
Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

RESUMEN DE TESIS DOCTORAL

Un Paradigma Proactivo Orientado A Objetos

An object-oriented proactive paradigm

Juan Carlos Sarmiento Tovilla
Graduado en Julio 02, 2009

Centro de Investigación en Computación
Av. Juan de Dios Bátiz s/n Esq. Miguel Othón de Mendizabal C.P. 07720 México D.F.

jctovilla@cic.ipn.mx
jctovilla@gmail.com

Director: Juan Luis Díaz de León Santiago
Co-director: Juan Carlos Chimal Eguía

Centro de Investigación en Computación
Av. Juan de Dios Bátiz s/n Esq. Miguel Othón de Mendizabal C.P. 07720 México D.F.

jdiaz@cic.ipn.mx, chimal@cic.ipn.mx

Resumen. En la actualidad algunos investigadores
conciben que los lenguajes como C++, Java y C# poseen
una orientación interactiva. Esta forma de programación
por lo regular, tiende a generar costos innecesarios en el
desarrollo, en el diseño y principalmente en el manejo de
los mensajes; lo que implica que el desarrollador deba
tener un conocimiento extra del problema al aplicar una
reingeniería de software. En este documento se presenta
un enfoque basado en la computación proactiva e
incremental, la cual busca que los objetos o dispositivos
interactúen en beneficio del ser humano. Es por esta
razón, que surge la necesidad de desarrollar y formalizar la
base de un paradigma proactivo orientado a objetos, es
decir, el paradigma propuesto da una alternativa para
resolver algunos problemas que requieren ser
incrementales tomando como base el paso de mensajes.
Esta representación agrega reglas al paradigma orientado
a objetos, lo que permite a éstos comunicarse por
sentencias llamadas: Activadores y Activados.
Palabras clave: Objetos proactivos, Semántica operacional,
Diseño de patrones, Objetos funcionales, Objetos
Imperativos.

Abstract. At present, some researchers consider that
languages like C + +, Java and C # have an interactive
guide. The use of interactive programming by developers
often produces unnecessary system development's costs;
this involves the developer to extra knowledge when
applying the software re-engineering. This paper presents
an approach based on proactive computing, which looks
electronic devices to interact in benefit of the human
being. Due to this need, we developed and formalized the
base of an object-oriented proactive-paradigm. That is, the
proposed paradigm provides an alternative to solve some
problems that need to be incremental, based on the
passage of messages. This perspective adds rules to the

object-oriented paradigm, which allows itself the objects to
communicate by called methods: Activators and Activated.
Keywords: Proactive objects, Operational semantic,
Patterns design, Functional objects, Imperative objects.

1 Introducción

La programación orientada a objetos ha tenido
énfasis en los últimos años en la realización de los
sistemas basados en cómputo. Los lenguajes
orientados a objetos fueron diseñados para
proporcionar una intuitiva forma de ver los datos, así
como el cómputo de una manera unida. Esto
permite crear una representación entre el software y
el mundo de los objetos físicos [1].

De talante intuitivo se puede observar que los
objetos del mundo físico interactúan entre sí. Esta
interacción se realiza de diferentes maneras, ya sea
por eventos, secuencias o concurrencias. En esta
parte del trabajo se darán a conocer los conceptos
básicos necesarios para desarrollar un paradigma
de programación llamado -Cálculo; en el que se
involucra la teoría orientada a objetos. Si bien es
posible decir que mucho de lo que se modela en el
mundo es a través de objetos, también hay que
tener en cuenta la forma en que éstos se relacionan
o se ven afectados por su entorno. Este trabajo se
enfocará a analizar esta interacción y cómo estos
objetos pueden ser afectados. Esta forma de
interacción se presentará mediante la lógica de
primer orden.

198 Juan Carlos Sarmiento Tovilla

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

El término proactivo fue acuñado por Viktor
Frankl [3]. Este término se ha llevado a diferentes
áreas de la sociedad, desde lo administrativo hasta
el campo de la computación; donde el sentido de
esta palabra toma sus peculiaridades. Hoy, la
investigación en el campo de la informática se
encuentra enfocada en un modelo interactivo de
cómputo, esto se debe a que las personas
interactúan directamente uno a uno con sus
computadoras [2,6].

