

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

“Resumen de Tesis Doctoral”
Fast Most Similar Neighbor (MSN) classifiers for Mixed Data

Clasificadores Rápidos basados en el algoritmo del Vecino más Similar (MSN)
 para Datos Mezclados

Selene Hernández Rodríguez(Graduated), José Fco. Martínez Trinidad(Advisor),
Jesús Ariel Carrasco Ochoa(Advisor)

National Institute of Astrophysics, Optics and Electronics
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.

selehdez@ccc.inaoep.mx, fmartine@inaoep.mx, ariel@inaoep.mx

Abstract. The k nearest neighbor (k-NN) classifier has been
extensively used in Pattern Recognition because of its
simplicity and its good performance. However, in large
datasets applications, the exhaustive k-NN classifier becomes
impractical. Therefore, many fast k-NN classifiers have been
developed; most of them rely on metric properties (usually
the triangle inequality) to reduce the number of prototype
comparisons. Hence, the existing fast k-NN classifiers are
applicable only when the comparison function is a metric
(commonly for numerical data). However, in some sciences
such as Medicine, Geology, Sociology, etc., the prototypes
are usually described by qualitative and quantitative features
(mixed data). In these cases, the comparison function does
not necessarily satisfy metric properties. For this reason, it is
important to develop fast k most similar neighbor (k-MSN)
classifiers for mixed data, which use non metric comparisons
functions. In this thesis, four fast k-MSN classifiers,
following the most successful approaches, are proposed. The
experiments over different datasets show that the proposed
classifiers significantly reduce the number of prototype
comparisons.

Keywords: Nearest neighbor rule, fast nearest neighbor
search, mixed data, non-metric comparison functions.

Resumen. El clasificador k vecinos más cercanos (k-NN) ha
sido ampliamente utilizado dentro del Reconocimiento de
Patrones debido a su simplicidad y buen funcionamiento. Sin
embargo, en aplicaciones en las cuales el conjunto de
entrenamiento es muy grande, la comparación exhaustiva que
realiza k-NN se vuelve inaplicable. Por esta razón, se han
desarrollado diversos clasificadores rápidos k-NN; la mayoría
de los cuales se basan en propiedades métricas (en particular
la desigualdad triangular) para reducir el número de
comparaciones entre prototipos. Por lo cual, los
clasificadores rápidos k-NN existentes son aplicables
solamente cuando la función de comparación es una métrica
(usualmente con datos numéricos). Sin embargo, en algunas
ciencias como la Medicina, Geociencias, Sociología, etc., los
prototipos generalmente están descritos por atributos

numéricos y no numéricos (datos mezclados). En estos casos,
la función de comparación no siempre cumple propiedades
métricas. Por esta razón, es importante desarrollar
clasificadores rápidos basados en la búsqueda de los k
vecinos más similares (k-MSN) para datos mezclados que
usen funciones de comparación no métricas. En esta tesis, se
proponen cuatro clasificadores rápidos k-MSN, siguiendo los
enfoques más exitosos. Los experimentos con diferentes
bases de datos muestran que los clasificadores propuestos
reducen significativamente el número de comparaciones
entre prototipos.

Palabras clave: Regla del vecino más cercano, búsqueda
rápida del vecino más cercano, datos mezclados, funciones
de comparación no métricas

1 Introduction

The k-NN classifier (Cover & Hart, 1967) uses a
training set (T) of prototypes, whose class is known a
priori. To decide the class of a new prototype, the k-
NN classifier performs an exhaustive comparison
between the prototype to classify and the prototypes in
the training set, assigning to the new prototype a class,
according to the classes of its k nearest neighbors in T.
However, when the training set is large, the exhaustive
comparison is expensive and sometimes inapplicable.
Thus, many fast k-NN classifiers have been designed;
different reviews appear in (Nene & Nayar, 1997;
Ramasubramanian et al., 2000; and Yong-Sheng et al.,
2007).

The objective of a fast k-NN classifier is to reduce
the number of comparisons trying to keep the
classification accuracy obtained by k-NN. Speeding up
the k-NN classifier is required because some
applications demand a rapid response on large datasets,
for example online stock analysis, air traffic control,

74 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

network traffic management, intrusion detection, etc.
Also, fast k-NN classifiers are useful for problems with
high dimensionality where the comparison function
could be very expensive (Mico et al., 1994; Denny &
Franklin, 2006), under this context, reducing the
number of comparisons could be very important. For
these reasons, although nowadays the computers are
very fast, the development of fast k-NN classifiers is
currently an active research area (Adler & Heeringa,
2008; Panigrahi, 2008). Nevertheless, most of the fast
k-NN classifiers proposed in the literature have been
designed for numerical prototype descriptions
compared through a metric function. Moreover, in
some sciences such as Medicine, Geology, Sociology,
etc., the prototypes are usually described by numerical
and non numerical features (mixed data) and the
comparison function does not satisfy metric properties.

Thus, if a metric is not available but a comparison
function that evaluates the similarity between a pair of
prototypes can be defined, given a new prototype Q to
classify, the objective is to find the k most similar
neighbors to Q in a training set T (with N prototypes,
where each prototype is described by d attributes,
which can be numerical or non numerical), and assign
to Q a class (based on its k most similar neighbours).
However, the exhaustive search of the k-MSN, as
occurs with k-NN, could be very expensive if T is
large. For this reason, it is important to develop fast k
most similar neighbor (k-MSN) classifiers for mixed
data and non metric comparisons functions.

In this thesis, four fast k-MSN classifiers are
proposed. The first uses a tree structure, the second and
the third are based on a new Approximating-
Eliminating approach for mixed data. Finally, the last
fast k-MSN classifier proposed in this thesis uses a tree
structure and an Approximating-Eliminating approach.

