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Abstract. The representation of objects by multi-
dimensional arrays is widely applied in many research
areas. Nevertheless, there is a lack of tools to classify
data with this structure. In this paper, an approach for
classifying objects represented by matrices is intro-
duced, based on the advantages and success of the
combination strategy, and particularly in the dissimilar-
ity representation. A procedure for obtaining the new
representation of the data has also been developed,
aimed at obtaining a more powerful representation.
The proposed approach is evaluated on two three-
way data sets. This has been done by comparing the
different ways of achieving the new representation,
and the traditional vector representation of the ob-
jects.

Keywords. Classification, three-way data, combina-
tion and dissimilarity representation.

Resumen. La representacion de objetos a través de
arreglos multidimensionales es ampliamente utilizada
en muchas areas de investigacion. Sin embargo, el
desarrollo de herramientas para clasificar datos con
dicho tipo de estructura ha sido insuficiente. En este
trabajo se introduce una metodologia para clasificar
objetos que son representados por matrices, basada
en las ventajas y éxitos de la estrategia de combina-
cion y particularmente en la representacion por disimi-
litudes. También se propone el procedimiento para
obtener la nueva representacion de los datos. La pro-
puesta realizada en este trabajo se evalué en dos
conjuntos de datos tres-vias. Esta evaluacion se realizo
mediante la comparacion entre las diferentes maneras
de obtener la nueva representacion, y la representa-
cion tradicional de los objetos a través de vectores.
Palabras clave. Clasificacion, datos de tres-vias, combi-
nacion y representacion por disimilitudes.

1 Introduction

As a result of the wide development of technolo-
gies in many research fields, more abundant
object descriptions are obtained; however they
are more complex. Examples include objects for
which several related measurements have been
done. Those measurements are organized in a
three-way array (simplest case); such that ob-
jects are in one direction and two different types
of variables are in the other two directions of the
array.

In the past years, some methods capable of
dealing with this structure have been proposed,
since the data may not be optimally analyzed
with traditional (two-way) approaches. However,
most of the introduced methods are focused on
solving exploratory and regression problems [7,
13]. Classification problems, and therefore tools
to face them, have been less explored [7, 1].
What it is mostly done to classify this type of
data, consists in unfolding it and building tradi-
tional classifiers on the vector (1D) representa-
tion of the objects [16]. Consequently, the rela-
tionship of the different types of variables is lost
and most of the times the dimensionality of the
array increases drastically. Another approach is
based on using multi-way exploratory analysis
tools e.g. PARAFAC [13], and the traditional
classification methods are applied on the new
obtained representation of the data. However,
these exploratory tools have some disadvantag-
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es [7], e.g., the analysis is purely numerical; they
do not take into account the shape of the
represented data and/or spatial relationship of
the measurements, which could be discrimina-
tive information. Hence, if we could somehow
transform this three-way array (taking into ac-
count the variables relationship) into a represen-
tation of a lower order, where this information
could be taken into account, the use of traditional
classifiers would be more suitable.

Although it seems that so far, combination
systems have not been used for three-way data
analysis, they have been deeply studied as a
way of integrating the information obtained from
different representations of objects [6, 7]. These
systems emerged with the goal of achieving the
best possible classification performance. The
combining techniques can be applied by building
different classifiers on the different representa-
tions of the same objects or by combining these
representations e.g. dissimilarities [4, 11], to
obtain a more powerful representation of the
data. In the studies made on this topic, the com-
bination strategy has proved to perform better in
most cases, than by using just one classifier or
representation of objects e.g. features or dissimi-
larities [3, 4, 11].

An approach, for which the combination strat-
egy has also been studied, is that known as
Dissimilarity Representation (DR) [12]. In this
approach, objects are represented by their dis-
similarities to representative objects of the
classes. A dissimilarity space is generated by
this representation, such that the geometry and
the structure of a class are determined by the
user-defined dissimilarity measure, in which
application background information can be used.
In recent studies [9, 10, 14], the advantage of
learning from dissimilarities between pairs of
objects instead of traditional feature-based data,
has been demonstrated for different types of
data e.g. spectra. Moreover, the benefits of
combining DRs for different applications have
been studied [4, 5, 11].