Con el paradigma de cómputo proactivo se
pretende que las computadoras se anticipen a las
necesidades del usuario y que éstas permitan tomar
decisiones a nuestro favor. Esto es, mientras las
personas están trabajando, las computadoras
interactuarán unas con otras en busca de la
solución a algún problema. Esto puede propiciar una
proactividad en la actividad humana.

En el campo de la computación proactiva
actualmente existen desafíos importantes que se
deben resolver tales como: la conexión física de
millones de nodos, modelos de cómputo, lenguajes
y paradigmas. En este trabajo la palabra proactivo o
proactiva tiene que ver con la noción de estar a
favor de la acción, más que el significado de qué
hacer con la acción misma.

Los retos que se proponen en la computación
proactiva nos hacen definir un paradigma de
programación orientado a objetos. Esta propuesta
de paradigma deberá permitir la interacción de los
objetos, lo que promueve la proactividad entre los
sistemas.

Los paradigmas actuales de la programación
orientada a objetos se preocupan por la clasificación
jerárquica, esto nos lleva a otro planteamiento.
Dentro de un modelo jerárquico existe la evolución
de los objetos como lo describe Darwin. Desde un
punto de vista particular, si un objeto de jerarquía
superior es modificado, ¿Los objetos derivados o de
jerarquías inferiores dependientes serán
modificados? Dentro de la etapa de diseño de
cualquier sistema esto es admisible, pero en el
momento en que se trata de algo ya implantado esto
tiene connotaciones colaterales. Muchos lenguajes
orientados a objetos han agregado a sus
clases/objetos mecanismos para indicar que
algunos métodos han dejado de operar o se
encuentran derogados.

Estas soluciones favorecen en mucho al trabajo
de la reingeniería, aunque dentro del enfoque
proactivo éstas no son favorables. Esto es un factor
importante que promueve el análisis de los objetos

basándose en ciertas condiciones y reglas. Estas
reglas deben permitir que un objeto evolucione sin
llegar a permear con los objetos de su entorno de
manera directa en el diseño en su creación.

Por un momento imaginemos un sistema
planetario como es el nuestro, donde existe un sol y
varios planetas que giran entorno a él. Si
agregamos un objeto con suficiente masa en algún
instante, muchos de estos planetas se verían
afectados. Esto se debe a la fuerza gravitacional y a
la atracción que existe entre ellos, este efecto
también se da, si retiráramos algún planeta del
sistema solar descrito. Si se le pidiera a un grupo de
desarrollo realizar dicho modelo físico, tendría que
utilizar una serie de abstracciones comúnmente
conocidas como interfaces de diseño en
programación. Lo que lleva a tener que prever de
alguna manera el posible comportamiento del
modelo físico y conocer desde un inicio, las posibles
condiciones en las que podría funcionar el sistema.

Se pretende proponer un lenguaje que nos
permita modelar los sistemas físicos antes
mencionados. La idea básica es que los objetos se
agreguen y retiren del entorno en cualquier
momento, con las reacciones que se puedan
desencadenar dentro del sistema. Esto tendrá dos
ventajas principales en el diseño de software: El
primero es que el desarrollo del modelo puede
darse de manera incremental, lo que permite dar
una forma simple de evolución. La segunda, es al
momento de retirar cualquier objeto en cualquier
momento sin afectar de manera directa al sistema;
logrando con esto, una dependencia en el diseño de
los objetos.

Para ver lo explicado en el párrafo anterior,
primero se lleva a cabo un análisis de los lenguajes
de programación orientados a objetos, donde se
deben tomar en un sentido estricto para resolver
estos problemas. Un ejemplo que ilustra el problema
es el de un estanque de agua con tres sensores que
detecta tres niveles (n1, n2 y n3), donde n1 es el nivel
bajo, n2 es un nivel aceptable y n3 nivel alto (peligro
de desbordamiento). Se solicita realizar un sistema
basado en objetos que simule dicho proceso físico,
con la restricción que al momento en que el agua
llegue al nivel n3 se activa una alarma a1.

Para mostrar cómo debe operar este paradigma
se iniciará con un ejemplo. Éste se puede observar
en la figura 1. Posteriormente se propone dar las
bases formales para el modelado de este paradigma
propuesto. Por el momento y para analizar el
diagrama de la figura 1 bastará con decir que existe

Un Paradigma Proactivo Orientado a Objetos 199

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

una relación entre dos métodos de clases
diferentes. Esta relación se encuentra basada con
operaciones bajo la lógica de orden cero.

Fig. 1. Relación entre dos objetos.

