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Resumen. En la actualidad algunos investigadores 
conciben que los lenguajes como C++, Java y C# poseen 
una orientación interactiva. Esta forma de programación 
por lo regular, tiende a generar costos innecesarios en el 
desarrollo, en el diseño y principalmente en el manejo de 
los mensajes; lo que implica que el desarrollador deba 
tener un conocimiento extra del problema al aplicar una 
reingeniería de software. En este documento se presenta 
un enfoque basado en la computación proactiva e 
incremental, la cual busca que los objetos o dispositivos 
interactúen en beneficio del ser humano. Es por esta 
razón, que surge la necesidad de desarrollar y formalizar la 
base de un paradigma proactivo orientado a objetos, es 
decir, el paradigma propuesto da una alternativa para 
resolver algunos problemas que requieren ser 
incrementales tomando como base el paso de mensajes. 
Esta representación agrega reglas al paradigma orientado 
a objetos, lo que permite a éstos comunicarse por 
sentencias llamadas: Activadores y Activados. 
Palabras clave: Objetos proactivos, Semántica operacional, 
Diseño de patrones, Objetos funcionales, Objetos 
Imperativos. 
 
Abstract. At present, some researchers consider that 
languages like C + +, Java and C # have an interactive 
guide. The use of interactive programming by developers 
often produces unnecessary system development's costs; 
this involves the developer to extra knowledge when 
applying the software re-engineering. This paper presents 
an approach based on proactive computing, which looks 
electronic devices to interact in benefit of the human 
being. Due to this need, we developed and formalized the 
base of an object-oriented proactive-paradigm. That is, the 
proposed paradigm provides an alternative to solve some 
problems that need to be incremental, based on the 
passage of messages. This perspective adds rules to the 

object-oriented paradigm, which allows itself the objects to 
communicate by called methods: Activators and Activated. 
Keywords: Proactive objects, Operational semantic, 
Patterns design, Functional objects, Imperative objects. 

1 Introducción 

La programación orientada a objetos ha tenido 
énfasis en los últimos años en la realización de los 
sistemas basados en cómputo. Los lenguajes 
orientados a objetos fueron diseñados para 
proporcionar una intuitiva forma de ver los datos, así 
como el cómputo de una manera unida. Esto 
permite crear una representación entre el software y 
el mundo de los objetos físicos [1]. 

De talante intuitivo se puede observar que los 
objetos del mundo físico interactúan entre sí. Esta 
interacción se realiza de diferentes maneras, ya sea 
por eventos, secuencias o concurrencias. En esta 
parte del trabajo se darán a conocer los conceptos 
básicos necesarios para desarrollar un paradigma 
de programación llamado -Cálculo; en el que se 
involucra la teoría orientada a objetos. Si bien es 
posible decir que mucho de lo que se modela en el 
mundo es a través de objetos, también hay que 
tener en cuenta la forma en que éstos se relacionan 
o se ven afectados por su entorno. Este trabajo se 
enfocará a analizar esta interacción y cómo estos 
objetos pueden ser afectados. Esta forma de 
interacción se presentará mediante la lógica de 
primer orden. 
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El término proactivo fue acuñado por Viktor 
Frankl [3]. Este término se ha llevado a diferentes 
áreas de la sociedad, desde lo administrativo hasta 
el campo de la computación; donde el sentido de 
esta palabra toma sus peculiaridades. Hoy, la 
investigación en el campo de la informática se 
encuentra enfocada en un modelo interactivo de 
cómputo, esto se debe a que las personas 
interactúan directamente uno a uno con sus 
computadoras [2,6]. 

Con el paradigma de cómputo proactivo se 
pretende que las computadoras se anticipen a las 
necesidades del usuario y que éstas permitan tomar 
decisiones a nuestro favor. Esto es, mientras las 
personas están trabajando, las computadoras 
interactuarán unas con otras en busca de la 
solución a algún problema. Esto puede propiciar una 
proactividad en la actividad humana. 