In this paper, given the success of the combi-
nation strategy, and more specifically that one of
the combination of dissimilarity representations
[11], we propose to slice the three-way array
through the variables of one direction e.g. a ver-
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tical slice in a three-way array, and compute the
DR for each slice such that we take into account
the information in the non-sliced direction. In this
way, we can analyze the objects in terms of the
different variables and combine all that informa-
tion to obtain a new less complex and more po-
werful representation to classify them. Thus, this
paper is structured as follows. In Section 2, an
explanation of the proposed approach will be
provided. In Section 3, we give a description of
the two three-way data sets we will use to eva-
luate the proposed approach. Section 4 is dedi-
cated to the experiments and discussions. Com-
parisons will be made by slicing the three-way
data sets in the two directions and combining the
DR of each direction independently. The combi-
nation of all the DRs from the two directions will
also be analyzed. Moreover, results are com-
pared with the traditional feature representation
(1D, obtained by unfolding the data) of these
objects in order to show the advantages of the
proposed approach over this representation. In
this section, an analysis by applying a kind of
discriminative weighting for each slice is also
done, to see how the variable selection can im-
prove the results and/or decrease the computa-
tional complexity. Finally, the conclusions of this
work will be presented in Section 5.

2 Proposed Approach

In many research areas e.g. image processing,
chemometrics and signal analysis, we can find
objects described by different types of mea-
surements. Hence, these objects should be
represented by a higher-order generalization of
vectors and matrices, in such a way that the
multidimensional structure given by these mea-
surements can be analyzed. So, consider that
we are in the presence of a classification prob-
lem, in which we have a three-way array
Y € RX™*n composed of several (I) objects
represented by two types of measurements
(being m and n the numbers of these two types
of variables, see Fig. 1). Consequently, each
object will be represented by a matrix y; € R™*",
on which traditional classifiers cannot operate.
Based on the success of the combining pro-
cedure, we propose to use it for the classification
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of data with this structure. The idea of our ap-
proach is to analyze each variable of one of the
directions e.g. across second direction for
j=12,...,m, with respect to (or depending) to
the variables of the other direction. This way, we
can exploit the relationship between the va-
riables in both directions. Afterwards, the ob-
tained DR of these objects for each of the va-
riables in the analyzed direction are combined.
Consequently, we will use the information or
structure contained in the matrix to discriminate
between the classes.

The DR [12] was proposed as a more flexible
representation of objects than the feature repre-
sentation, with the purpose of using the structure
of the objects for their classification. In this ap-
proach, which was mainly thought for classifica-
tion purposes, new features are defined for the
objects, such that they are represented by their
dissimilarities to a set of representative objects
of each class. It is based on the role that
(dis)similarities play in a class composition,
where objects from the same class should be
similar and objects from different classes should
be different (compactness property). Hence, it
should be easier for the classifiers to discrimi-
nate between them. It aims at including more
information about the characteristics and struc-
ture of the objects through a dissimilarity
measure. Hence, the first task in the DR is to
select a suitable dissimilarity measure for the
problem at hand. The fact that it has to be user-
specified is a way for the expert to integrate his
knowledge and application [12].

Thus, in this approach, given a set of training
objects X ={x,x,,...,X }, a representation set (a
set of prototypes or representative objects for
each class) R={r,r,,...,r,}, and a dissimilarity
measure; the distance between each object
X, € X to each object , €R will be defined as
d(x,r,). The representation set R can be a
subset of X, Rc X or X itself, being then
D(X,X)a square dissimilarity matrix, or R and

X can be completely different sets. There are
some approaches to select prototypes of the
representation set. See [12] reference for further
details.

An object from the training set is then
represented by a vector of dissimilarities

D(xi,R):[d(xl,rl),...,d(xi,rpﬂ, which relates it

to the prototypes in the representation set.
Therefore, in place of the traditional feature ma-
trix X € R™™, where | runs over the objects and
M over the variables, the training set is now
represented by the dissimilarity matrix D(X,R)

of size Ixp, which associates all objects from

the training set to all objects from the representa-
tion set.

We build from this matrix a dissimilarity space
D € RP. Objects are represented in this space by
the row vectors of the dissimilarity matrix, such
that each dimension corresponds to the dissimi-
larities with one of the representation objects.
Using the DR, classifiers are trained in the space
of the dissimilarities between objects, instead of
the traditional feature space. Consequently, the
relationship between all objects in the training
and representation sets is used for the classifica-
tion. If a suitable measure is chosen, the com-
pactness property of the classes should be more
pronounced. Therefore, it should be easier for
the classifiers to discriminate between them,
such that linear classifiers in the dissimilarity
space may correspond to non-linear classifier in
the feature space. In general, any arbitrary clas-
sifier operating on features can be used [12].