2 Proposed fast k-MSN classifiers

According to the strategy used to avoid prototype
comparisons, fast k-NN classifiers can be broadly
divided as:
Tree based classifiers, which hierarchically decompose
the training set in a tree and use a tree traversal search
algorithm to find the k-NN elements, while pruning
rules to avoid the exhaustive tree traversal are used.
Approximating-Eliminating classifiers, which start
comparing the new prototype to classify against the
prototypes in the training set, supporting on some

eliminating criteria to avoid the comparison against
every element in the training set.
Hybrid classifiers, which use both approaches.
In this thesis, some fast k-MSN classifiers following
these lines are proposed, in order to work with mixed
data.

2.1 Tree k-MSN

The first proposed classifier, Tree k-MSN (Hernández-
Rodríguez-a et al., 2007; Hernández-Rodríguez-b et
al., 2007), consists of two phases. The first one, or
preprocessing phase, builds a tree structure from the
training set (T). In the second phase, two search
algorithms, which are independent of metric properties
of the comparison function, are proposed for
classifying a new prototype.
Preprocessing phase: in this phase, the training set is
hierarchically decomposed to create a tree structure
(TS). At the beginning, the root of the tree contains the
whole training set. In order to create the following
levels of the tree, each node n of the tree is divided in
C clusters, in such a way that each cluster represents a
descendant node of n. Each descendant node is divided
again and this process is repeated until a stop criterion
is satisfied.

Since our algorithm is designed to allow mixed data,
instead of using the C-Means algorithm for building
the tree structure, as in the FN classifier, the C-Means
with Similarity Functions algorithm (CMSF) (García-
Serrano & Martínez-Trinidad, 1999), is used. CMSF
allows creating C clusters and computing as
representative element of each cluster a prototype
belonging to the cluster (i.e., a prototype contained in
T); besides CMSF allows using any similarity function.

Each node p of the tree contains three features: Sp
the set of prototypes that belong to p; Np the number of
prototypes in p and unlike FN and MS classifiers, Repp

A node is marked as a leaf when a stop criterion is
satisfied. In this thesis we used a stop criterion based
on the node size (SC1), which is used in (Fukunaga &
Narendra, 1975; Kalantari & McDonald, 1983; Mico et
al., 1996; Omachi & Aso, 2000; McNames, 2001;
D’Haes et al., 2002; Gomez-Ballester et al., 2006) and
we introduce two new stop criteria (SC2 and SC3),
which take into account not only the number of
prototypes of the node, but also the class distribution

a representative prototype of the node, which is on
average the most similar to the rest of prototypes in the
node.

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 75

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

of these prototypes. The three stop criteria are the
following:
1. Stop criterion 1 (SC1). This criterion is based on the
node size. According to this criterion, if the number of
prototypes contained in a node is less than a predefined
threshold (Np

However, when most of the prototypes contained in a
node belong to the same class, dividing this node could
lead to unnecessary prototype comparisons during the
classification stage, between the prototype to classify
and the representative prototypes of the nodes. Because
all descendant nodes, that would be created, also
would belong to the same class. Since the objective is
to classify a new prototype trying to avoid prototype
comparisons, we propose a second stop criterion
during the tree construction:

 ≤ NoP), then the node is marked as a
leaf. The objective of this criterion is to obtain leaves
with a few prototypes.

2. Stop criterion 2 (SC2). If most of the prototypes in a
node belong to the same class, then the node is
considered as a leaf and it is marked with the majority
class, even if the set is not small enough according to
the first stop criterion (Np

When the node is generalized by the majority class,
through SC2, if PercThres=100%, it means that all
prototypes in the node belong to the same class (the
generalized class of the node). However, when
PercThres<100%, an error is introduced, because some
prototypes in the node do not belong to the majority
class. Therefore, we introduce a third criterion:

 > NoP). In order to decide
how many prototypes in the node must belong to the
same class, for generalizing the class of a node, a
percentage threshold (PercThres) is used. In the nodes
where this criterion is not satisfied, only the size of the
node is considered to create leaf nodes (SC1).

3. Stop criterion 3 (SC3). If certain percentage
(PercThres) of the prototypes in a node belongs to the
same class, two nodes are created. Using the
prototypes that belong to the majority class, a leaf node
is created and it is marked with the majority class. The
rest of the prototypes are assigned to a second node. In
the second node, the size is considered to decide if the
node is a leaf (if Np

Using SC2 and SC3 the number of prototype
comparisons (during the classification stage) is
reduced, because if during the tree traversal a leaf node
(marked with the majority class) is reached, then only

the representative prototype of the node, with the
corresponding majority class, is used to update the list
of the k most similar neighbors (only one comparison),
instead of comparing the prototype to classify against
all the prototypes contained in the leaf.

 ≤ NoP) or if the node will be
divided again. In the nodes where SC3 criterion is not
satisfied, only the size of the node is considered to
create leaf nodes (SC1).

Classification phase: in this phase, in order to avoid an
exhaustive tree traversal, fast k-NN classifiers rely on
pruning rules (based on metric properties). As we are
looking for a method applicable when the comparison
function does not satisfy metric properties, pruning
rules based on the triangular inequality cannot be used;
therefore, we propose to stop the search when a leaf of
the tree is reached. In the first search algorithm (DF
search), we propose to use a depth-first search strategy
and in the second search algorithm (BF search), we
propose to use a best-first search strategy. The two
proposed algorithms for searching the k-MSN are
described below:
1. DF search: It begins at the root of the tree, following
the path of the most similar node and finishes when a
leaf is reached. As each node of the tree is represented
by a prototype of the training set, with known class, a
list of the k-MSN is stored and updated during the tree
traversal. When the first leaf node l is reached, if l is
marked with the majority class, then only the
representative prototype Repl

2. BF search: It begins at the root of the tree,
comparing Q against the descendant nodes of the root,
which are added to a list (List_tree_traversal). After
that, List_tree_traversal is sorted in such a way the
most similar node to Q is in the first place. The most
similar node (first element) is eliminated from
List_tree_traversal and its descendant nodes are
compared against Q, and added to List_tree_traversal,
which is sorted again. The search finishes when the
first element of List_tree_traversal is a leaf. In this
search, it is possible to reconsider nodes in levels of
the tree already traversed if the first node of
List_tree_traversal belongs to a previous level in the
tree.

 is used to update the k-
MSN (because most of the prototypes in the node
belong to the same class). If the node is not marked
with the majority class, then an exhaustive search in
the node is done and the list of k-MSN is updated.
After a leaf is processed, if the list of k-MSN does not
have k elements, then the tree traversal follows
backtracking steps to explore nodes closer to Q, until k
most similar neighbours are found.

