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Abstract. The k nearest neighbor (k-NN) classifier has been 
extensively used in Pattern Recognition because of its 
simplicity and its good performance. However, in large 
datasets applications, the exhaustive k-NN classifier becomes 
impractical. Therefore, many fast k-NN classifiers have been 
developed; most of them rely on metric properties (usually 
the triangle inequality) to reduce the number of prototype 
comparisons. Hence, the existing fast k-NN classifiers are 
applicable only when the comparison function is a metric 
(commonly for numerical data). However, in some sciences 
such as Medicine, Geology, Sociology, etc., the prototypes 
are usually described by qualitative and quantitative features 
(mixed data). In these cases, the comparison function does 
not necessarily satisfy metric properties. For this reason, it is 
important to develop fast k most similar neighbor (k-MSN) 
classifiers for mixed data, which use non metric comparisons 
functions. In this thesis, four fast k-MSN classifiers, 
following the most successful approaches, are proposed. The 
experiments over different datasets show that the proposed 
classifiers significantly reduce the number of prototype 
comparisons. 
 
Keywords: Nearest neighbor rule, fast nearest neighbor 
search, mixed data, non-metric comparison functions. 
 
Resumen. El clasificador k vecinos más cercanos (k-NN) ha 
sido ampliamente utilizado dentro del Reconocimiento de 
Patrones debido a su simplicidad y buen funcionamiento. Sin 
embargo, en aplicaciones en las cuales el conjunto de 
entrenamiento es muy grande, la comparación exhaustiva que 
realiza k-NN se vuelve inaplicable. Por esta razón, se han 
desarrollado diversos clasificadores rápidos k-NN; la mayoría 
de los cuales se basan en propiedades métricas (en particular 
la desigualdad triangular) para reducir el número de 
comparaciones entre prototipos. Por lo cual, los 
clasificadores rápidos k-NN existentes son aplicables 
solamente cuando la función de comparación es una métrica 
(usualmente con datos numéricos). Sin embargo, en algunas 
ciencias como la Medicina, Geociencias, Sociología, etc., los 
prototipos generalmente están descritos por atributos 

numéricos y no numéricos (datos mezclados). En estos casos, 
la función de comparación no siempre cumple propiedades 
métricas. Por esta razón, es importante desarrollar 
clasificadores rápidos basados en la búsqueda de los k 
vecinos más similares (k-MSN) para datos mezclados que 
usen funciones de comparación no métricas. En esta tesis, se 
proponen cuatro clasificadores rápidos k-MSN, siguiendo los 
enfoques más exitosos. Los experimentos con diferentes 
bases de datos muestran que los clasificadores propuestos 
reducen significativamente el número de comparaciones 
entre prototipos. 
 
Palabras clave: Regla del vecino más cercano, búsqueda 
rápida del vecino más cercano, datos mezclados, funciones 
de comparación no métricas 

1   Introduction 

The k-NN classifier (Cover & Hart, 1967) uses a 
training set (T) of prototypes, whose class is known a 
priori. To decide the class of a new prototype, the k-
NN classifier performs an exhaustive comparison 
between the prototype to classify and the prototypes in 
the training set, assigning to the new prototype a class, 
according to the classes of its k nearest neighbors in T. 
However, when the training set is large, the exhaustive 
comparison is expensive and sometimes inapplicable. 
Thus, many fast k-NN classifiers have been designed; 
different reviews appear in (Nene & Nayar, 1997; 
Ramasubramanian et al., 2000; and Yong-Sheng et al., 
2007). 

The objective of a fast k-NN classifier is to reduce 
the number of comparisons trying to keep the 
classification accuracy obtained by k-NN. Speeding up 
the k-NN classifier is required because some 
applications demand a rapid response on large datasets, 
for example online stock analysis, air traffic control, 
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network traffic management, intrusion detection, etc. 
Also, fast k-NN classifiers are useful for problems with 
high dimensionality where the comparison function 
could be very expensive (Mico et al., 1994; Denny & 
Franklin, 2006), under this context, reducing the 
number of comparisons could be very important. For 
these reasons, although nowadays the computers are 
very fast, the development of fast k-NN classifiers is 
currently an active research area (Adler & Heeringa, 
2008; Panigrahi, 2008). Nevertheless, most of the fast 
k-NN classifiers proposed in the literature have been 
designed for numerical prototype descriptions 
compared through a metric function. Moreover, in 
some sciences such as Medicine, Geology, Sociology, 
etc., the prototypes are usually described by numerical 
and non numerical features (mixed data) and the 
comparison function does not satisfy metric properties.  