The intuitive idea of this representation, of
using the proximities between objects (as fea-
tures) for discriminating among classes, has
demonstrated to be especially advantageous for
small sample size problem and high-
dimensionality feature spaces [12], which are
very common characteristics in most research
areas e.g. chemometrics. As the dissimilarities
are computed to the representation set, it consti-
tutes already a dimensionality reduction and
therefore it can be less computationally expen-
sive.

Moreover, the combination strategy has also
been studied in the DR approach [11, 12] with
the purpose of obtaining a more powerful repre-
sentation of data. Such is the case where the
same objects have different representations or it
is difficult to define just one dissimilarity measure
to take into account all the information for the
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problem at hand. Therefore, several dissimilarity
matrices can be computed and then combined.
In the studies made on this topic, it has been
demonstrated that the combination of DRs per-
forms significantly better than by using a single
representation of objects [4, 11]. Recently, we
extended the DR approach from vectors to 2D
arrays [15], but a 2D dissimilarity measure has to
be designed for the problem at hand. It would
become hard to design a measure in multi-way
datasets where there are different types of va-
riables, even in the same direction. Hence, this
new procedure can also be applied to data with
these characteristics. Moreover, we can make
use of the already existent 1D dissimilarity
measures (which have been more explored).
Moreover, by applying discriminative weights in
the combination procedure, a variable selection
can be done, such that the non-discriminative
variables are not taken into account.

Hence, the first step of the proposed approach
is to slice the three-way array, either in the
second or the third direction. We will obtain for
each slice (matrix), a vector representation of all
the objects with the variables of the direction that

is not sliced; i.e. a matrix X(Ixn)for every jva-
riable where j=1,2,...,m, if the slicing is done
through the second direction (See Fig. 1). The
same holds for the third direction. Hence, we can
analyze the objects according to each variable of

one direction, but in terms of the variables of the
other direction.
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Fig. 1. Slicing of the cube to compute a dissimilarity
matrix for each j variable

Next, we compute the DR for each of the ma-
trices (slices) obtained. By using the DR taking
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into account the information of the other direc-
tion, we can analyze how each variable if each
direction influences in the discrimination among
the classes. An important aspect in this ap-
proach is the selection of a proper dissimilarity
measure for the problem at hand. Hence, before
computing the DR from the matrices obtained in
any of the directions, we must find a suitable
measure in each case.

Considering the three-way array defined, we
are not in presence of neither of the previous
reasons stated for combining DRs. The variables
in the two directions make up together one re-
presentation of the object. Nevertheless, when
the cube is sliced, the representations obtained
from the variables of the analyzed direction could
be seen as we had different representations of
the same objects. Thus, if we combine all these
representations as the third step of our proce-
dure, we can take the information of all of them
into account to obtain the desired better repre-
sentation of the data. For this approach, the
three-way array could be sliced in either of the
two directions. The combining procedure to ob-
tain the final DR representation could be applied
on the slices of one direction, or on all the slices
from both directions. Once we have computed
the DR for the three-way array, we can use any
of the traditional classifiers on it. The combina-
tion of the DRs can be done by concatenating all
the dissimilarity matrices into a new one e.g.

DXR=O(XR D(XR..D(XR] with j=12,...,m,

or by applying a combining rule e.g. weighted
sum or multiplication [10]. Based on the results
obtained in other applications with the weighted
sum combining rule, in this paper we will apply it
for the combination process:

t

D(X’ R)total = ZWSD(X’ R)s

(1

where s=j or s=k and t=m or t=nrespec-

tively, depending on the direction that has been
sliced. In the combination is done in both direc-
tions t=m+n. In a first approach w, is a scale

applied to each matrix so that their maximum
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values become equal, avoiding the new repre-
sentation to be influenced by the largest values
in the sum. However, other weights could be
used. An example could be a weight indicating
the discriminative influence of the variable re-
lated to the dissimilarity matrix.