During the tree traversal, another list (List_k-MSN)
containing the k current MSN is stored and updated.

76 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

After a leaf is processed (in a similar way than in the
local search), if List_k-MSN does not contain k
elements (MSN), then the first element in
List_tree_traversal is considered to follow a new
route. The process stops when List_k-MSN contains k
elements (MSN). However, using both search strategies
(DF and BF), in practical problems where the training
set is large, it is quite difficult that List_k-MSN does
not have k elements (MSN) when the first leaf is
reached. After finding k-MSN, the majority class is
assigned to the new sample Q.

2.2 AEMD

The second fast k-MSN classifier proposed in this
thesis, AEMD (Hernandez-Rodríguez-c et al., 2008), is
based on a new Approximating-Eliminating approach
for Mixed Data. AEMD also consists of two phases:
preprocessing and classification.
Preprocessing phase:in this stage, AEMD computes
and stores the next information which is used during
the classification phase to reduce the number of
comparisons between prototypes:
1. Similarity binary array (SimArray). In this thesis,
we proposed computing and storing an array of
similarities per attribute among the prototypes in the
training set (T), where SimArray[Pa,Pb,xi]=1 if the
prototypes Pa and Pb are similar regarding the attribute
xi, i∈[1,d] and otherwise SimArray[Pa,Pb,xi]=0,
Pa,Pb

∈T. In order to evaluate the similarity per
attribute between two prototypes, different approaches
can be applied. In this thesis, the following criteria
were used:

(1)

If the attribute xi

 is not numeric:

(2)

If the attribute xi

 is numeric:

(3)

Where σ i is the standard deviation of the attribute xi

2. Similarity threshold (SimThres). This value is used
during the tree traversal algorithm to decide if a
representative prototype of a node of the tree can be

used to prune nodes in the tree. In this thesis SimThres
is computed as follows: let Set

 in
T. The required space to store SimArray is |T| * |T| * d,
but each element is a bit, therefore |T| * |T| words of d
bits are needed for storing SimArray.

c

 be the set of prototypes
that belong to class c (c=1,…, number of classes in T)
and ClassAvgSim be defined as follows:

(4)

SimThres is computed as the average value of
similarity for all the classes:

 (5)

3. A representative prototype per class (RPc). Taking
advantage of the class information, we propose to use a
representative prototype (RPc) for each class in the
training set. These prototypes are used to obtain a first
approximation of the k most similar neighbors during
the classification phase, before performing TS tree
traversal algorithm. In this thesis, to compute RPc, let
Setc be the set of prototypes that belong to class c. For
each Pi in Setc

:

(6)

Where Sim is a similarity comparison function. Thus,
the representative prototype for each class is the one
that maximizes ASim function:

 (7)

Where i=1...|Setc

Classification phase (Fig. 1): given a new prototype Q
to classify, SM, RP

|, c=1,...,NoClasses and NoClasses is
the number of classes in T.

c

Initial approximating step. At the beginning of the
algorithm, the prototype Q is compared against the
class representative prototypes per class (RP

 and SimThres (computed during
the preprocessing phase) are used to avoid prototype
comparisons. This phase is based on Approximating-
Eliminating steps for mixed data, which are not based
on the triangle inequality. This stage is as follows:

c), to
obtain a first approximation to the k most similar
neighbors and, in particular, the current most similar
neighbor (CurrentMSN). After that, all RPc

If Sim(Q,Current

 are
eliminated from T.

MSN) ≥ SimThres, then the
prototype CurrentMSN is used to eliminate prototypes
from T (Eliminating step). In other case, the
Approximating step is performed.

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 77

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

Eliminating step. CurrentMSN is used to eliminate
prototypes from T. First, a binary representation (BR)
containing the similarity per attribute (using
Ci(Xi(Pa),Xi(Pb)) criterion), between Q and
CurrentMSN is used. Thus, BRi(Q,CurrentMSN)=1, if Q
and CurrentMSN are similar in the attribute xi and
BRi(Q,CurrentMSN
Using BR, those prototypes in T, which are not similar
to Current

)=0, in other case.

MSN at least, in the same attributes in which
CurrentMSN is similar to Q, are eliminated from T
(using SimArray(CurrentMSN,Pa
After the Initial approximation and the Eliminating
steps, if T is not empty, the approximation step is
performed.

)).

Approximating step. In this step, a new prototype
MSN’∈T is randomly selected, compared against Q,
eliminated from T and used to update the current k
most similar neighbors. If Sim(Q,MSN’) < SimThres, a
new MSN’ is randomly selected (Approximating step).
Otherwise, if Sim(Q,MSN’) ≥ SimThres , the prototype
MSN’ is used to eliminate prototypes from T
(Eliminating step).
This process is repeated until the set T is empty. After
finding the k most similar neighbors, the majority class
is assigned to Q.

Fig. 1. Diagram of the classification stage of AEMD

2.3 LAEMD

The third fast k-MSN classifier LAEMD is a
modification of AEMD, which aims to reduce the
storage space required by AEMD, following the ideas
of LAESA (Mico et al., 1994).

Since, an important step for the performance of
LAESA classifiers is the BP selection algorithm, in
this thesis two BP selection algorithms (Hernández-
Rodríguez-d et al., 2008) are introduced:

In the preprocessing
phase, LAEMD selects a subset of base prototypes
(BP) from T, and the distances between the prototypes
in T and the prototypes in BP are computed and stored
in SimArray, which is smaller than SimArray (used in
AEDM), since |BP|<<|T|. In LAESA, the BP selection

consists in finding the farthest prototype in average to
the remaining prototypes (not yet selected as BP) and
this process is repeated until a predefined number (m)
of BP have been selected.