Thus, if a metric is not available but a comparison 
function that evaluates the similarity between a pair of 
prototypes can be defined, given a new prototype Q to 
classify, the objective is to find the k most similar 
neighbors to Q in a training set T (with N prototypes, 
where each prototype is described by d attributes, 
which can be numerical or non numerical), and assign 
to Q a class (based on its k most similar neighbours). 
However, the exhaustive search of the k-MSN, as 
occurs with k-NN, could be very expensive if T is 
large. For this reason, it is important to develop fast k 
most similar neighbor (k-MSN) classifiers for mixed 
data and non metric comparisons functions.  

In this thesis, four fast k-MSN classifiers are 
proposed. The first uses a tree structure, the second and 
the third are based on a new Approximating-
Eliminating approach for mixed data. Finally, the last 
fast k-MSN classifier proposed in this thesis uses a tree 
structure and an Approximating-Eliminating approach.  

2   Proposed fast k-MSN classifiers 

According to the strategy used to avoid prototype 
comparisons, fast k-NN classifiers can be broadly 
divided as:  
Tree based classifiers, which hierarchically decompose 
the training set in a tree and use a tree traversal search 
algorithm to find the k-NN elements, while pruning 
rules to avoid the exhaustive tree traversal are used. 
Approximating-Eliminating classifiers, which start 
comparing the new prototype to classify against the 
prototypes in the training set, supporting on some 

eliminating criteria to avoid the comparison against 
every element in the training set. 
Hybrid classifiers, which use both approaches. 
In this thesis, some fast k-MSN classifiers following 
these lines are proposed, in order to work with mixed 
data. 

2.1  Tree k-MSN 

The first proposed classifier, Tree k-MSN (Hernández-
Rodríguez-a et al., 2007; Hernández-Rodríguez-b et 
al., 2007), consists of two phases. The first one, or 
preprocessing phase, builds a tree structure from the 
training set (T). In the second phase, two search 
algorithms, which are independent of metric properties 
of the comparison function, are proposed for 
classifying a new prototype. 
Preprocessing phase: in this phase, the training set is 
hierarchically decomposed to create a tree structure 
(TS). At the beginning, the root of the tree contains the 
whole training set. In order to create the following 
levels of the tree, each node n of the tree is divided in 
C clusters, in such a way that each cluster represents a 
descendant node of n. Each descendant node is divided 
again and this process is repeated until a stop criterion 
is satisfied.  

Since our algorithm is designed to allow mixed data, 
instead of using the C-Means algorithm for building 
the tree structure, as in the FN classifier, the C-Means 
with Similarity Functions algorithm (CMSF) (García-
Serrano & Martínez-Trinidad, 1999), is used. CMSF 
allows creating C clusters and computing as 
representative element of each cluster a prototype 
belonging to the cluster (i.e., a prototype contained in 
T); besides CMSF allows using any similarity function. 

Each node p of the tree contains three features: Sp 
the set of prototypes that belong to p; Np the number of 
prototypes in p and unlike FN and MS classifiers, Repp

A node is marked as a leaf when a stop criterion is 
satisfied. In this thesis we used a stop criterion based 
on the node size (SC1), which is used in (Fukunaga & 
Narendra, 1975; Kalantari & McDonald, 1983; Mico et 
al., 1996; Omachi & Aso, 2000; McNames, 2001; 
D’Haes et al., 2002; Gomez-Ballester et al., 2006) and 
we introduce two new stop criteria (SC2 and SC3), 
which take into account not only the number of 
prototypes of the node, but also the class distribution 

 
a representative prototype of the node, which is on 
average the most similar to the rest of prototypes in the 
node. 
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of these prototypes. The three stop criteria are the 
following: 
1. Stop criterion 1 (SC1). This criterion is based on the 
node size. According to this criterion, if the number of 
prototypes contained in a node is less than a predefined 
threshold (Np

However, when most of the prototypes contained in a 
node belong to the same class, dividing this node could 
lead to unnecessary prototype comparisons during the 
classification stage, between the prototype to classify 
and the representative prototypes of the nodes. Because 
all descendant nodes, that would be created, also 
would belong to the same class. Since the objective is 
to classify a new prototype trying to avoid prototype 
comparisons, we propose a second stop criterion 
during the tree construction: 

 ≤ NoP), then the node is marked as a 
leaf. The objective of this criterion is to obtain leaves 
with a few prototypes. 

2. Stop criterion 2 (SC2). If most of the prototypes in a 
node belong to the same class, then the node is 
considered as a leaf and it is marked with the majority 
class, even if the set is not small enough according to 
the first stop criterion (Np

When the node is generalized by the majority class, 
through SC2, if PercThres=100%, it means that all 
prototypes in the node belong to the same class (the 
generalized class of the node). However, when 
PercThres<100%, an error is introduced, because some 
prototypes in the node do not belong to the majority 
class. Therefore, we introduce a third criterion: 

 > NoP). In order to decide 
how many prototypes in the node must belong to the 
same class, for generalizing the class of a node, a 
percentage threshold (PercThres) is used. In the nodes 
where this criterion is not satisfied, only the size of the 
node is considered to create leaf nodes (SC1). 