En la figura 1 se tiene al objeto denominado

Estanque que realizará actualizaciones en su
atributo Nivel y que el objeto Alarma se activará al
momento en el que el valor del Nivel sea mayor a
20. Es posible mostrar el problema en un código
similar al de Java o C# el cual puede quedar como
se observa en la figura 2. Este código no se puede
implantar de manera directa en estos compiladores,
pero sirve para mostrar de una manera general lo
que se pretende hacer. No obstante, sus
implicaciones, características y ventajas son
descritas en secciones siguientes.

Object Estanque [
 int Nivel = 0;
 void sensar() [
 Nivel = medir();
]
]
Object Alarma [
 if(Estanque.Nivel == 20)
 Activar();
 void Activar() [
 print(“Alarma activada”);
]
]

Fig. 2. Código abstracto para activar los objetos.

Se puede observar en la figura 2 y

específicamente en el objeto llamado Alarma, que
existe una nueva regla o instrucción denominada if,
la cual verifica que si el Estanque toma un Nivel de
20 se ejecuta la función Activar del objeto Alarma.
Este diseño permite delegar la responsabilidad de
activación al objeto cliente (que es Alarma);
mientras que el objeto Estanque es independiente
de cualquier relación explícita en el diseño. Esto
dará mayor flexibilidad y expresividad al diseñar las
clases u objetos. Debido a que el diseñador
establece las condiciones que activan a los objetos

en estudio. Por otro lado, también se pueden
realizar actualizaciones a los objetos que dependen
de su entorno o contexto. Esto último promueve un
sentido a la evolución libre de las activaciones.

1.1 Definición general de un paradigma
proactivo orientado a objetos

Para realizar una definición a la propuesta de este
documento, se han tomado algunos aspectos de
sigma-cálculo (-Cálculo). Lo que ha originado una
definición que se llamará -Cálculo. En esta última,
se definirá una función m que se localiza en el
cuerpo del objeto, así como la especificación del
método de actualización. Este permite activar los
objetos cercanos o dentro de su contexto. Es
posible crear una condición similar a una sentencia
if con base al -Cálculo, pero existe un motivo para
separarlos, y es el llamado activador; además de las
implicaciones en el diseño de un sistema de cálculo.
Al sistema descrito se le llama de evolución débil,
en el sentido que no se reducen los cuerpos de los
métodos.

Para -Cálculo existe un cálculo basado en
objetos que consiste en un conjunto mínimo de
constructores sintácticos y reglas de cálculo. En
esta sección se mostrará de manera informal la
estructura que compone dicho cálculo para el
paradigma proactivo orientado a objetos, propuesto
en este trabajo.

En la tabla 1 se presenta un resumen de la
noción usada para los objetos proactivos.

Tabla 1. Noción del paradigma proactivo orientado a objetos.

Expresión Descripción

(x)b Método Self con parámetro
x y cuerpo b.

[li=(xi)bi
i1..n

,mj=(xj)if(cj)aj:bj
jn+1..m]

Objeto con n métodos de l1
a ln y con activaciones de
mn+1 a mm.

o.l Invocación de un método l
del objeto o.

o.l(x)b Actualización del método l
del objeto o con el método
(x)b.

o.m(x)if(c)a:b Actualización de la
activación m del objeto o por
la condición de activación
(x)if(c)a:b.

200 Juan Carlos Sarmiento Tovilla

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

Para más detalle, un objeto de la noción
mostrada en la tabla 1 es una colección de
componentes li=(xi)bi. Con distintas etiquetas li;
asociados con los métodos (xi)bi, para i1..n; el
orden de los componentes no importa. El símbolo 
(sigma) es utilizado como un enlace (binder) con un
parámetro (self parameter) de un método. También
se presenta una colección de condiciones de
activación mj=(xj)if(cj)aj:bj, para distintas etiquetas
mj asociados a dos expresiones a y b; el orden de
estas etiquetas no importa y al igual que las
etiquetas li el símbolo se usa como un enlazador.

Una invocación de método es escrito de la forma
o.l donde l es una etiqueta del objeto o. La intención
es ejecutar el método llamado l de o con el objeto
relacionado al parámetro Self y devolver un objeto
por la reducción.

La actualización de un método se escribe de la
forma o.l(x)b. La semántica de la actualización es
funcional: una actualización produce una copia de o
donde el método l es sustituido por (x)b, además
de activar a todos los método m que se encuentren
definidos en el contexto y que tengan relación con el
objeto Activador.