1. BP selection using class information (BPClass). In
this algorithm, taking advantage of the class
information, the BP set is created by selecting roughly
the same number of elements from each class, in order

New prototype (Q) to classify:

Initial approximation step
(RPc are used to update the k MSN and the CurrentMSN)

Eliminating step

Classification step
The majority class of the k MSN is assigned to Q

Approximating step

Sim(Q,CurrentMSN)≥SimThres

T≠Ø

yes

no

yes

no

78 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

to obtain a balanced subset. To select the prototypes
for a class, such prototypes which are the most similar,
on average, to the rest of the prototypes from the same
class are selected; this process is repeated for each
class to select the BP set.
2. BP selection using representative prototypes of the
tree TS (BPNodesTS). In this case, the TS tree
structure is used to select some prototypes from the
training set. The set of base prototypes (BP) is

composed by the representative prototypes of the
nodes of TS tree. In this case, if the number of nodes in
the tree is bigger than m, then only the representative
prototypes of the first m nodes, found by a breath
search, are selected. Breadth search is used, in order to
consider the nodes from the first levels of the tree,
since the nodes in the first levels of the tree represent
more prototypes than nodes in deeper levels.

Fig. 2. General diagram of Tree LAEMD classifier

2.4 Tree LAEMD

Tree LAEMD (Hernández-Rodríguez-e et al., 2008) is
based on a hybrid approach, which uses a tree structure
and new Approximating-Eliminating steps, for mixed
data and any non metric comparison function (Fig. 2).
Preprocessing phase: in this phase we proposed to
compute and store a tree structure, a Boolean tri-
dimensional array, a representative prototype per class
and a similarity threshold, as follows:

1. Tree structure (TS), described in Section 2.1.
2. Boolean tri-dimensional array (SimArrayNodesTS).
This array stores the similarity between the
representative prototypes of the nodes in TS tree. This
array is smaller than the one used in AESA, because
the number of nodes in TS tree is smaller than the
number of elements in the training set. Besides, this
array is used during the classification phase to prune
nodes during the tree traversal.
In this case, SimArrayNodesTS[Repa,Repb,xi]=1, if the
representative prototypes Repa and Repb (of the nodes
a and b) are similar regarding the attribute xi (i=1,…,d,

New prototype to classify (Q):

Classification phase Preprocessing phase

Training set
(T)

The following is computed:

1. Tree structure (TS)

2. Boolean tri-dimensional array
 (SimArrayNodesTS)

3. Similarity threshold between
 prototypes (SimThres)

4. Representative prototypes
 per class (RPc)

Initial approximation of the k MSN to Q
(using RPc)

Tree traversal algorithm to update the k MSN
to Q (using TS, SimThres and SimArray)

Final decision of the class of Q

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 79

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

where d is the number of attributes in the prototypes)
and otherwise SimArrayNodesTS[Repa,Repb,xi

3. Similarity threshold between prototypes (SimThres).
This value is used during the tree traversal algorithm to
decide if a representative prototype of a node of the
tree TS can be used to prune nodes in the tree and it is
computed as described in Section 4.1.

]=0. In
order to evaluate the similarity per attribute between
two prototypes, the criteria described in Section 2.2,
were used.

4. A representative prototype per class (RPc

Classification phase: given a new query Q to classify
TS, SimThres, SimArrayNodesTS, and RP

). These
values are computed as described in Section 2.2.

c

1. Initial approximating step. In this step, the
representative prototypes per class (RP

, computed
during the preprocessing phase, are used to avoid
prototype comparison, as follows:

c

2. Tree traversal step. In order to update the k most
similar neighbors, two algorithms to traverse the tree
(Approximating step) are proposed:

) are compared
against Q to obtain a first approximation of the k most
similar neighbors.

* Depth First Search, DFSAE
* Best First Search, BFSAE
During the tree traversal algorithm, if a representative
prototype (Rep) of a node is similar enough to Q
(Sim(Q,Rep)>SimThres), then all nodes whose
representative prototypes are dissimilar to Rep are
pruned, using the information about the similarity
between representative prototypes stored in
SimArrayNodesTS (Eliminating step).
3. Classification step. Finally, the majority class of the
k MSN is assigned to Q.

3 Experimental result section

In order to evaluate the performance of the proposed
classifiers (Tree k-MSN, AEMD, LAEMD and Tree
LAEMD), they are compared against the exhaustive k-
NN algorithm (Cover & Hart, 1967) and the following
tree-based fast k-NN classifiers:
1. Adapted FN classifier (Fukunaga & Narendra,

1975)
2. Adapted GB classifier using GR pruning rule

(Gómez-Ballester et al., 2006)
3. Adapted ONC classifier (Oncina et al., 2007)
4. Adapted MS classifier (Moreno-Seco et al., 2003)
5. Cluster tree (Zhang & Srihari, 2004)

To compare FN, GB, ONC and MS classifiers with
our proposed fast k-MSN classifier, we adapted these
classifiers. The adaptation consisted in the use of the
same tree structure (TS) proposed in Section 3.1 and
the same function, suitable to work with mixed data,
instead of a distance function. In this way, only the
search algorithm of the fast k-NN classifiers, is
compared.

Besides, since GB tree traversal search algorithm
was proposed for a binary tree, in our GR adaptation
the pruning rule is applied to all of the C-1 sibling
nodes. When a leaf node is reached, as it could contain
more than one prototype, a local exhaustive
comparison is performed to find the k-MSN.

Since Cluster tree is proposed to work with any
dissimilarity, we use this classifier with the same
comparison functions for mixed data.