3. Stop criterion 3 (SC3). If certain percentage 
(PercThres) of the prototypes in a node belongs to the 
same class, two nodes are created. Using the 
prototypes that belong to the majority class, a leaf node 
is created and it is marked with the majority class. The 
rest of the prototypes are assigned to a second node. In 
the second node, the size is considered to decide if the 
node is a leaf (if Np

Using SC2 and SC3 the number of prototype 
comparisons (during the classification stage) is 
reduced, because if during the tree traversal a leaf node 
(marked with the majority class) is reached, then only 

the representative prototype of the node, with the 
corresponding majority class, is used to update the list 
of the k most similar neighbors (only one comparison), 
instead of comparing the prototype to classify against 
all the prototypes contained in the leaf. 

 ≤ NoP) or if the node will be 
divided again. In the nodes where SC3 criterion is not 
satisfied, only the size of the node is considered to 
create leaf nodes (SC1).  

Classification phase: in this phase, in order to avoid an 
exhaustive tree traversal, fast k-NN classifiers rely on 
pruning rules (based on metric properties). As we are 
looking for a method applicable when the comparison 
function does not satisfy metric properties, pruning 
rules based on the triangular inequality cannot be used; 
therefore, we propose to stop the search when a leaf of 
the tree is reached. In the first search algorithm (DF 
search), we propose to use a depth-first search strategy 
and in the second search algorithm (BF search), we 
propose to use a best-first search strategy. The two 
proposed algorithms for searching the k-MSN are 
described below: 
1. DF search: It begins at the root of the tree, following 
the path of the most similar node and finishes when a 
leaf is reached. As each node of the tree is represented 
by a prototype of the training set, with known class, a 
list of the k-MSN is stored and updated during the tree 
traversal. When the first leaf node l is reached, if l is 
marked with the majority class, then only the 
representative prototype Repl

2. BF search: It begins at the root of the tree, 
comparing Q against the descendant nodes of the root, 
which are added to a list (List_tree_traversal). After 
that, List_tree_traversal is sorted in such a way the 
most similar node to Q is in the first place. The most 
similar node (first element) is eliminated from 
List_tree_traversal and its descendant nodes are 
compared against Q, and added to List_tree_traversal, 
which is sorted again. The search finishes when the 
first element of List_tree_traversal is a leaf. In this 
search, it is possible to reconsider nodes in levels of 
the tree already traversed if the first node of 
List_tree_traversal belongs to a previous level in the 
tree.  

 is used to update the k-
MSN (because most of the prototypes in the node 
belong to the same class). If the node is not marked 
with the majority class, then an exhaustive search in 
the node is done and the list of k-MSN is updated. 
After a leaf is processed, if the list of k-MSN does not 
have k elements, then the tree traversal follows 
backtracking steps to explore nodes closer to Q, until k 
most similar neighbours are found. 

During the tree traversal, another list (List_k-MSN) 
containing the k current MSN is stored and updated. 
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After a leaf is processed (in a similar way than in the 
local search), if List_k-MSN does not contain k 
elements (MSN), then the first element in 
List_tree_traversal is considered to follow a new 
route. The process stops when List_k-MSN contains k 
elements (MSN). However, using both search strategies 
(DF and BF), in practical problems where the training 
set is large, it is quite difficult that List_k-MSN does 
not have k elements (MSN) when the first leaf is 
reached. After finding k-MSN, the majority class is 
assigned to the new sample Q. 

2.2 AEMD 

The second fast k-MSN classifier proposed in this 
thesis, AEMD (Hernandez-Rodríguez-c et al., 2008), is 
based on a new Approximating-Eliminating approach 
for Mixed Data. AEMD also consists of two phases: 
preprocessing and classification. 
Preprocessing phase:in this stage, AEMD computes 
and stores the next information which is used during 
the classification phase to reduce the number of 
comparisons between prototypes: 
1. Similarity binary array (SimArray). In this thesis, 
we proposed computing and storing an array of 
similarities per attribute among the prototypes in the 
training set (T), where SimArray[Pa,Pb,xi]=1 if the 
prototypes Pa and Pb are similar regarding the attribute 
xi, i∈[1,d] and otherwise SimArray[Pa,Pb,xi]=0, 
Pa,Pb

 

∈T. In order to evaluate the similarity per 
attribute between two prototypes, different approaches 
can be applied. In this thesis, the following criteria 
were used: 

(1) 

If the attribute xi

 

 is not numeric: 

(2) 

If the attribute xi

 

 is numeric: 

(3) 