The idea of using these weights has the aim of
making a kind of variable selection. Only va-
riables with high discriminative power should
have high weights (according to a determined
threshold), such that they are the ones taken into
account in the combination process. Thus, the
variables with low weights (low discriminative
power) are not analyzed; their corresponding
dissimilarity matrix will not be computed. Conse-
quently, by this variable selection, the whole
procedure can be less computationally expen-
sive, and the influence of some noisy, redundant
or not informative data, could also be reduced.

3 Three-way Data Sets

Signal Processing and Chemometrics, are some
of the main areas where this type of object re-
presentation can be found. Thus, two three-way
spectral data sets and their corresponding matrix
(2D) representations will be studied in this paper.
The first is a public domain data set [17], and its
description has been taken from the website for
a better understanding of the problem [17]. It
consists of samples of red wine, produced from
the same grape (Cabernet Sauvignon) and be-
longing to different geographical areas and pro-
ducers. They were collected from local super-
markets and analyzed by means of HS-GC-MS
(headspace gas chromatography/mass spectro-
metry). Separation of aroma compounds was
carried out on a gas chromatography system
(2700 columns from the scans of chromato-
graphic profile). For each sample, a mass spec-
trum scan (m/z: 5-204) measured at the 2700
elution time-points was obtained, providing a
data cube of size 44x2700x200. The data set is
composed of 44 samples from 3 different geo-
graphical areas: South America (21 samples),
Australia (12 samples) and South Africa (11
samples). For the 1D (vector) representation of
the objects, the three-way array was unfolded in
its second direction, obtaining a matrix of size

44 x540000. All-zero columns were deleted in
this representation (none of the samples have
information in these columns), so the final data
set has a size of 44x117060.

The second data set corresponds to seismic
signals from the ice-capped Nevado del Ruiz
volcano in the Colombian Andes, currently stu-
died by the Volcanological and Seismological
Observatory at Manizales. Signals were digitized
at 100.16 Hz sampling frequency by using a 12
bit analog-to-digital converter [9]. The dataset for
the experiments is composed of 12032-point
signals of two classes of volcanic events: 235 of
Long-Period (LP) earthquakes, and 235 of Vol-
cano- Tectonic (VT) earthquakes. A 2D time-
frequency representation was computed by the
Short-Time Fourier Transform (STFT) with a
Hamming window, obtaining a spectrogram from
each signal [2]. To compute these spectrograms,
trying to achieve a trade-off between time and
frequency resolution, a 256-point (window size)
STFT was calculated with 50% overlap. With this
technique, it can be known what frequency inter-
vals are present in a time interval of the signal
and use it for the discrimination between
classes. The concatenation of the spectrograms
of the different signals (objects) will result in a
470x93x129 three-way data. The second direc-
tion stands for the time points and the third one
for the frequency bands present in those time
points. For the 1D (spectral) representation of
each object, we have computed the spectrum by
using a 12032-point Fast Fourier Transform
(FFT), thus the whole signal is analyzed in both
1D and 2D representations, leading to a
470x12032 data. The differences in 1D spectral
content of a signal allow for the discrimination
between the events. However, with this repre-
sentation we are not able to use the changes of
frequency content in time to separate classes.

4 Experiments and Discussion

With the purpose of demonstrating the feasibility
of our proposal for the classification of three-way
data sets (2D representation of objects), this
representation will be compared with their fea-
ture vector (1D) representation based on the DR.
In the case of the proposed approach, we com-
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pare the performance of classifiers when com-
bining in the different directions of the three-way
data separately, as well as the DRs from the two
directions combined all together. An analysis of
the results is also done, by making a variable
selection in each direction.

In order to compute the DR, two dissimilarity
measures were used. In the first data set, the
differences between the classes of wine consist
in the relation of concentrations (shape changes)
of the variables in the chromatographic profile
(second direction of the cube). So, we need a
dissimilarity measure which takes this informa-
tion into account when unfolding the data (1D
representation) and when slicing in the third
direction, i.e. in each slice through the third di-
rection, we obtain a mass fragment for all the
variables of the chromatography profile. In this
case, we will use the Shape measure [10] (See
Eq. 2). It is based on the differences of the de-
rivatives of the spectrum, allowing for taking into
account the changes in its shape, not being so in
its feature representation

d(xi’xz)shape = J_Z::1|Xalj _XO-21| ’ (2)

o

with X° =

| o

jG(LCf)*X- 3)

o

The variable x° corresponds to the computa-
tion of the first Gaussian (that is what G stands
for) derivatives of spectra. Thus, a smoothing
(blurring) is done by a convolution process (*)
with a Gaussian filter and o stands for a
smoothing parameter [10]. This measure has
proved to perform well for spectral data [10, 14].