Also, the following Approximating-Eliminating-
approach fast k-NN classifiers were compared:
1. AESA classifier (Vidal, 1986)
2. LAESA classifier (Mico et al., 1994), using

m=20% of the prototypes in the dataset
3. iAESA classifier (Figueroa et al., 2006)
4. Probabilistic iAESA classifier (Figueroa et al.,

2006)
Finally, the following fast k-NN classifiers based on
the hybrid-approach were also considered:
1. TLAESA (Mico et al., 1996)
2. Modified TLAESA (Tokoro, 2006)

To compare Approximating-Eliminating and hybrid-
approaches, the same comparison function for mixed
data was used. In this work, the dissimilarity function
HVDM (Wilson & Martínez, 2000), was used for the
experiments. This comparison function was selected
because it allows comparing mixed data and it is not a
metric function since it does not satisfy the triangle
inequality property.

For the experiments, 10 datasets from the UCI
repository (Blake & Merz, 1998) were used (see Table
1).

In order to compare the different classifiers, the
accuracy (Acc) and the percentage of comparisons
between prototypes (Comp), were considered. The
accuracy was computed as follows:

 (8)

Where, NoCorrectPrototypes is the number of
correctly classified prototypes in the testing set and
NoTestPrototypes is the size of the testing set. The

80 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

percentage of comparisons between prototypes was
computed as follows:

 (9)

Where NoCompFastClassifier is the number of
comparisons done by the fast k-NN classifier, and
NoTrainingPrototypes is the size of the training set.
According to (10), the exhaustive classifier does the
100% of the comparisons.

Table 1. Datasets used in this section

Dataset
No. of

prototypes

No. of
numerical
features

No. of non
numerical
features

Classes
Missing
data

Hepatitis 155 6 13 2 yes
Zoo 101 1 16 7 no
Flag 194 3 25 8 no
Echocardiogram 132 9 2 2 yes
Hayes 132 0 4 3 no
Soybean-large 307 0 35 19 yes
Bridges 108 0 11 7 yes
Glass 214 9 0 7 no
Iris 150 4 0 3 no
Wine 178 13 0 3 no

Table 2. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the exhaustive k-NN

search and the tree-based fast k-NN classifiers, using HVDM function and k=1 MSN

Datasets k-NN
Adapted FN
classifier

Adapted GB
classifier

Adapted ONC
classifier

Adapted MS
classifier

Cluster tree

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,75 100 81,13 118,99 81,13 87,50 81,13 71,89 81,08 95,86 77,88 42,01
Zoo 97,00 100 97,00 24,68 97,00 23,46 97,00 22,16 97,00 21,86 95,00 41,63
Flag 53,21 100 53,71 56,97 53,71 53,10 53,18 46,52 54,26 43,43 48,47 44,09
Echocard. 82,69 100 82,69 121,01 82,69 84,01 82,69 72,82 84,18 93,43 83,24 41,75
Hayes 84,29 100 84,29 28,31 84,29 21,14 84,29 16,59 83,57 27,45 67,31 27,45
Soybean-L 90,54 100 91,18 26,56 91,18 19,90 91,18 16,85 89,88 25,02 83,33 20,22
Bridges 63,36 100 64,27 93,65 64,27 53,34 65,18 50,65 63,27 54,25 40,27 36,82
Glass 68,18 100 68,18 35,96 68,18 27,04 68,18 20,16 67,71 34,36 60,30 34,64
Iris 94,67 100 94,67 21,12 94,67 19,87 94,67 18,21 95,33 19,37 86,67 37,41
Wine 95,46 100 95,46 43,78 95,46 32,66 95,46 27,88 94,35 34,31 93,24 45,85
Avg. 81,12 100 81,26 57,10 81,26 42,20 81,30 36,37 81,06 44,93 73,57 37,18

In all the experiments ten-fold-cross-validation was
used. According to this technique, the dataset is
divided in ten partitions; nine of them are used for
training and the last partition is used as testing set. This
process is repeated ten times, in such a way that each
partition is used once as testing set.

In (Hernandez-Rodriguez et al., 2007) different
experiments for choosing a value of the parameter C
and PercThres were done. In our experiments, C=3,
NoP=10% of the dataset, and PercThres=100% were
used, since in (Hernandez-Rodriguez et al., 2007), the
fast k-NN classifiers reached their best results with
these values.

In table 2, the results (Acc and Comp) obtained with
the different tree-based fast k-NN classifiers, are
shown. From this table, we can notice that the adapted

FN, GB and ONC become approximate methods (the
classification accuracy is not the same as using the
exhaustive k-NN) using HVDM function, which occurs
because this comparison function does not satisfy the
triangle inequality property. From table 2, we can also
notice that Cluster tree, which is the only fast k-NN
classifier in the state of the art, proposed to work with
non metric functions, reduced more the number of
prototype comparisons required to classify a new query
(from 100% to 37.18%). However, the classification
accuracy was decreased from 81.12% (obtained by k-
NN) to 73.57%. From all the tree-based fast k-NN
classifiers, ONC obtained the best results (i.e.
classification accuracy did not decrease and the
percentage of comparisons was reduced from 100% to
36.37%)

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 81

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

In table 3, the results (Acc and Comp) obtained with
different Approximating-Eliminating and Hybrid
approaches for fast k-NN classifiers, are shown. From
this table, we can notice that AESA, LAESA, iAESA,
TLAESA and modified TLAESA also become
approximate methods, using HVDM function. From
table 3, it can also be observed that probabilistic
iAESA reduced more the number of prototype
comparisons required to classify a new query (from
100%, done by the k-NN to 22.45%).
In table 4, the results obtained with the fast k-MSN
classifiers proposed in this work: Tree k-MSN (using
DF search to traverse the tree), AEMD, LAEMD
(using the algorithm BPNodesTS to select base
prototypes), Tree LAEMD (using the DFSAE tree

traversal algorithm), are presented. From this table, it
is possible to notice that all the proposed classifiers
obtained similar classification accuracy than all the
other evaluated methods (enlisted in tables 3 and 4) but
achieved a biggest reduction in the number of
prototype comparisons. Among the proposed
classifiers, Tree LAEMD obtained the best results.
Additionally, a t-student test (Dietterich, 1998) with a
confidence level of 95%, was done. From this test, we
noticed that the classification accuracy difference
between the proposed classifiers and all other
evaluated fast k-NN classifiers is not statistically
significant, while the prototype comparison reduction
(done by Tree k-MSN, AEMD, LAEMD and Tree
LAEMD) is statistically significant.