Where σ i is the standard deviation of the attribute xi

2. Similarity threshold (SimThres). This value is used 
during the tree traversal algorithm to decide if a 
representative prototype of a node of the tree can be 

used to prune nodes in the tree. In this thesis SimThres 
is computed as follows: let Set

 in 
T. The required space to store SimArray is |T| * |T| * d, 
but each element is a bit, therefore |T| * |T| words of d 
bits are needed for storing SimArray. 

c

 

 be the set of prototypes 
that belong to class c (c=1,…, number of classes in T) 
and ClassAvgSim be defined as follows: 

(4) 

SimThres is computed as the average value of 
similarity for all the classes: 

 (5) 

3. A representative prototype per class (RPc). Taking 
advantage of the class information, we propose to use a 
representative prototype (RPc) for each class in the 
training set. These prototypes are used to obtain a first 
approximation of the k most similar neighbors during 
the classification phase, before performing TS tree 
traversal algorithm. In this thesis, to compute RPc, let 
Setc be the set of prototypes that belong to class c. For 
each Pi in Setc

 

: 

(6) 

Where Sim is a similarity comparison function. Thus, 
the representative prototype for each class is the one 
that maximizes ASim function: 
 

 (7) 

Where i=1...|Setc

Classification phase (Fig. 1): given a new prototype Q 
to classify, SM, RP

|, c=1,...,NoClasses and NoClasses is 
the number of classes in T. 

c

Initial approximating step. At the beginning of the 
algorithm, the prototype Q is compared against the 
class representative prototypes per class (RP

 and SimThres (computed during 
the preprocessing phase) are used to avoid prototype 
comparisons. This phase is based on Approximating-
Eliminating steps for mixed data, which are not based 
on the triangle inequality. This stage is as follows: 

c), to 
obtain a first approximation to the k most similar 
neighbors and, in particular, the current most similar 
neighbor (CurrentMSN). After that, all RPc

If Sim(Q,Current

 are 
eliminated from T.  

MSN) ≥ SimThres, then the 
prototype CurrentMSN is used to eliminate prototypes 
from T (Eliminating step). In other case, the 
Approximating step is performed. 
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Eliminating step. CurrentMSN is used to eliminate 
prototypes from T. First, a binary representation (BR) 
containing the similarity per attribute (using 
Ci(Xi(Pa),Xi(Pb)) criterion), between Q and 
CurrentMSN is used. Thus, BRi(Q,CurrentMSN)=1, if Q 
and  CurrentMSN are similar in the attribute xi and 
BRi(Q,CurrentMSN
Using BR, those prototypes in T, which are not similar 
to Current

)=0, in other case.  

MSN at least, in the same attributes in which 
CurrentMSN is similar to Q, are eliminated from T 
(using SimArray(CurrentMSN,Pa
After the Initial approximation and the Eliminating 
steps, if T is not empty, the approximation step is 
performed. 

)). 

Approximating step. In this step, a new prototype 
MSN’∈T is randomly selected, compared against Q, 
eliminated from T and used to update the current k 
most similar neighbors. If Sim(Q,MSN’) < SimThres, a 
new MSN’ is randomly selected (Approximating step). 
Otherwise, if  Sim(Q,MSN’) ≥ SimThres , the prototype 
MSN’ is used to eliminate prototypes from T 
(Eliminating step). 
This process is repeated until the set T is empty. After 
finding the k most similar neighbors, the majority class 
is assigned to Q. 
 

 
Fig. 1. Diagram of the classification stage of AEMD 

 
 

2.3 LAEMD 

The third fast k-MSN classifier LAEMD is a 
modification of AEMD, which aims to reduce the 
storage space required by AEMD, following the ideas 
of LAESA (Mico et al., 1994). 

Since, an important step for the performance of 
LAESA classifiers is the BP selection algorithm, in 
this thesis two BP selection algorithms (Hernández-
Rodríguez-d et al., 2008) are introduced: 

In the preprocessing 
phase, LAEMD selects a subset of base prototypes 
(BP) from T, and the distances between the prototypes 
in T and the prototypes in BP are computed and stored 
in SimArray, which is smaller than SimArray (used in 
AEDM), since |BP|<<|T|. In LAESA, the BP selection 

consists in finding the farthest prototype in average to 
the remaining prototypes (not yet selected as BP) and 
this process is repeated until a predefined number (m) 
of BP have been selected. 