Un ejemplo del uso de dicha noción se puede
observar en la definición (1) con los objetos a y c.

a:=[l1=(x)b, l2=(x)x.l1(x)c]

c:=[l1=(x)b, m1=(x)if(a.l1)x.l1:[]]

(1)

En el objeto a definido en (1) se tienen dos

métodos l1 y l2, donde el primero hará la reducción
de b y el segundo hará una actualización de (x)x.l
por (x)c. Al momento de realizar dicha
actualización se activarán todas las condiciones de
activación m que existan en el contexto y que
tengan una relación con el objeto que los activa.

En el objeto c definido en (1) se tiene un método
l1 que reduce a b y una condición de activación m1
que está en espera de ser activado. En caso de ser
verdadera la expresión a.l1 se ejecutará x.l1. En caso
contrario se ejecuta [] (objeto vacío), que en este
caso expresa que no existen reducciones.

Para iniciar con la definición de la sintaxis de -
Cálculo, se dará la definición de variables libres (FV
por sus siglas en inglés) y la sustitución (b{xa})
para los términos llamados -Término, ver la
tabla 2.

Tabla 2. Definición de variables libres

Definición
FV((x)b)≡ FV(b)- {y}
FV(x) ≡ {x}

FV(a.l) ≡ FV(a)

El propósito de la siguiente teoría de ecuaciones

es capturar la noción de igualdad. Esto se usará
para definir el momento en que dos objetos son de
la misma forma. Se agregarán las reglas: simétrica,
transitiva y de congruencia (esta última se utiliza
para sustituir iguales por iguales), ver tabla 3.

Tabla 3. Teoría de ecuaciones

Expresión Descripción

ba  ab Simétrica
ba bc  ac Transitiva
 xx Congruencia
bibi aiai cici didi

i1..n jn+1..r  x
= [li=(xi)bi

i1..n

,mj=(xj)if(cj)aj:bj
jn+1..m]

 x

Objeto

aa’  a.la’.l Selección
aa’ bb’  a.l
(xi)bia’.l(x)b’

Actualización

2 Definición del paradigma propuesto

Los lenguajes imperativos son una abstracción
subyacente a la máquina de Von Neumann [4], en el
sentido que ellos conservan las partes esenciales
básicas sin detalles superfluos. Una vista jerárquica
es que los lenguajes de bajo nivel proveen un
limitado nivel de abstracción, mientras un lenguaje
de alto nivel puede ser visto como una máquina
virtual. En esta última de manera general, se
pueden encontrar algunas manipulaciones sobre la
memoria dada por algunas entradas y salidas.



FV ([li  (xi)bi
i1..n,m j  (x j)if (a j)bj :c j

jn1..m]) 

(Ui1..n FV((xi)bi)) (U jn1..m FV((x j)if (a j)bj : c j))

FV (a.l (y)b)  FV (a)FV ((y)b)
FV ((y)if (a)b : c)  FV (a)FV (b)FV (c){y}
FV (a.m (x)if (a)b : c)  FV (a)FV ((x)if (a) : b : c)

Un Paradigma Proactivo Orientado a Objetos 201

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

Estas por lo regular son expresadas de manera
independiente al hardware en que se pretenda
implantar. Los lenguajes orientados a objetos son
naturalmente imperativos [5], con métodos que
realizan alguna operación dentro o fuera de los
objetos.

En esta sección se analizará la definición
imperativa de -Cálculo mediante la formalización
basada en la semántica operacional. Se desarrollará
un pequeño, pero expresivo lenguaje imperativo -
Cálculo; que es una variante del lenguaje funcional
presentado en la tabla 1. Este lenguaje imperativo
será el núcleo para el intérprete desarrollado y
llamado Pro-Objects, con lo que es posible
experimentar con aspectos importantes de la
programación orientada a objetos, el cual incluye
definiciones, reducciones y vistas. La sintaxis
esencial de Pro-Objects se encuentra en la tabla 1
más algunas expresiones mostradas en la tabla 4.

Tabla 4. Extensión para la sintaxis de Pro-Objects

Expresión Descripción

a, b y c Variables
clone(a) Clona el objeto a.