Table 3. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by Approximating-Eliminating and
Hybrid-approach fast k-NN classifiers, using HVDM function and k=1 MSN

Datasets AESA LAESA TLAESA Modified
TLAESA

iAESA Probabilistic
iAESA

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,68 51,03 80,61 60,73 81,64 84,64 81,03 68,26 81,64 49,37 80,29 37,85
Zoo 97,00 21,34 96,00 25,23 95,75 55,77 95,78 27,34 97,20 21,04 95,42 18,56
Flag 53,60 27,23 52,82 27,57 52,01 49,25 50,19 42,94 52,53 27,15 52,00 25,93
Echocard. 82,54 64,34 82,08 67,39 82,25 75,84 82,12 38,30 82,92 63,18 82,34 63,04
Hayes 83,71 21,23 80,71 21,84 80,73 49,44 80,48 25,49 82,31 21,02 81,84 20,62
Soybean-L 89,87 2,07 89,87 5,12 89,87 38,44 87,23 18,35 89,03 2,05 90,23 2,04
Bridges 63,21 24,23 60,37 26,23 59,37 48,45 59,49 38,92 60,64 24,71 60,60 24,57
Glass 68,18 13,20 68,18 24,53 68,18 49,54 68,18 22,39 68,18 11,92 67,32 11,25
Iris 94,67 8,23 94,67 10,68 94,67 42,54 94,67 13,29 94,67 8,05 94,00 8,01
Wine 95,46 14,23 95,46 14,75 95,46 36,45 95,46 13,52 95,46 13,58 95,41 12,58
Avg. 80,99 24,71 80,08 28,41 79,99 53,04 79,46 30,88 80,46 24,21 79,95 22,45

Table 4. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the proposed fast k-MSN classifiers,
using HVDM function and k=1 MSN

Datasets Tree k-MSN AEDM LAEDM Tree LAEDM

Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 83,71 9,54 81,31 14,63 81,64 18,96 81,59 13,23
Zoo 96,00 19,68 97,10 18,61 97,00 32,85 96,00 12,79
Flag 52,21 13,20 53,63 16,23 52,00 17,44 52,47 9,73
Echocard. 79,62 16,50 82,62 17,51 82,62 21,16 81,49 13,05
Hayes 83,52 18,19 83,85 14,52 83,85 18,42 82,17 10,67
Soybean 85,26 9,72 90,54 11,52 90,54 16,25 89,37 7,83
Bridges 60,36 15,80 61,85 17,62 60,64 17,96 60,60 8,32
Glass 67,73 12,91 67,01 14,99 68,18 15,72 68,18 8,38
Iris 92,67 15,66 94,09 14,82 94,09 15,62 94,67 10,37
Wine 91,57 13,80 95,00 14,62 95,00 18,51 95,46 12,07
Avg. 79,27 14,50 80,70 15,50 80,56 19,29 80,20 10,64

82 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

Fig. 3. Classification accuracy (Acc) against percentage of comparisons (Comp)

obtained by the different fast k-NN/k-MSN classifiers, using HVDM similarity function and k=1 MSN

In Figure 3, a graph of the accuracy (Acc) against
the number of prototype comparisons (Comp) is
shown. From this graph, we can notice that all the
classifiers obtained similar average classification
accuracy, except Cluster tree which obtained the
lowest classification accuracy results. However, the
proposed classifiers (Tree k-MSN, AEMD, LAEMD
and Tree LAEMD), did the smallest number of
prototype comparisons. All the experiments were
repeated, using k=3 and k=5 and the performance of
the fast k-NN classifiers were similar.

4 Conclusions

The development of fast k-NN classifiers has been an
active research area in the last years, but most of these
classifiers rely on metric properties to reduce the
number of prototype comparisons. Moreover, very few
work has been focused on applications where the
comparison function does not satisfy metric properties.
For this reason, in this thesis some fast k most similar
neighbor (k-MSN) classifiers for mixed data and non
metric comparisons functions were proposed. To
develop these methods, the most successful approaches
from the state of the art were followed.

In order to make comparisons, other tree-based fast
k-NN classifiers were adapted using our proposed tree
structure and the same comparison function, to allow
them working on mixed data, because of under these
circumstances the original algorithms cannot be
applied. Also, other methods based on Approximating-
Eliminating and Hybrid approaches were considered
for comparisons. In these cases, the original algorithms
were tested using the same comparison function for
mixed data.

Based on our experimental results, in comparison
with the exhaustive classifier, and the other fast k-NN
classifiers (FN, GB, ONC, MS, AESA, LAESA,
iAESA, probabilistic iAESA, TLAESA, modified
TLAESA and Cluster tree), the proposed classifiers
(Tree k-MSN, AEMD, LAEMD and Tree LAEMD),
obtained a big reduction on the number of comparisons
between prototypes, which is of particular importance
in applications where a fast response is required.

Among the proposed fast k-MSN classifiers, using
Tree LAEMD the best results were obtained. However,
it is important to remark that Tree LAEMD requires
more storage space than Tree k-MSN. For this reason,
the selection of Tree k-MSN or Tree LAEMD would
depend on the size of the particular problem. The
proposed classifier LAEMD is applicable when the

0

20

40

60

80

100

0 20 40 60 80 100

Co
m

p

Acc

k-NN
Adapted FN classifier
Adapted GB classifier
Adapted ONC classifier
Adapted MS classifier
Cluster tree
AESA
LAESA
TLAESA
Modified TLAESA
iAESA
Probabilistic iAESA
Tree k-MSN
AEDM
LAEDM
Tree LAEDM

Proposed fast
k-MSN classifiers

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 83

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

comparison function is very expensive, because the
preprocessimg stage required by LAEMD is faster than
the preprocessing stage required by Tree LAEMD.