1. BP selection using class information (BPClass). In 
this algorithm, taking advantage of the class 
information, the BP set is created by selecting roughly 
the same number of elements from each class, in order 

New prototype (Q) to classify: 

Initial approximation step 
(RPc are used to update the k MSN and the CurrentMSN) 

Eliminating step 

Classification step 
The majority class of the k MSN is assigned to Q 

Approximating step 

Sim(Q,CurrentMSN)≥SimThres 

T≠Ø 

yes 

no 

yes 

no 
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to obtain a balanced subset. To select the prototypes 
for a class, such prototypes which are the most similar, 
on average, to the rest of the prototypes from the same 
class are selected; this process is repeated for each 
class to select the BP set.  
2. BP selection using representative prototypes of the 
tree TS (BPNodesTS). In this case, the TS tree 
structure is used to select some prototypes from the 
training set. The set of base prototypes (BP) is 

composed by the representative prototypes of the 
nodes of TS tree. In this case, if the number of nodes in 
the tree is bigger than m, then only the representative 
prototypes of the first m nodes, found by a breath 
search, are selected. Breadth search is used, in order to 
consider the nodes from the first levels of the tree, 
since the nodes in the first levels of the tree represent 
more prototypes than nodes in deeper levels. 
 

 

 
Fig. 2. General diagram of Tree LAEMD classifier 

 
 

2.4 Tree LAEMD 

Tree LAEMD (Hernández-Rodríguez-e et al., 2008) is 
based on a hybrid approach, which uses a tree structure 
and new Approximating-Eliminating steps, for mixed 
data and any non metric comparison function (Fig. 2). 
Preprocessing phase: in this phase we proposed to 
compute and store a tree structure, a Boolean tri-
dimensional array, a representative prototype per class 
and a similarity threshold, as follows: 

1. Tree structure (TS), described in Section 2.1. 
2. Boolean tri-dimensional array (SimArrayNodesTS). 
This array stores the similarity between the 
representative prototypes of the nodes in TS tree. This 
array is smaller than the one used in AESA, because 
the number of nodes in TS tree is smaller than the 
number of elements in the training set. Besides, this 
array is used during the classification phase to prune 
nodes during the tree traversal. 
In this case, SimArrayNodesTS[Repa,Repb,xi]=1, if the 
representative prototypes Repa and Repb (of the nodes 
a and b) are similar regarding the attribute xi (i=1,…,d, 

New prototype to classify (Q): 

Classification phase Preprocessing phase 

Training set 
(T) 

The following is computed: 

1. Tree structure (TS) 

2. Boolean tri-dimensional array 
    (SimArrayNodesTS) 

3. Similarity threshold between  
    prototypes (SimThres) 

4. Representative prototypes 
     per class (RPc) 

Initial approximation of the k MSN to Q 
(using RPc) 

Tree traversal algorithm to update the k MSN 
to Q (using TS, SimThres and SimArray) 

Final decision of the class of Q 
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where d is the number of attributes in the prototypes) 
and otherwise SimArrayNodesTS[Repa,Repb,xi

3. Similarity threshold between prototypes (SimThres). 
This value is used during the tree traversal algorithm to 
decide if a representative prototype of a node of the 
tree TS can be used to prune nodes in the tree and it is 
computed as described in Section 4.1. 

]=0. In 
order to evaluate the similarity per attribute between 
two prototypes, the criteria described in Section 2.2, 
were used. 

4. A representative prototype per class (RPc

Classification phase: given a new query Q to classify 
TS, SimThres, SimArrayNodesTS, and RP

). These 
values are computed as described in Section 2.2. 

c

1. Initial approximating step. In this step, the 
representative prototypes per class (RP

, computed 
during the preprocessing phase, are used to avoid 
prototype comparison, as follows: 

c

2. Tree traversal step. In order to update the k most 
similar neighbors, two algorithms to traverse the tree 
(Approximating step) are proposed: 

) are compared 
against Q to obtain a first approximation of the k most 
similar neighbors. 

* Depth First Search, DFSAE 
* Best First Search, BFSAE 
During the tree traversal algorithm, if a representative 
prototype (Rep) of a node is similar enough to Q 
(Sim(Q,Rep)>SimThres), then all nodes whose 
representative prototypes are dissimilar to Rep are 
pruned, using the information about the similarity 
between representative prototypes stored in 
SimArrayNodesTS (Eliminating step). 
3. Classification step. Finally, the majority class of the 
k MSN is assigned to Q. 

3   Experimental result section 

In order to evaluate the performance of the proposed 
classifiers (Tree k-MSN, AEMD, LAEMD and Tree 
LAEMD), they are compared against the exhaustive k-
NN algorithm (Cover & Hart, 1967) and the following 
tree-based fast k-NN classifiers: 
1. Adapted FN classifier (Fukunaga & Narendra, 

1975) 
2. Adapted GB classifier using GR pruning rule 

(Gómez-Ballester et al., 2006) 
3. Adapted ONC classifier (Oncina et al., 2007) 
4. Adapted MS classifier (Moreno-Seco et al., 2003) 
5. Cluster tree (Zhang & Srihari, 2004) 

To compare FN, GB, ONC and MS classifiers with 
our proposed fast k-MSN classifier, we adapted these 
classifiers. The adaptation consisted in the use of the 
same tree structure (TS) proposed in Section 3.1 and 
the same function, suitable to work with mixed data, 
instead of a distance function. In this way, only the 
search algorithm of the fast k-NN classifiers, is 
compared. 