En el campo de la computación proactiva 
actualmente existen desafíos importantes que se 
deben resolver tales como: la conexión física de 
millones de nodos, modelos de cómputo, lenguajes 
y paradigmas. En este trabajo la palabra proactivo o 
proactiva tiene que ver con la noción de estar a 
favor de la acción, más que el significado de qué 
hacer con la acción misma. 

Los retos que se proponen en la computación 
proactiva nos hacen definir un paradigma de 
programación orientado a objetos. Esta propuesta 
de paradigma deberá permitir la interacción de los 
objetos, lo que promueve la proactividad entre los 
sistemas. 

Los paradigmas actuales de la programación 
orientada a objetos se preocupan por la clasificación 
jerárquica, esto nos lleva a otro planteamiento. 
Dentro de un modelo jerárquico existe la evolución 
de los objetos como lo describe Darwin. Desde un 
punto de vista particular, si un objeto de jerarquía 
superior es modificado, ¿Los objetos derivados o de 
jerarquías inferiores dependientes serán 
modificados? Dentro de la etapa de diseño de 
cualquier sistema esto es admisible, pero en el 
momento en que se trata de algo ya implantado esto 
tiene connotaciones colaterales. Muchos lenguajes 
orientados a objetos han agregado a sus 
clases/objetos mecanismos para indicar que 
algunos métodos han dejado de operar o se 
encuentran derogados. 

Estas soluciones favorecen en mucho al trabajo 
de la reingeniería, aunque dentro del enfoque 
proactivo éstas no son favorables. Esto es un factor 
importante que promueve el análisis de los objetos 

basándose en ciertas condiciones y reglas. Estas 
reglas deben permitir que un objeto evolucione sin 
llegar a permear con los objetos de su entorno de 
manera directa en el diseño en su creación. 

Por un momento imaginemos un sistema 
planetario como es el nuestro, donde existe un sol y 
varios planetas que giran entorno a él. Si 
agregamos un objeto con suficiente masa en algún 
instante, muchos de estos planetas se verían 
afectados. Esto se debe a la fuerza gravitacional y a 
la atracción que existe entre ellos, este efecto 
también se da, si retiráramos algún planeta del 
sistema solar descrito. Si se le pidiera a un grupo de 
desarrollo realizar dicho modelo físico, tendría que 
utilizar una serie de abstracciones comúnmente 
conocidas como interfaces de diseño en 
programación. Lo que lleva a tener que prever de 
alguna manera el posible comportamiento del 
modelo físico y conocer desde un inicio, las posibles 
condiciones en las que podría funcionar el sistema. 

Se pretende proponer un lenguaje que nos 
permita modelar los sistemas físicos antes 
mencionados. La idea básica es que los objetos se 
agreguen y retiren del entorno en cualquier 
momento, con las reacciones que se puedan 
desencadenar dentro del sistema. Esto tendrá dos 
ventajas principales en el diseño de software: El 
primero es que el desarrollo del modelo puede 
darse de manera incremental, lo que permite dar 
una forma simple de evolución. La segunda, es al 
momento de retirar cualquier objeto en cualquier 
momento sin afectar de manera directa al sistema; 
logrando con esto, una dependencia en el diseño de 
los objetos. 

Para ver lo explicado en el párrafo anterior, 
primero se lleva a cabo un análisis de los lenguajes 
de programación orientados a objetos, donde se 
deben tomar en un sentido estricto para resolver 
estos problemas. Un ejemplo que ilustra el problema 
es el de un estanque de agua con tres sensores que 
detecta tres niveles (n1, n2 y n3), donde n1 es el nivel 
bajo, n2 es un nivel aceptable y n3 nivel alto (peligro 
de desbordamiento). Se solicita realizar un sistema 
basado en objetos que simule dicho proceso físico, 
con la restricción que al momento en que el agua 
llegue al nivel n3 se activa una alarma a1. 

Para mostrar cómo debe operar este paradigma 
se iniciará con un ejemplo. Éste se puede observar 
en la figura 1. Posteriormente se propone dar las 
bases formales para el modelado de este paradigma 
propuesto. Por el momento y para analizar el 
diagrama de la figura 1 bastará con decir que existe 
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una relación entre dos métodos de clases 
diferentes. Esta relación se encuentra basada con 
operaciones bajo la lógica de orden cero. 