Finally, we can conclude that for large mixed
datasets and non-metric prototype comparison
functions, the proposed classifiers are the best option.

As future work, we plan to look for other pruning
rules (elimination criteria), not based on metric
properties, which would allow us to reduce even more
the number of prototype comparisons for AEMD,
LAEMD and Tree LAEMD.

References

Adler, M., & Heeringa, B. (2008). Search Space
Reductions for Nearest-Neighbor Queries. Theory
and Applications of Models of Computation.
Lecture Notes in Computer Science, 4978, 554-567.

Arya, S., Mount, D., Netanyahu, N., Silverman, R.,
& Wu, A. (1998). An optimal algorithm for
approximate nearest neighbor searching in high
dimensions. Journal of the ACM, 45(6), 891-923.

Athitsos, V., Alon, J., & Sclaroff, S. (2005). Efficient
Nearest Neighbour Classification Using Cascade of
Approximate with Similarity Measures. IEEE
Conference on Computer Vision and Pattern
Recognition 2005, Washington, USA, 486-493.

Beckmann, N., Kriegel, H., Schneider, R., & Seeger,
B. (1990). The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. ACM
SIGMOD Record 19 (2), New Jersey, USA, 322-
331.

Blake, C., & Merz, C. (1998). UCI Repository of
machine learning databases.

[http://archive.ics.uci.edu/ml/datasets.html],
Department of Information and Computer Science,
University of California, Irvine, CA, January 2006.

Chávez E., & Navarro G. (2005). A compact space
decomposition for effective metric indexing.
Pattern Recognition Letters, 26(9), 1363-1376.

Cheng, D., Gersho, A., Ramamurthi, B., & Shoham,
Y. (1984). Fast search algorithms for vector
quantization and pattern matching. IEEE
International Conference on Acoustics, Speech and
Signal Processing, California, USA, 372-375.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor
pattern classification. IEEE Transactions on
Information Theory, 13(1), 21-27.

Denny, M., & Franklin, M.J. (2006). Operators for
Expensive Functions in Continuous Queries. 22nd

Dietterich, T. (1998). Statistical Tests for comparing
Supervised Classification Learning Algorithms.

International Conference on Data Engineering
ICDE´06, Georgia, USA, 147-147.

Neural Computation
D’haes, W., Dyck, D., and Rodel, X. (2002) PCA-

based branch and bound search algorithms for
computing k nearest neighbors. Pattern
Recognition Letters, 24(9-10), 1437-1451.

, 10(7), 1895-1923.

Figueroa, K., Chávez, E., Navarro, G., and Paredes,
R. (2006). On the last cost for proximity searching
in metric spaces. Workshop on Experimental
Algorithms. Lecture Notes in Computer Science,
4007, 279-290.

Fredriksson K. (2007). Engineering efficient metric
indexes. Pattern Recognition Letters, 28(1), 75-84.

Friedman J. H., Bentley J. L., & Finkel R. A.
(1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3), 209-226.

Fukunaga, K., & Narendra, P. (1975). A branch and
bound algorithm for computing k-nearest
neighbors. IEEE Transactions on Computers, C-
24(7), 750-753.

García-Serrano, J. R., & Martínez-Trinidad, J. F.
(1999). Extension to C-Means Algorithm for the
use of Similarity Functions. European Conference
on Principles of Data Mining and Knowledge
Discovery. Lectures Notes in Artificial Intelligence,
1704, 354-359.

Goh K., Li B., & Chang E. (2002). DynDex: A
Dynamic and Non-metric Space Indexer.
Proceedings of the tenth ACM international
conference on Multimedia, Juan-les-Pins, France,
466-475.

Gómez-Ballester, E., Mico, L., and Oncina, J.
(2006). Some approaches to improve tree-based
nearest neighbor search algorithms. Pattern
Recognition, 39(2), 171-179.

Guttman, A. (1984). R-trees: A Dynamic Index
Structure for Spatial Searching. ACM SIGMOD
International Conference on Management of Data,
New York, USA, 47-57.

Hernández-Rodríguez, S., Martínez-Trinidad, J., &
Carrasco-Ochoa, A. (2007). Fast k Most Similar
Neighbor Classifier for Mixed Data Based on a
Tree Structure. Iberoamerican congress on Pattern

javascript:AL_get(this,%20'jour',%20'Neural%20Comput.');�

84 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

Recognition. Lecture Notes in Computer Science,
4756, 407-416.

Hernández-Rodríguez, S., Martínez-Trinidad, J., &
Carrasco-Ochoa, A. (2007). Fast Most Similar
Neighbor Classifier for Mixed Data. The 20th
Canadian Conference on Artificial Intelligence.
Lecture Notes in Artificial Intelligence, 4509, 146-
158.

Hernández-Rodríguez, S., Martínez-Trinidad, J., &
Carrasco-Ochoa, A. (2008). Fast k Most Similar
Neighbor Classifier for Mixed Data based on
Approximating and Eliminating. Pacific-Asia
Conference on Knowledge Discovery and Data Mining.
Lecture Notes in Artificial Intelligence, 5012, 697-
704.

Hernández-Rodríguez, S., Martínez-Trinidad, J., &
Carrasco-Ochoa, A. (2008). Fast k Most Similar
Neighbor Classifier for Mixed Data based on a
Tree Structure and Approximating-Eliminating.
13th Iberoamerican congress on Pattern
Recognition: Progress in Pattern Recognition,
Image Analysis and Applications, Lecture Notes in
Computer Science, 5197, 364-371.