Besides, since GB tree traversal search algorithm 
was proposed for a binary tree, in our GR adaptation 
the pruning rule is applied to all of the C-1 sibling 
nodes. When a leaf node is reached, as it could contain 
more than one prototype, a local exhaustive 
comparison is performed to find the k-MSN. 

Since Cluster tree is proposed to work with any 
dissimilarity, we use this classifier with the same 
comparison functions for mixed data. 

Also, the following Approximating-Eliminating-
approach fast k-NN classifiers were compared: 
1. AESA classifier (Vidal, 1986) 
2. LAESA classifier (Mico et al., 1994), using 

m=20% of the prototypes in the dataset 
3. iAESA classifier (Figueroa et al., 2006) 
4. Probabilistic iAESA classifier (Figueroa et al., 

2006) 
Finally, the following fast k-NN classifiers based on 
the hybrid-approach were also considered: 
1. TLAESA (Mico et al., 1996) 
2. Modified TLAESA (Tokoro, 2006) 

To compare Approximating-Eliminating and hybrid-
approaches, the same comparison function for mixed 
data was used. In this work, the dissimilarity function 
HVDM (Wilson & Martínez, 2000), was used for the 
experiments. This comparison function was selected 
because it allows comparing mixed data and it is not a 
metric function since it does not satisfy the triangle 
inequality property.  

For the experiments, 10 datasets from the UCI 
repository (Blake & Merz, 1998) were used (see Table 
1). 

In order to compare the different classifiers, the 
accuracy (Acc) and the percentage of comparisons 
between prototypes (Comp), were considered. The 
accuracy was computed as follows: 

 (8) 

Where, NoCorrectPrototypes is the number of 
correctly classified prototypes in the testing set and 
NoTestPrototypes is the size of the testing set. The 



80   Selene Hernández Rodríguez 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85 
ISSN 1405-5546 

percentage of comparisons between prototypes was 
computed as follows: 

 (9) 

Where NoCompFastClassifier is the number of 
comparisons done by the fast k-NN classifier, and 
NoTrainingPrototypes is the size of the training set. 
According to (10), the exhaustive classifier does the 
100% of the comparisons. 
 

 
Table 1. Datasets used in this section 

Dataset 
No. of 

prototypes 

No. of 
numerical 
features 

No. of non 
numerical 
features 

Classes 
Missing 
data 

Hepatitis 155 6 13 2 yes 
Zoo  101 1 16 7 no 
Flag 194 3 25 8 no 
Echocardiogram 132 9 2 2 yes 
Hayes 132 0 4 3 no 
Soybean-large 307 0 35 19 yes 
Bridges 108 0 11 7 yes 
Glass 214 9 0 7 no 
Iris 150 4 0 3 no 
Wine 178 13 0 3 no 

 
Table 2. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the exhaustive k-NN 

search and the tree-based fast k-NN classifiers, using HVDM function and k=1 MSN 

Datasets k-NN  
Adapted FN 
classifier 

Adapted GB 
classifier 

Adapted ONC 
classifier 

Adapted MS 
classifier 

Cluster tree 

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,75 100 81,13 118,99 81,13 87,50 81,13 71,89 81,08 95,86 77,88 42,01 
Zoo 97,00 100 97,00 24,68 97,00 23,46 97,00 22,16 97,00 21,86 95,00 41,63 
Flag 53,21 100 53,71 56,97 53,71 53,10 53,18 46,52 54,26 43,43 48,47 44,09 
Echocard. 82,69 100 82,69 121,01 82,69 84,01 82,69 72,82 84,18 93,43 83,24 41,75 
Hayes 84,29 100 84,29 28,31 84,29 21,14 84,29 16,59 83,57 27,45 67,31 27,45 
Soybean-L 90,54 100 91,18 26,56 91,18 19,90 91,18 16,85 89,88 25,02 83,33 20,22 
Bridges 63,36 100 64,27 93,65 64,27 53,34 65,18 50,65 63,27 54,25 40,27 36,82 
Glass 68,18 100 68,18 35,96 68,18 27,04 68,18 20,16 67,71 34,36 60,30 34,64 
Iris 94,67 100 94,67 21,12 94,67 19,87 94,67 18,21 95,33 19,37 86,67 37,41 
Wine 95,46 100 95,46 43,78 95,46 32,66 95,46 27,88 94,35 34,31 93,24 45,85 
Avg. 81,12 100 81,26 57,10 81,26 42,20 81,30 36,37 81,06 44,93 73,57 37,18 

 
 

In all the experiments ten-fold-cross-validation was 
used. According to this technique, the dataset is 
divided in ten partitions; nine of them are used for 
training and the last partition is used as testing set. This 
process is repeated ten times, in such a way that each 
partition is used once as testing set. 