 

 
Fig. 1. Relación entre dos objetos. 

 
En la figura 1 se tiene al objeto denominado 

Estanque que realizará actualizaciones en su 
atributo Nivel y que el objeto Alarma se activará al 
momento en el que el valor del Nivel sea mayor a 
20. Es posible mostrar el problema en un código 
similar al de Java o C# el cual puede quedar como 
se observa en la figura 2. Este código no se puede 
implantar de manera directa en estos compiladores, 
pero sirve para mostrar de una manera general lo 
que se pretende hacer. No obstante, sus 
implicaciones, características y ventajas son 
descritas en secciones siguientes.  

 
Object Estanque [ 
 int Nivel = 0; 
 void sensar() [ 
  Nivel = medir(); 
 ] 
] 
Object Alarma [ 
 if( Estanque.Nivel == 20) 
  Activar(); 
  void Activar() [ 
  print(“Alarma activada”); 
 ] 
] 

 
Fig. 2. Código abstracto para activar los objetos. 

 
Se puede observar en la figura 2 y 

específicamente en el objeto llamado Alarma, que 
existe una nueva regla o instrucción denominada if, 
la cual verifica que si el Estanque toma un Nivel de 
20 se ejecuta la función Activar del objeto Alarma. 
Este diseño permite delegar la responsabilidad de 
activación al objeto cliente (que es Alarma); 
mientras que el objeto Estanque es independiente 
de cualquier relación explícita en el diseño. Esto 
dará mayor flexibilidad y expresividad al diseñar las 
clases u objetos. Debido a que el diseñador 
establece las condiciones que activan a los objetos 

en estudio. Por otro lado, también se pueden 
realizar actualizaciones a los objetos que dependen 
de su entorno o contexto. Esto último promueve un 
sentido a la evolución libre de las activaciones. 

1.1 Definición general de un paradigma 
proactivo orientado a objetos 

Para realizar una definición a la propuesta de este 
documento, se han tomado algunos aspectos de 
sigma-cálculo (-Cálculo). Lo que ha originado una 
definición que se llamará -Cálculo. En esta última, 
se definirá una función m que se localiza en el 
cuerpo del objeto, así como la especificación del 
método de actualización. Este permite activar los 
objetos cercanos o dentro de su contexto. Es 
posible crear una condición similar a una sentencia 
if con base al -Cálculo, pero existe un motivo para 
separarlos, y es el llamado activador; además de las 
implicaciones en el diseño de un sistema de cálculo. 
Al sistema descrito se le llama de evolución débil, 
en el sentido que no se reducen los cuerpos de los 
métodos. 

Para -Cálculo existe un cálculo basado en 
objetos que consiste en un conjunto mínimo de 
constructores sintácticos y reglas de cálculo. En 
esta sección se mostrará de manera informal la 
estructura que compone dicho cálculo para el 
paradigma proactivo orientado a objetos, propuesto 
en este trabajo. 

En la tabla 1 se presenta un resumen de la 
noción usada para los objetos proactivos. 

 
Tabla 1. Noción del paradigma proactivo orientado a objetos. 

 
Expresión Descripción 

(x)b Método Self con parámetro 
x y cuerpo b. 

[li=(xi)bi
i1..n 

,mj=(xj)if(cj)aj:bj
jn+1..m] 

Objeto con n métodos de l1 
a ln y con activaciones de 
mn+1 a mm. 

o.l Invocación de un método l 
del objeto o. 

o.l(x)b Actualización del método l 
del objeto o con el método 
(x)b. 

o.m(x)if(c)a:b Actualización de la 
activación m del objeto o por 
la condición de activación 
(x)if(c)a:b. 
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Para más detalle, un objeto de la noción 
mostrada en la tabla 1 es una colección de 
componentes li=(xi)bi. Con distintas etiquetas li; 
asociados con los métodos (xi)bi, para i1..n; el 
orden de los componentes no importa. El símbolo  
(sigma) es utilizado como un enlace (binder) con un 
parámetro (self parameter) de un método. También 
se presenta una colección de condiciones de 
activación mj=(xj)if(cj)aj:bj, para distintas etiquetas 
mj asociados a dos expresiones a y b; el orden de 
estas etiquetas no importa y al igual que las 
etiquetas li el símbolo se usa como un enlazador. 