However, when we slice through the second
dimension, the different fragments in which each
component (each chromatography variable) is
decomposed are obtained. Differences between
these fragments for all the objects are just in
terms of concentration (area under the curves),
so it is enough to use a simpler measure like the
Manhattan distance. For the second data set, the
shape measure was used again for the 1D spec-
tral representation, so changes in the shape of
the spectra are analyzed. The same measure
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was applied for the computation of the DR in the
new proposed approach (in both directions).
Three classifiers were built on the DR from the
different representations of the two data sets;
namely, k-Nearest Neighbor (k-NN), Regularized
Linear Discriminant Analysis (RLDA) and the
Support Vector Machine (SVM). For the k-NN
classifier, the number of neighbors (k) was opti-
mized in a leave-one out cross-validation proce-
dure. In order to find the regularization parame-
ters of RLDA, an automatic regularization (opti-
mization over the training set by cross-validation)
process was done. For the SVM classifier, the
linear kernel was applied in the two datasets.
The regularization parameter C was also
optimized in a cross-validation procedure over
the training set. Experiments were repeated 10
times. Training and test objects were randomly
chosen from the total data sets, in a 10-fold
cross-validation process. For the first data set,
as the number of samples is so small, we de-
cided to use the training set (in the cross-
validation procedure) as representation set (pro-
totypes). From previous studies, it was deter-
mined that the best results for the second data
set were obtained with 100 prototypes, which
were randomly selected. In both cases, the same
training and test sets were used for all the repre-
sentations, so the results can be comparable.
The o parameter for the Shape measure (Eq. 2)
was optimized in 10-fold cross-validation. In the
case of Wine data, as the number of objects is
so small, the optimization procedure was done
with the whole data set. The best results were
obtained for o =5. In the case of the Seismic
volcanic data, 170 samples (85 of each class)
were used to optimize the o parameter for each
direction. The rest of the data was then used to
evaluate the classification performances, by
using the best o values (o=2 for the time
direction and o =3 for the frequency direction).
For the 1D representation, in which this measure
will be used too, the o parameter was also op-
timized in a cross-validation procedure. The best
results were achieved with o =15 for the Volca-
no data set and o = 20 for the Wine data set. For
the experiments with the variable selection, we
applied a forward selection. The variables (more
discriminative) for which a dissimilarity matrix
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should be computed are selected according to
the leave-one-out nearest neighbor error. As for
k-NN, a maximum number of variables to be
analyzed (neighbors) has to be chosen.

In Tables 1 and 4, the performance of
classifiers on the two types of representations is
shown: 1D (unfolding) representation and the
combining procedure in the different directions
(CD). The performance is evaluated in terms of
the Average Classification Error (ACE).

Table 1. Averaged cross-validation error in % (with
standard deviation) for Wine data set. The 1D (vector)
and different versions of the proposed approach are
compared

Representa-

; k-NN RLDA SVM
tions

1D 51.7(0.9) | 36.5(1.4) | 34.3(1.4)

CD (mass dir.) | 28.5(0.2) | 15.9(0.2) | 21(0.3)

(

CD(chrom dir.) | 48.6(0.4) | 23.7(0.2) |30.4(0.1)
(
(

CD (overall) 49.5(0.3) | 22.1(0.1) | 25.8(0.3)

In the first data set (Table 1), it can be ob-
served that the unfolding procedure is not very
suitable. By applying the DR on this representa-
tion, the high dimensionality of the obtained data
is reduced, which is one of the main problems in
this procedure. Still, fictitious connections be-
tween the end point of the variables in one direc-
tion and the start of the others are inserted. That
is, not existent information or shapes can be
inserted. In any direction that we do the unfold-
ing, the same phenomenon will happen; some
relation will be lost or its benefit will not be used.
However, the results with the combination pro-
cedure are not always better; it seems to depend
on what we are measuring in each direction.
Let’s look at the results when combining the DRs
obtained in the second direction (chromatogra-
phy direction), where we are analyzing the mass
spectra for each peak of the chromatogram.
There is always an improvement with respect to
the unfolded data. Nevertheless, compared to
the slicing in the other direction the results are
worst. It could be due to the fact that there is no
much discriminative information in this direction.
Another explanation could be that the dissimilari-

ty measure is not the most appropriate one in
this case.