In (Hernandez-Rodriguez et al., 2007) different 
experiments for choosing a value of the parameter C 
and PercThres were done. In our experiments, C=3, 
NoP=10% of the dataset, and PercThres=100% were 
used, since in (Hernandez-Rodriguez et al., 2007), the 
fast k-NN classifiers reached their best results with 
these values. 

In table 2, the results (Acc and Comp) obtained with 
the different tree-based fast k-NN classifiers, are 
shown. From this table, we can notice that the adapted 

FN, GB and ONC become approximate methods (the 
classification accuracy is not the same as using the 
exhaustive k-NN) using HVDM function, which occurs 
because this comparison function does not satisfy the 
triangle inequality property. From table 2, we can also 
notice that Cluster tree, which is the only fast k-NN 
classifier in the state of the art, proposed to work with 
non metric functions, reduced more the number of 
prototype comparisons required to classify a new query 
(from 100% to 37.18%). However, the classification 
accuracy was decreased from 81.12% (obtained by k-
NN) to 73.57%. From all the tree-based fast k-NN 
classifiers, ONC obtained the best results (i.e. 
classification accuracy did not decrease and the 
percentage of comparisons was reduced from 100% to 
36.37%) 
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In table 3, the results (Acc and Comp) obtained with 
different Approximating-Eliminating and Hybrid 
approaches for fast k-NN classifiers, are shown. From 
this table, we can notice that AESA, LAESA, iAESA, 
TLAESA and modified TLAESA also become 
approximate methods, using HVDM function. From 
table 3, it can also be observed that probabilistic 
iAESA reduced more the number of prototype 
comparisons required to classify a new query (from 
100%, done by the k-NN to 22.45%). 
In table 4, the results obtained with the fast k-MSN 
classifiers proposed in this work: Tree k-MSN (using 
DF search to traverse the tree), AEMD, LAEMD 
(using the algorithm BPNodesTS to select base 
prototypes), Tree LAEMD (using the DFSAE tree 

traversal algorithm), are presented. From this table, it 
is possible to notice that all the proposed classifiers 
obtained similar classification accuracy than all the 
other evaluated methods (enlisted in tables 3 and 4) but 
achieved a biggest reduction in the number of 
prototype comparisons. Among the proposed 
classifiers, Tree LAEMD obtained the best results. 
Additionally, a t-student test (Dietterich, 1998) with a 
confidence level of 95%, was done. From this test, we 
noticed that the classification accuracy difference 
between the proposed classifiers and all other 
evaluated fast k-NN classifiers is not statistically 
significant, while the prototype comparison reduction 
(done by Tree k-MSN, AEMD, LAEMD and Tree 
LAEMD) is statistically significant. 

 
 

Table 3. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by Approximating-Eliminating and 
Hybrid-approach fast k-NN classifiers, using HVDM function and k=1 MSN 

Datasets AESA LAESA TLAESA Modified 
TLAESA 

iAESA Probabilistic 
iAESA 

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,68 51,03 80,61 60,73 81,64 84,64 81,03 68,26 81,64 49,37 80,29 37,85 
Zoo 97,00 21,34 96,00 25,23 95,75 55,77 95,78 27,34 97,20 21,04 95,42 18,56 
Flag 53,60 27,23 52,82 27,57 52,01 49,25 50,19 42,94 52,53 27,15 52,00 25,93 
Echocard. 82,54 64,34 82,08 67,39 82,25 75,84 82,12 38,30 82,92 63,18 82,34 63,04 
Hayes 83,71 21,23 80,71 21,84 80,73 49,44 80,48 25,49 82,31 21,02 81,84 20,62 
Soybean-L 89,87 2,07 89,87 5,12 89,87 38,44 87,23 18,35 89,03 2,05 90,23 2,04 
Bridges 63,21 24,23 60,37 26,23 59,37 48,45 59,49 38,92 60,64 24,71 60,60 24,57 
Glass 68,18 13,20 68,18 24,53 68,18 49,54 68,18 22,39 68,18 11,92 67,32 11,25 
Iris 94,67 8,23 94,67 10,68 94,67 42,54 94,67 13,29 94,67 8,05 94,00 8,01 
Wine 95,46 14,23 95,46 14,75 95,46 36,45 95,46 13,52 95,46 13,58 95,41 12,58 
Avg. 80,99 24,71 80,08 28,41 79,99 53,04 79,46 30,88 80,46 24,21 79,95 22,45 

 
 
 

Table 4. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the proposed fast k-MSN classifiers, 
using HVDM function and k=1 MSN 