Una invocación de método es escrito de la forma 
o.l donde l es una etiqueta del objeto o. La intención 
es ejecutar el método llamado l de o con el objeto 
relacionado al parámetro Self y devolver un objeto 
por la reducción. 

La actualización de un método se escribe de la 
forma o.l(x)b. La semántica de la actualización es 
funcional: una actualización produce una copia de o 
donde el método l es sustituido por (x)b, además 
de activar a todos los método m que se encuentren 
definidos en el contexto y que tengan relación con el 
objeto Activador. 

Un ejemplo del uso de dicha noción se puede 
observar en la definición (1) con los objetos a y c. 
 

a:=[ l1=(x)b, l2=(x)x.l1(x)c] 

c:=[l1=(x)b, m1=(x)if(a.l1)x.l1:[]] 

(1) 

 
En el objeto a definido en (1) se tienen dos 

métodos l1 y l2, donde el primero hará la reducción 
de b y el segundo hará una actualización de (x)x.l 
por (x)c. Al momento de realizar dicha 
actualización se activarán todas las condiciones de 
activación m que existan en el contexto y que 
tengan una relación con el objeto que los activa. 

En el objeto c definido en (1) se tiene un método 
l1 que reduce a b y una condición de activación m1 
que está en espera de ser activado. En caso de ser 
verdadera la expresión a.l1 se ejecutará x.l1. En caso 
contrario se ejecuta [] (objeto vacío), que en este 
caso expresa que no existen reducciones. 

Para iniciar con la definición de la sintaxis de -
Cálculo, se dará la definición de variables libres (FV 
por sus siglas en inglés) y la sustitución (b{xa}) 
para los términos llamados -Término, ver la  
tabla 2. 

 
 

Tabla 2. Definición de variables libres 
 

Definición 
FV((x)b)≡ FV(b)- {y} 
FV(x) ≡ {x} 

 

FV(a.l) ≡ FV(a) 
 

 
El propósito de la siguiente teoría de ecuaciones 

es capturar la noción de igualdad. Esto se usará 
para definir el momento en que dos objetos son de 
la misma forma. Se agregarán las reglas: simétrica, 
transitiva y de congruencia (esta última se utiliza 
para sustituir iguales por iguales), ver tabla 3. 

 
Tabla 3. Teoría de ecuaciones 

 
Expresión Descripción 

ba  ab Simétrica 
ba bc  ac Transitiva 
 xx Congruencia 
bibi aiai cici didi 

i1..n jn+1..r  x 
= [li=(xi)bi

i1..n 

,mj=(xj)if(cj)aj:bj
jn+1..m] 

 x 

Objeto 

aa’  a.la’.l Selección 
aa’ bb’  a.l 
(xi)bia’.l(x)b’ 

Actualización 

2 Definición del paradigma propuesto 

Los lenguajes imperativos son una abstracción 
subyacente a la máquina de Von Neumann [4], en el 
sentido que ellos conservan las partes esenciales 
básicas sin detalles superfluos. Una vista jerárquica 
es que los lenguajes de bajo nivel proveen un 
limitado nivel de abstracción, mientras un lenguaje 
de alto nivel puede ser visto como una máquina 
virtual. En esta última de manera general, se 
pueden encontrar algunas manipulaciones sobre la 
memoria dada por algunas entradas y salidas.  

  



FV ([li  (xi)bi
i1..n,m j  (x j )if (a j )bj :c j

jn1..m ]) 

(Ui1..n FV((xi)bi)) (U jn1..m FV((x j )if (a j )bj : c j ))

FV (a.l (y)b)  FV (a)FV ((y)b)
FV ((y)if (a)b : c)  FV (a)FV (b)FV (c){y}
FV (a.m (x)if (a)b : c)  FV (a)FV ((x)if (a) : b : c)
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Estas por lo regular son expresadas de manera 
independiente al hardware en que se pretenda 
implantar. Los lenguajes orientados a objetos son 
naturalmente imperativos [5], con métodos que 
realizan alguna operación dentro o fuera de los 
objetos.  