Nevertheless, we can also observe in Table 1
that the ACE values of the combination proce-
dure, when slicing on the third direction (slicing
in the mass direction), are significantly smaller.
This result is in agreement with the nature of the
problem. The influence of the changes in the
shape of the chromatography profile is taken into
account in the discrimination among classes.
However, it seems that the same reason for the
bad performance of the procedure in the second
direction is affecting when the DRs from both
directions are all combined. Further studies
should be done on this topic.

In Tables 2 and 3, it can be observed the per-
formance of classifiers when selecting the va-
riables (dissimilarity matrices to be computed) in
each direction. In this case, we made several
experiments. In each of them we selected a por-
centage of the data (threw away 100%- x%), to
see how it can affect the results in each case.
We can see in the tables above, that this proce-
dure does not benefit the combination process. If
we compare with Table 1 where all data is used,
the errors start increasing when using just 90%
of the data. It could be explained by the fact that
all variables in this data are important, or that
this procedure is not suitable for the selection in
this case. Finding a proper discriminative weight
for this selection is not such an easy task.

In Table 4, it can be observed that once again
the proposed approach improves the results
obtained for the 1D spectral representation of the
Seismic volcanic data.

Nonetheless, in this case there is also a com-
bination variant that outperforms the others.
Unlike the previous data, the best results are
obtained when slicing in the second direction
(time direction), where we are measuring the
frequency information. This is also reasonable.
We are analyzing the changes of frequency con-
tent for each moment in time and using this in-
formation for the discrimination. However, the
results for the third direction (measuring the time
information) are bad. This analysis is based on
the behavior of a frequency along time. It may
happen that it is not as discriminative as the
information in the other direction. Inaccuracies in
the computation of spectrograms, where the time
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Table 2. Averaged cross-validation error in % (with standard deviation) for leave-one-out nearest neighbor error
forward variable selection in the Chromatography direction of Wine data set. The columns indicate the % of the data
that is used in each experiment

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
k-NN | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 61.4(0.5) | 48.6(0.4)
RLDA | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 64.1(0.4) | 23.7(0.2)
SVM | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 48.2(0.8) | 30.4(0.1)

Table 3. Averaged cross-validation error in % (with standard deviation) for leave-one-out nearest neighbor error
forward variable selection in the Mass direction of Wine data set. The columns indicate the % of the data that is used
in each experiment

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
k-NN | 46.8(0.3) | 45.9(0.2) | 45.9(0.2) | 45.9(0.2) | 45.9(0.2) | 45.9(0.2) | 31.8(0.3) | 31.8(0.3) | 31.8(0.3) | 28.5(0.2)
RLDA | 335(0.1) | 31.4(0.2) | 31.4(0.2) | 31.4(0.2) | 31.4(0.2) | 31.4(0.2) | 28.2(0.1) | 28.2(0.1) | 28.2(0.1) | 15.9(0.2)
SVM | 35.9(0.3) | 35.9(0.3) | 35.9(0.3) | 35.9(0.3) | 35.9(0.3) | 35.9(0.3) | 29.5(0.2) | 29.5(0.2) | 29.5(0.2) | 21(0.3)

localization is obtained by windowing the data at
different times and applying the Fourier trans-
form on that part of the signal, could be another
reason for this result. When analyzing the spec-
trograms, it can be known what frequencies are
present in a time interval of the signal, but not
the exact moment in time. On the other hand,
although for this data the overall combination
improves also the 1D representation, it is not
enough. Taking into account what happens in
both data sets with the overall combination, we
could say that, when the information analyzed in
one of the directions is not sufficiently discrimina-
tive, this can affect the goal of finding the more
powerful representation.

