much bigger number of trials
for being able to measure it precisely. The fact
that, in absolute terms, 8summed and 8conv
performance is quite similar makes us think that
we are very near of achieving the same results
as with the perfect segmentation.

Table 3. Performance on SRE10 8conv-core and
8summed-core conditions

8conv-core | 8summed-core
EER(%) 0.67 0.93
min DCF(x10) 0.028 0.045
Target trials 442 322
Nontarget trials 21093 15010
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Fig. 4. DET plots for the SRE10 8conv-core and
8summed-core conditions

6 Conclusions

In this work, we have presented an eigenvoice
based speaker segmentation system and a
speaker verification system that, together,
produce performances that are among the very
best of the state-of-the-art systems on speaker
verification tasks that involve summed channel
segments in the enroliment or the testing sets.
We have shown a set of confidence measures of
the segmentation that can be fused together into
a unique measure. We can use this measure to
estimate the level of confidence that we can
have on the speaker verification performance on
a given test segment. This can be useful to apply
back-off strategies on the segments with low
segmentation confidences. These strategies
include using other segmentation approaches on
the segment or even human inspection. On the
other hand, we have presented results on the
NIST SRE10 8summed enrollment condition that
proves that our system can produce a
performance very near to the one we get having
perfect segmentation. Besides, we think that



Speaker Verification on Summed-Channel Conditions with Confidence Measures 35

bigger trial lists should be needed to measure
performance on 8summed and 8conv conditions
precisely.
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