En esta sección se analizará la definición 
imperativa de -Cálculo mediante la formalización 
basada en la semántica operacional. Se desarrollará 
un pequeño, pero expresivo lenguaje imperativo -
Cálculo; que es una variante del lenguaje funcional 
presentado en la tabla 1. Este lenguaje imperativo 
será el núcleo para el intérprete desarrollado y 
llamado Pro-Objects, con lo que es posible 
experimentar con aspectos importantes de la 
programación orientada a objetos, el cual incluye 
definiciones, reducciones y vistas. La sintaxis 
esencial de Pro-Objects se encuentra en la tabla 1 
más algunas expresiones mostradas en la tabla 4. 

 
Tabla 4. Extensión para la sintaxis de Pro-Objects 

 
Expresión Descripción 

a, b y c Variables 
clone(a) Clona el objeto a. 

 
Pro-Objects realiza la actualización de un 

componente se realiza mediante o.l(x)b. Esto 
buscará el método l del objeto o, para luego 
reemplazarlo por el lado derecho, que es (x)b. Una 
vez realizada la actualización, la máquina abstracta 
procede a buscar todos los mecanismos de 
activación m los cuales verifican la operación o.m 
(x)if(a)b:c. Este último indica que la etiqueta m 
del objeto o será actualizado por (x)if(a)b:c. Como 
información, una diferencia con la actualización que 
presenta -Cálculo, es que esta última activa a los 
objetos que se encuentran dentro del mismo 
contexto, además de hacer el reemplazo de la 
reducción de la parte izquierda por la parte derecha 
de dicha operación. 

El método clone(a) es la función que se encarga 
de realizar una copia en profundidad de un objeto. 
Esta copia se podría realizar de tres formas: La 
primera es llamada copia superficial; ésta no copia 
referencias o instancias internas al objeto. La 
segunda es denominada copia en profundidad; ésta 
hace una copia de todas las referencias o instancias 
internas al objeto. El tercero y último es conocido 
como clonación mixta en métodos, en la que 

intervienen las dos primeras formas; clonación 
superficial y en profundidad. 

Para complementar la sintaxis se presentan las 
reglas semánticas de -Cálculo. 

3 Semántica operacional de -Cálculo 

La semántica operacional en (2) es expresada en 
función de una relación. Esta relación se encuentra 
dada por un sistema de almacenamiento  (Store) y 
una pila S (Stack) y con un término b que se reduce 
a v, este último se coloca en ’. 

  S a b v  ' (2) 

La intención de realizar ésto, es que se inicie con 
el almacenamiento  (heap) y la pila S, el término a 
reduce a un resultado v, cediendo una actualización 
al almacenamiento ’ y dejando la pila S sin 
cambios. Las siguientes entidades implicadas en la 
semántica pertenecen a las clases definidas en la 
tabla 5: 

Tabla 5. Definición de almacenamiento y pila 
 

Expresión Descripción 
  Nat Localización de 

almacenamiento. 
v::=[li=i , mj=j ] i,j..n Resultado (li y mj) distintos. 
S::=(xivi) i..n Pila con xi distintas. 
::=(i(xi)bi

i1..n,S, 
j(xj)if(cj)aj:bj

j1..m 
Almacenamiento (store) (li 
y mj) distintos. 

 a  Juicio para 
almacenamiento 

  S a   Juicio para la pila 
  S a b  v   ' Juicio para la reducción de 

términos. 
 
Un resultado v representa un objeto el cual 

muestra una colección de nombres de métodos, 
junto con la localización correspondiente en la que 
son colocados los métodos cerrados. También se 
puede apreciar una colección de nombres de 
condiciones de activación, que al igual que los 
métodos, presentan una ubicación donde están 
almacenadas las condiciones de activación 
cerradas. 
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Un método cerrado se encuentra construido por 
(x)b y una pila Si, tal que FV((xi)b  dom(Si)). 
Finalmente, esta representación se encuentra 
asociada a la localidad de memoria. 