Table 4. Averaged cross-validation error in % (with
standard deviation) for Volcano data set. The 1D (vec-
tor) and different versions of the proposed approach
are compared

RERUETENES | n RLDA SVM
tions

1D 37.7(0.7) | 27.6(0.6) | 27.8(0.9)

CD (time dir.) | 31.9(0.1) | 24.5(0.3) | 23.6(0.2)

CD (freq dir.) | 37.7(0.08) | 32.2(0.1) | 28.1(0.1)

CD (overall) | 38(0.06) | 26(0.06) | 25.3(0.04)
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The discrimination between classes in these
data sets seems to be difficult at first. Nonethe-
less, for all representations, the linear classifiers
perform better than the non-linear ones, and
even more on the representations obtained from
the proposed approach. This complements the
discussion above, and could support the hypo-
thesis of this study: finding a more powerful re-
presentation of data where simple classifiers can
perform relatively well.

If we take a look at Tables 5 and 6, we can
see that results improve when throwing away a
small percentage of the data. When slicing in the
time direction (analyzing frequency in each time
point), by throwing until 30% of the data away,
for most classifiers we have lower errors than
when using the whole data. If the error is still the
same that when using all time points, we can still
throw those variables because they do not seem
to influence the classification performance.
When slicing in the frequency direction, we can
observe a similar behavior. If throwing up to 20%
of the data away, a lower error is obtained com-
pared to the error when using the whole data. It
seems then that the weighting can be beneficial
in this case, not only because the performance
of classifiers improves, but also since the whole
process can be less computationally complex.
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Table 5. Averaged cross-validation error in % (with standard deviation) for leave-one-out nearest neighbor error for-
ward variable selection in the Time direction of Volcano data set. The columns indicate the % of the data that is used

in each experiment

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
k-NN | 25.7(0.1) | 25.7(0.2) | 25.7(0.1) | 25.7(0.1) | 25.8(3) | 25.9(0.2) | 25.3(0.1) | 25.7(0.1) | 25.1(0.2) | 31.9(0.1)
RLDA | 31.2(0.3) | 30.7(0.3) | 30.7(0.3) | 29.8(0.4) | 28.3(0.2) | 27.7(0.2) | 27.1(0.1) | 26.9(0.2) | 26.9(0.2) | 24.5(0.3)
SVM | 26.4(0.1) | 25.8(0.2) | 25.8(0.1) | 25.8(0.1) | 25.8(0.1) | 24.6(0.2) | 22.8(0.3) | 22.6(0.3) | 22.6(0.2) | 23.6(0.2)

Table 6. Averaged cross-validation error in % (with standard deviation) for leave-one-out nearest neighbor error for-
ward variable selection Frequency direction of Volcano data set. The columns indicate the % of the data that is used

in each experiment

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
K-NN' | 51.20.2) | 50(0.1) | 49.7(0.2) | 48.3(0.1) | 48.3(0.1) | 48(0.1) | 43.5(0.2) | 44.1(0.2) | 43.5(0.1) | 37.7(0.1)
RLDA | 46.5(0.1) | 44.8(0.1) | 44.4(0.1) | 43.7(0.1) | 43.5(0.1) | 43(0.1) | 41.4(0.1) | 41.3(0.2) | 38.4(0.2) | 32.2(0.1)
SVM | 453(0.2) | 45.3(0.1) | 44.5(0.3) | 44.3(0.2) | 44.1(0.1) | 43.8(0.1) | 41.3(0.2) | 40.9(0.3) | 38.3(0.2) | 28.1(0.1)

5 Conclusions

We proposed an approach for classifying three-
way data, by the combination of dissimilarity
representations. In this approach, the cube is
sliced through the variables of each direction.
Consequently, we have a vector representation
of the objects on which DR can be applied. By
using the DR we can analyze how the variable of
each direction influences the discrimination
among the classes by taking into account the
information of the other direction. Information
about the data that is missing in its feature re-
presentation, e.g. shape changes in spectra, can
also be incorporated into the dissimilarity
measure. This approach can be applied or gene-
ralized to different types of three-way data; even
in those where different types of variables are all
related in the complex multi-dimensional struc-
ture. By combining the DRs, all the information is
projected in a more powerful representation of
the data. The good performance of classifiers on
the different variants of the introduced approach
shows that it can be a good solution for the clas-
sification of three-way data.

The DRs obtained from the slicing in each di-
rection were combined separately first, and all
together. It has been shown that the results of
the combination on one direction depend on the
discriminative information that is taken into ac-
count. Moreover, if the DRs from one of the di-

rections are not representative enough, this can
also influence the results of the overall combina-
tion. Finally, if more robust weights are applied in
the combination rule, this should lead to a better
discrimination.
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