Pro-Objects realiza la actualización de un

componente se realiza mediante o.l(x)b. Esto
buscará el método l del objeto o, para luego
reemplazarlo por el lado derecho, que es (x)b. Una
vez realizada la actualización, la máquina abstracta
procede a buscar todos los mecanismos de
activación m los cuales verifican la operación o.m
(x)if(a)b:c. Este último indica que la etiqueta m
del objeto o será actualizado por (x)if(a)b:c. Como
información, una diferencia con la actualización que
presenta -Cálculo, es que esta última activa a los
objetos que se encuentran dentro del mismo
contexto, además de hacer el reemplazo de la
reducción de la parte izquierda por la parte derecha
de dicha operación.

El método clone(a) es la función que se encarga
de realizar una copia en profundidad de un objeto.
Esta copia se podría realizar de tres formas: La
primera es llamada copia superficial; ésta no copia
referencias o instancias internas al objeto. La
segunda es denominada copia en profundidad; ésta
hace una copia de todas las referencias o instancias
internas al objeto. El tercero y último es conocido
como clonación mixta en métodos, en la que

intervienen las dos primeras formas; clonación
superficial y en profundidad.

Para complementar la sintaxis se presentan las
reglas semánticas de -Cálculo.

3 Semántica operacional de -Cálculo

La semántica operacional en (2) es expresada en
función de una relación. Esta relación se encuentra
dada por un sistema de almacenamiento  (Store) y
una pila S (Stack) y con un término b que se reduce
a v, este último se coloca en ’.

  S a b v  ' (2)

La intención de realizar ésto, es que se inicie con
el almacenamiento  (heap) y la pila S, el término a
reduce a un resultado v, cediendo una actualización
al almacenamiento ’ y dejando la pila S sin
cambios. Las siguientes entidades implicadas en la
semántica pertenecen a las clases definidas en la
tabla 5:

Tabla 5. Definición de almacenamiento y pila

Expresión Descripción
  Nat Localización de

almacenamiento.
v::=[li=i , mj=j] i,j..n Resultado (li y mj) distintos.
S::=(xivi) i..n Pila con xi distintas.
::=(i(xi)bi

i1..n,S,
j(xj)if(cj)aj:bj

j1..m
Almacenamiento (store) (li
y mj) distintos.

 a  Juicio para
almacenamiento

  S a  Juicio para la pila
  S a b  v   ' Juicio para la reducción de

términos.

Un resultado v representa un objeto el cual

muestra una colección de nombres de métodos,
junto con la localización correspondiente en la que
son colocados los métodos cerrados. También se
puede apreciar una colección de nombres de
condiciones de activación, que al igual que los
métodos, presentan una ubicación donde están
almacenadas las condiciones de activación
cerradas.

202 Juan Carlos Sarmiento Tovilla

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

Un método cerrado se encuentra construido por
(x)b y una pila Si, tal que FV((xi)b  dom(Si)).
Finalmente, esta representación se encuentra
asociada a la localidad de memoria.

Asimismo, una condición de activación cerrada
se encuentra definida por (xj)if(cj)aj:bj y una pila Si,
tal que FV((xj)if(cj)aj:bj)  dom(Si), y a su vez
asociada a una localización de memoria.

A continuación se describirán algunos aspectos
para el almacenamiento y sustitución realizados por
la máquina abstracta, con base a las siguientes
expresiones:

Representación de la relación de
almacenamiento entre i y su término para i1..n,
ver tabla 6:

Tabla 6. Relaciones de almacenamiento

Término

i(x)b,S i
i(x)if(c)a:b,S i
itrue|false,S i

Representación de la relación de colocar el
resultado del término cerrado en la localidad i de 
para i1..n, ver tabla 7:

Tabla 7. Relaciones de almacenamiento
Término

 i(x)b,S
 i(x)if(c)a:b,S
 itrue|false,S

Definiciones iniciales para los esquemas de
reducción de -Cálculo, ver tabla 8:

Tabla 8. Definiciones básicas

Expresión Descripción
fun: (x)b,S Objeto
act: (x)if(c)a:b,S Activador
bol : true | false Constantes
obj: [li=(xi)bi

i1..n
,mj=(xj)if(cj)aj:bj

jn+1..m]
Objeto

Estructuras básicas para la reducción de Store,
ver tabla 9:

Tabla 9. Definiciones básicas

Expresión
Store :  
Store :   S ,’ dom()  ,(  fun, ’act)

 

Reducciones básicas para fun- e imp-, ver
tabla 10:

Tabla 10. Definiciones básicas 

Expresión
Red x:  (S’,x v,S’’)     (S’,x v,S’’)  xv . 
Red constantes: :   S      S  bolbol . 
Red objetos:   S   ,’ dom()    S  obj  v . (,

 fun,   act)
Red selección:   S  a  v  ’ ’(lk)=fun xk  dom(S’)

’(S’, xk  v)  bk  v . ’’    S  a.lj 
v . ’’

Red clonación:   S    v i, j  dom(’) ’i, ’j 
dom(’) i,j 1..n    S  clone(a) 
obj  (’, ’i  ’(li), ’j  ’(lj))

Red let:   S    v  ’ ’ (S, xv’)  b  v’’. ’’    S
 let x = a in b  v’’ . ’’

Semántica operacional para las condiciones de
activación fun-, ver tabla 11.

Tabla 11. Definiciones activación 
Expresión

Red actualización:   S  a  v’  ’ k  dom(’)
(lk)=act xr  dom(S’) r  1..n

Red true:   S’  a  true  ’ ’  S  a  v . ’’   
S  act  v’ . ’’

Red false:   S’  a  false  ’ ’  S  b  v . ’’ 
  S  act  v’ . ’’

Red act:   S  a  v  ’ l’k= dom(’) k  1..n   
S  a.mk  act  v . (’,l’k act)

3.1 Ejemplos de reducciones

Para el siguiente ejemplo se empleará la mayoría de
las reducciones definidas en la sección anterior y se
establecerá cada regla de derivación. Primero se
presenta la descripción de cuatro objetos que se
encuentran definidos en (3) que pertenecen al
mismo contexto (A, B, C y D).

Un Paradigma Proactivo Orientado a Objetos 203

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

A=[l1=(x)false,l2=(x)true]

B=[l1=(x)if(A.l1)A.l2(x)true :A.l2 (x)false, l2
=clone(A)]

C=[l1=(x)B.l1 (x)if(A.l2)A.l1(x)true
:A.l2(x)false

D=[l1=(x) A.l1 (x)true]

(3)

Se define un esquema de reducción en (4):

let A=[l1=(x)false,l2=(x)true] in

B=[l1=(x)if(A.l1)A.l2(x)true :A.l2 (x)false, l2
=clone(A)] in

D=[l1=(x) A.l1 (x)true] in D.l1

(4)

Reducción por medio de selección del objeto A
en (5):

.  [l1=(x)false,l2=(x)true]  [l1 = 1, l2 = 2] .
(1 (x)false, , 2 (x)true, )

 (5)

Reducción de true en (6):

(l1(x)false, , l2 (x)true, ) . (x[l2 = 2])
true  true . (1 (x)false, , l2 (x)true, )

(6)

Un ejemplo basado en el lenguaje Pro-Object es
el de sincronizar una serie de semáforos, ésto nos
permitirá tener una visión general del
funcionamiento de los objetos proactivos.

S1=[color=rojo, m=(x)if(S2.color == rojo) x.color 
rojo : x.color  verde]

S2=[color=rojo, m=(x)if(S1.color == rojo) x.color 
rojo : x.color  verde]

S3=[color=verde, m=(x)if(S1.color == rojo) x.color 
verde : x.color  rojo]

Se puede observar en el código anterior que si
se aplica una reducción de la forma: Red S1.color 
verde. El semáforo tres S3 quedará definido como se
muestra en a continuación.

S3=[color=rojo, m=(x)if(S1.color == rojo) x.color 
verde : x.color  rojo]

Se observa en S3 que el color de verde cambió a
rojo y la reducción de: S1.color debió quedar en
verde.

4 Conclusiones

En este documento se buscó una breve descripción
de un paradigma proactivo orientado a objetos y
fundamentar las bases de los objetos bajo el
concepto de activaciones.

Dentro de la búsqueda para resolver problemas
de cómputo en el ámbito de lo proactivo, se
formalizó y desarrolló una especificación orientada a
objetos, la cual permite dar una solución a los
problemas de cómputo de esta naturaleza de
manera incremental. Asimismo, se describió una
solución incremental para el desarrollo de software
que admite a los objetos interactuar entre si.

En el desarrollo del lenguaje e intérprete, se
realizaron algunos estudios e implicaciones en el
área de la computación. Aunque el cómputo
proactivo es un área relativamente nueva, es
imperante mostrar ciertas preeminencias que hacen
de este paradigma proactivo orientado a objetos una
forma simple de resolver algunos problemas
pertenecientes a este campo.