Asimismo, una condición de activación cerrada 
se encuentra definida por (xj)if(cj)aj:bj y una pila Si, 
tal que FV((xj)if(cj)aj:bj)  dom(Si), y a su vez 
asociada a una localización de memoria. 

A continuación se describirán algunos aspectos 
para el almacenamiento y sustitución realizados por 
la máquina abstracta, con base a las siguientes 
expresiones: 

Representación de la relación de 
almacenamiento entre i y su término para i1..n, 
ver tabla 6: 

 
Tabla 6. Relaciones de almacenamiento 

 
Término  

i(x)b,S i 
i(x)if(c)a:b,S i 
itrue|false,S i 

Representación de la relación de colocar el 
resultado del término cerrado en la localidad i de  
para i1..n, ver tabla 7: 

Tabla 7. Relaciones de almacenamiento 
Término  

 i(x)b,S  
 i(x)if(c)a:b,S  
 itrue|false,S  

Definiciones iniciales para los esquemas de 
reducción de -Cálculo, ver tabla 8: 

Tabla 8. Definiciones básicas 
 

Expresión Descripción 
fun: (x)b,S Objeto 
act: (x)if(c)a:b,S Activador 
bol : true | false Constantes 
obj: [li=(xi)bi

i1..n 
,mj=(xj)if(cj)aj:bj

jn+1..m] 
Objeto 

Estructuras básicas para la reducción de Store, 
ver tabla 9: 

 

Tabla 9. Definiciones básicas 
 

Expresión 
Store :   
Store :   S ,’ dom()  ,(  fun, ’act) 

  

Reducciones básicas para fun- e imp-, ver 
tabla 10: 

Tabla 10. Definiciones básicas  
 

Expresión 
Red x:  (S’,x v,S’’)     (S’,x v,S’’)  xv .  
Red constantes: :   S      S  bolbol .  
Red objetos:   S   ,’ dom()    S  obj  v . (, 

 fun,   act ) 
Red selección:   S  a  v  ’ ’(lk)=fun xk  dom(S’) 

’(S’, xk  v)  bk  v . ’’    S  a.lj  
v . ’’ 

Red clonación:   S    v i, j  dom(’) ’i, ’j  
dom(’) i,j 1..n    S  clone(a)  
obj  (’, ’i  ’(li), ’j  ’(lj) ) 

Red let:   S    v  ’ ’ (S, xv’)  b  v’’. ’’    S 
 let x = a in b  v’’ . ’’ 

Semántica operacional para las condiciones de 
activación fun-, ver tabla 11. 

Tabla 11. Definiciones activación  
Expresión 

Red actualización:   S  a  v’  ’ k  dom(’) 
(lk)=act xr  dom(S’) r  1..n 

Red true:   S’  a  true  ’ ’  S  a  v . ’’    
S  act  v’ . ’’ 

Red false:   S’  a  false  ’ ’  S  b  v . ’’  
  S  act  v’ . ’’ 

Red act:   S  a  v  ’ l’k= dom(’) k  1..n    
S  a.mk  act  v . (’,l’k act) 

3.1 Ejemplos de reducciones 

Para el siguiente ejemplo se empleará la mayoría de 
las reducciones definidas en la sección anterior y se 
establecerá cada regla de derivación. Primero se 
presenta la descripción de cuatro objetos que se 
encuentran definidos en (3) que pertenecen al 
mismo contexto (A, B, C y D). 
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A=[l1=(x)false,l2=(x)true] 

B=[ l1=(x)if(A.l1)A.l2(x)true :A.l2 (x)false, l2 
=clone(A)] 

C=[ l1=(x)B.l1 (x)if(A.l2)A.l1(x)true 
:A.l2(x)false 

D=[l1=(x) A.l1 (x)true] 

 

 

(3) 

Se define un esquema de reducción en (4): 

let A=[l1=(x)false,l2=(x)true] in 

B=[ l1=(x)if(A.l1)A.l2(x)true :A.l2 (x)false, l2 
=clone(A)] in 

D=[l1=(x) A.l1 (x)true] in D.l1 

 

(4) 

Reducción por medio de selección del objeto A 
en (5): 

.  [l1=(x)false,l2=(x)true]  [l1 = 1, l2 = 2] . 
(1 (x)false, , 2 (x)true, ) 

 

 (5) 

Reducción de true en (6): 

(l1(x)false, , l2 (x)true, ) . (x[ l2 = 2]) 
true  true . (1 (x)false, , l2 (x)true, ) 

 

(6) 

Un ejemplo basado en el lenguaje Pro-Object es 
el de sincronizar una serie de semáforos, ésto nos 
permitirá tener una visión general del 
funcionamiento de los objetos proactivos. 