Hernández-Rodríguez, S., Martínez-Trinidad, J., &
Carrasco-Ochoa, A. (2008). On the Selection of
Base Prototypes for LAESA and TLAESA
Classifier. 19th

Hwang W., & Wen K. (2002). Fast kNN
classification algorithm based on partial distance
search. Electronics Letters, 34(21), 2062-2063.

 International Conference on Pattern
Recognition. Florida, USA, 407-416.

Kalantari, I., & McDonald, G. (1983) A data
structure and an algorithm for the nearest point
problem. IEEE Transactions on Software
Engineering, 9(5), 631-634.

Katayama, N., & Satoh, S. (1997). The sr-tree: An
index structure for high-dimensional nearest
neighbor queries. ACM SIGMOD International
Conference on Management of Data, Tucson,
Arizona, USA, 369-380.

McNames, J. (2001). A Fast Nearest Neighbor
Algorithm Based on a Principal Axis Search Tree.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(9), 964-976.

Micó, L., Oncina, J., and Vidal, E. (1994). A new
version of the nearest-neighbour approximating and
eliminating search algorithm (AESA) with linear
preprocessing-time and memory requirements.
Pattern Recognition Letters, 15(1), 9-17.

Mico, L., Oncina, J., & Carrasco, R. (1996). A fast
Branch and Bound nearest neighbor classifier in
metric spaces. Pattern Recognition Letters, 17(7),
731-739.

Moreno-Seco, F., Mico, L., & Oncina, J. (2003).
Approximate Nearest Neighbor Search with the
Fukunaga and Narendra Algorithm and its
Application to Chromosome Classification.
Iberoamerican congress on Pattern Recognition,
Lecture Notes in Computer Science 2905, 322-328.

Nene, S. A., & Nayar, S. K. (1997). A simple
algorithm for nearest neighbour search in high
dimensions. IEEE Transactions in Pattern Analysis
and Machine Intelligence, 19(9), 989-1003.

Omachi, S., & Aso, H. (2000). A fast algorithm for a
k-NN Classifier based on branch and bound
method and computational quantity estimation.
Systems and Computers in Japan, 31(6), 1-9.

Oncina, J., Thollard, F., Gómez-Ballester, E. Micó,
L., & Moreno-Seco, F. (2007). A Tabular Pruning
Rule in Tree-Based Fast Nearest Neighbor Search
Algorithms. Iberian Conference on Pattern Recognition
and Image Analysis. Lecture Notes in Computer
Science, 4478, 306-313.

Panigrahi, R. (2008), An Improved Algorithm
Finding Nearest Neighbor Using Kd-trees. 8th
Latin American conference on Theoretical
informatics. Lecture Notes in Computer Science,

Ramasubramanian, V., & Paliwal, K. (2000). Fast
Nearest-Neighbor Search Algorithms based on
Approximation-Elimination search. Pattern
Recognition 33(9), 1497-1510.

4957, 387-398.

Tokoro, K., Yamaguchi, K., & Masuda, S. (2006).
Improvements of TLAESA Nearest Neighbour
Search Algorithm and Extension to Approximation
Search. 29th

Uhlmann, J. (1991). Metric trees. Applied
Mathematics Letters, 4(5), 61-62.

 Australasian Computer Science
Conference, Hobart, Australia, 48, 77-83.

Vidal, E. (1986). An algorithm for finding nearest
neighbours in (approximately) constant average
time complexity. Pattern Recognition Letters, 4(3),
145-157.

White, D., & Jain, R. (1996). Similarity indexing with
the ss-tree. ICDE '96: Twelfth International
Conference on Data Engineering, Washington,
USA, 516-523.

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 85

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85
ISSN 1405-5546

Wilson, D., & Martínez, T. (2000). Reduction
techniques for instance based learning algorithms.
Machine Learning, 38, 257-286.

Yianilos, P. (1993). Data structures and algorithms for
nearest neighbor search in general metric spaces.
SODA '93: Fourth annual ACM-SIAM Symposium
on Discrete algorithms, Philadelphia, USA, 311-
321.

Yong-Sheng, C., Yi-Ping, H., & Chiou-Shann, F.
(2007). Fast and versatile algorithm for nearest
neighbor search based on lower bound tree, Pattern
Recognition Letters, 40(2), 360-375.

Yunck T. (1976). A technique to identify nearest
neighbors. IEEE Transactions on Systems, Man
and Cybernetics, 6(10), 678-683.

Zhang B., & Srihari S. (2004). Fast k- nearest
neighbour classification using cluster-based tree.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(4), 5

Selene Hernández Rodríguez. Received her B. S.
degree in Computer Science from the Computer
Science faculty of the Autonomous University of
Puebla (BUAP), Mexico in 2004; her M.Sc. degree in
Computer Science from the National Institute of
Astrophysics, Optics and Electronics (INAOE),
Mexico, in 2006 and her Ph.D. degree in Computer
Science from INAOE, Mexico, in 2009. Her research
interests are Pattern Recognition, Machine Learning,
Data Mining and Supervised Classification.

José Francisco Martínez Trinidad. Received his B.S.
degree in Computer Science from Physics and
Mathematics School of the Autonomous University of
Puebla (BUAP), Mexico in 1995, his M.Sc. degree in

Computer Science from the faculty of Computers
Science of the Autonomous University of Puebla,
Mexico in 1997 and his Ph.D. degree in the Center for
Computing Research of the National Polytechnic
Institute (CIC, IPN), Mexico in 2000. Professor
Martinez-Trinidad edited/authored four books and
over fifty journal and conference papers, on subjects
related to Pattern Recognition.

Jesús Ariel Carrasco Ochoa. Received his Ph.D.
degree in Computer Science from the Center for
Computing Research of the National Polytechnic
Institute (CIC-IPN), Mexico, in 2001. Currently, he is
a full time researcher at the National Institute for
Astrophysics, Optics and Electronics (INAOE) of
Mexico. His current research interests include
Sensitivity Analysis, Logical Combinatorial Patter
Recognition, Testor Theory, Feature Selection,
Prototype Selection and Clustering.