5 Trabajos futuros

Durante el desarrollo del presente trabajo se
encontraron varios aspectos que podrían ser
desarrollados como trabajos futuros. A continuación
se enuncian algunos de ellos:

 Adaptar el paradigma propuesto a algún

lenguaje orientado a objetos. Se pretenderá
llevar esta propuesta a un lenguaje ya existente
con la creación de un compilador basado en
una nueva especificación. Esto se hará en
función del problema que se requiera resolver.

204 Juan Carlos Sarmiento Tovilla

Computación y Sistemas Vol. 14 No. 2, 2010, pp 197-204
ISSN 1405-5546

 La formalización del paradigma proactivo
orientado a objetos mediante el -Cálculo. Lo
que se buscará es establecer este paradigma
para manejar la concurrencia.

 Promover un estudio dentro de -Cálculo para
la utilización de ciertos operadores de
visibilidad, que eviten conflictos con los auto-
llamados o la recursividad no controlada.

 Impulsar un estudio con el uso de la herencia y
analizar la evolución de los objetos bajo estos
mecanismos de clasificación.

 Efectuar un estudio sobre la manera eficiente
de implantar este paradigma bajo el concepto
de Máquinas de Turing comparado con algún
otro modelo de cómputo.

 Analizar el paradigma con los conceptos de
Clases y Prototipos. Lo que se buscará es
indicar las ventajas de una y otra
implementación, así como el uso de métodos
propios y delegados en dicho análisis.

 Desarrollar un sistema de transacciones
mediante este paradigma. El objetivo general es
el de resolver la restauración de valores si
llegase a suceder alguna acción posterior.

 Implantar algunos problemas pertenecientes al
campo de la Inteligencia Artificial con este
paradigma. Por dar algunos ejemplos: redes
neuronales, algoritmos genéticos, agentes,
entre otros.

 Buscar otros mecanismos de activación en los
objetos. Este mecanismo deberá ayudar a
resolver otros problemas de diseño e
implantación en el área de computación.

Referencias

1. Abadi, M. & Cardelli, L. (1996). A Theory of Objects. New
York: Springer-Verlag.

2. Clark, D. D., & Tennenhouse, D. L. (1990). Architectural
considerations for a new generation of protocols. ACM
SIGCOMM Computer communications Review, 20 (4), 200-
208.

3. Frankl, Viktor E. (1997). Man's Search for Meaning.
Boston: Beacon Press.

4. Fernandez, M. (2004). Programming Languages and
Operational Semantics: An Introduction. Chichester: King's
College Publications.

5. Ranta, A. (1994). Type theory and the informal language of
mathematics. Types for Proofs and Programs, Lecture
Notes in Computer Science, 806, 352,365.

6. Tennenhouse, D. L. (2000). Proactive computing.
Communications of the ACM, 43(5), 43-50.

7. Sarmiento, J. C. (2009). Un paradigma proactivo orientado
a objetos, Tesis de doctorado, Instituto Politécnico
Nacional, Centro de Investigación en Computación,
México, D.F.

8. Sarmiento, J. C. & Horta, J. M. (2007). Un diseño
alternativo para clonar objetos en Java 1.6, Congreso
internacional de sistemas computacionales, Tuxtla
Gutierrez, México,

Juan Carlos Sarmiento Tovilla

Realizó sus estudios de Ingeniería en Sistemas
Computacionales en el Instituto Tecnológico de Tuxtla
Gutiérrez Chiapas. Obtuvo el grado de Maestro en Ciencias
de la Computación y el de Doctor en Ciencias de la
Computación en el Centro de Investigación en Computación
del Instituto Politécnico Nacional. Sus áreas de interés son
Teoría orientada a objetos, seguridad en informática e
informática educativa. www.jctovilla.org.

 Juan Luis Díaz de León Santiago

Obtuvo el grado de Doctor en Ciencias en Morfología
Matemática en el año de 1996 en el CINVESTAV,
actualmente es Profesor-Investigador de tiempo completo en
el Centro de Investigación en Computación del Instituto
Politécnico Nacional.

 Juan Carlos Chimal Eguía

Obtuvo el grado de Doctor en Ciencias con Especialidad en
Física por la Escuela Superior de Físico Matemáticas del
Instituto Politécnico Nacional, actualmente es Profesor-
Investigador de tiempo completo en el Centro de Investigación
en Computación del Instituto Politécnico Nacional.