S1=[color=rojo, m=(x)if(S2.color == rojo) x.color  
rojo : x.color  verde] 

S2=[color=rojo, m=(x)if(S1.color == rojo) x.color  
rojo : x.color  verde] 

S3=[color=verde, m=(x)if(S1.color == rojo) x.color  
verde : x.color  rojo] 

Se puede observar en el código anterior que si 
se aplica una reducción de la forma: Red S1.color  
verde. El semáforo tres S3 quedará definido como se 
muestra en a continuación.  

 
S3=[color=rojo, m=(x)if(S1.color == rojo) x.color  
verde : x.color  rojo] 
 

Se observa en S3 que el color de verde cambió a 
rojo y la reducción de: S1.color debió quedar en 
verde. 

4 Conclusiones 

En este documento se buscó una breve descripción 
de un paradigma proactivo orientado a objetos y 
fundamentar las bases de los objetos bajo el 
concepto de activaciones. 

Dentro de la búsqueda para resolver problemas 
de cómputo en el ámbito de lo proactivo, se 
formalizó y desarrolló una especificación orientada a 
objetos, la cual permite dar una solución a los 
problemas de cómputo de esta naturaleza de 
manera incremental. Asimismo, se describió una 
solución incremental para el desarrollo de software 
que admite a los objetos interactuar entre si.  

En el desarrollo del lenguaje e intérprete, se 
realizaron algunos estudios e implicaciones en el 
área de la computación. Aunque el cómputo 
proactivo es un área relativamente nueva, es 
imperante mostrar ciertas preeminencias que hacen 
de este paradigma proactivo orientado a objetos una 
forma simple de resolver algunos problemas 
pertenecientes a este campo.  

5 Trabajos futuros 

Durante el desarrollo del presente trabajo se 
encontraron varios aspectos que podrían ser 
desarrollados como trabajos futuros. A continuación 
se enuncian algunos de ellos: 
 
 Adaptar el paradigma propuesto a algún 

lenguaje orientado a objetos. Se pretenderá 
llevar esta propuesta a un lenguaje ya existente 
con la creación de un compilador basado en 
una nueva especificación. Esto se hará en 
función del problema que se requiera resolver. 
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 La formalización del paradigma proactivo 
orientado a objetos mediante el -Cálculo. Lo 
que se buscará es establecer este paradigma 
para manejar la concurrencia. 

 Promover un estudio dentro de -Cálculo para 
la utilización de ciertos operadores de 
visibilidad, que eviten conflictos con los auto-
llamados o la recursividad no controlada. 

 Impulsar un estudio con el uso de la herencia y 
analizar la evolución de los objetos bajo estos 
mecanismos de clasificación. 

 Efectuar un estudio sobre la manera eficiente 
de implantar este paradigma bajo el concepto 
de Máquinas de Turing comparado con algún 
otro modelo de cómputo. 

 Analizar el paradigma con los conceptos de 
Clases y Prototipos. Lo que se buscará es 
indicar las ventajas de una y otra 
implementación, así como el uso de métodos 
propios y delegados en dicho análisis. 

 Desarrollar un sistema de transacciones 
mediante este paradigma. El objetivo general es 
el de resolver la restauración de valores si 
llegase a suceder alguna acción posterior. 

 Implantar algunos problemas pertenecientes al 
campo de la Inteligencia Artificial con este 
paradigma. Por dar algunos ejemplos: redes 
neuronales, algoritmos genéticos, agentes, 
entre otros. 

 Buscar otros mecanismos de activación en los 
objetos. Este mecanismo deberá ayudar a 
resolver otros problemas de diseño e 
implantación en el área de computación. 
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