Datasets  Tree k-MSN AEDM LAEDM Tree LAEDM 

Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 83,71 9,54 81,31 14,63 81,64 18,96 81,59 13,23 
Zoo 96,00 19,68 97,10 18,61 97,00 32,85 96,00 12,79 
Flag 52,21 13,20 53,63 16,23 52,00 17,44 52,47 9,73 
Echocard. 79,62 16,50 82,62 17,51 82,62 21,16 81,49 13,05 
Hayes 83,52 18,19 83,85 14,52 83,85 18,42 82,17 10,67 
Soybean 85,26 9,72 90,54 11,52 90,54 16,25 89,37 7,83 
Bridges 60,36 15,80 61,85 17,62 60,64 17,96 60,60 8,32 
Glass 67,73 12,91 67,01 14,99 68,18 15,72 68,18 8,38 
Iris 92,67 15,66 94,09 14,82 94,09 15,62 94,67 10,37 
Wine 91,57 13,80 95,00 14,62 95,00 18,51 95,46 12,07 
Avg. 79,27 14,50 80,70 15,50 80,56 19,29 80,20 10,64 
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Fig. 3. Classification accuracy (Acc) against percentage of comparisons (Comp) 

obtained by the different fast k-NN/k-MSN classifiers, using HVDM similarity function and k=1 MSN 
 

In Figure 3, a graph of the accuracy (Acc) against 
the number of prototype comparisons (Comp) is 
shown. From this graph, we can notice that all the 
classifiers obtained similar average classification 
accuracy, except Cluster tree which obtained the 
lowest classification accuracy results. However, the 
proposed classifiers (Tree k-MSN, AEMD, LAEMD 
and Tree LAEMD), did the smallest number of 
prototype comparisons. All the experiments were 
repeated, using k=3 and k=5 and the performance of 
the fast k-NN classifiers were similar. 

4   Conclusions 

The development of fast k-NN classifiers has been an 
active research area in the last years, but most of these 
classifiers rely on metric properties to reduce the 
number of prototype comparisons. Moreover, very few 
work has been focused on applications where the 
comparison function does not satisfy metric properties. 
For this reason, in this thesis some fast k most similar 
neighbor (k-MSN) classifiers for mixed data and non 
metric comparisons functions were proposed. To 
develop these methods, the most successful approaches 
from the state of the art were followed. 

In order to make comparisons, other tree-based fast 
k-NN classifiers were adapted using our proposed tree 
structure and the same comparison function, to allow 
them working on mixed data, because of under these 
circumstances the original algorithms cannot be 
applied. Also, other methods based on Approximating-
Eliminating and Hybrid approaches were considered 
for comparisons. In these cases, the original algorithms 
were tested using the same comparison function for 
mixed data. 

Based on our experimental results, in comparison 
with the exhaustive classifier, and the other fast k-NN 
classifiers (FN, GB, ONC, MS, AESA, LAESA, 
iAESA, probabilistic iAESA, TLAESA, modified 
TLAESA and Cluster tree), the proposed classifiers 
(Tree k-MSN, AEMD, LAEMD and Tree LAEMD), 
obtained a big reduction on the number of comparisons 
between prototypes, which is of particular importance 
in applications where a fast response is required. 

Among the proposed fast k-MSN classifiers, using 
Tree LAEMD the best results were obtained. However, 
it is important to remark that Tree LAEMD requires 
more storage space than Tree k-MSN. For this reason, 
the selection of Tree k-MSN or Tree LAEMD would 
depend on the size of the particular problem. The 
proposed classifier LAEMD is applicable when the 
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comparison function is very expensive, because the 
preprocessimg stage required by LAEMD is faster than 
the preprocessing stage required by Tree LAEMD. 

Finally, we can conclude that for large mixed 
datasets and non-metric prototype comparison 
functions, the proposed classifiers are the best option. 

As future work, we plan to look for other pruning 
rules (elimination criteria), not based on metric 
properties, which would allow us to reduce even more 
the number of prototype comparisons for AEMD, 
LAEMD and Tree LAEMD. 

References 

Adler, M., & Heeringa, B. (2008). Search Space 
Reductions for Nearest-Neighbor Queries. Theory 
and Applications of Models of Computation. 
Lecture Notes in Computer Science, 4978, 554-567. 

Arya, S., Mount, D., Netanyahu, N., Silverman, R., 
& Wu, A. (1998). An optimal algorithm for 
approximate nearest neighbor searching in high 
dimensions. Journal of the ACM, 45(6), 891-923. 

Athitsos, V., Alon, J., & Sclaroff, S. (2005). Efficient 
Nearest Neighbour Classification Using Cascade of 
Approximate with Similarity Measures. IEEE 
Conference on Computer Vision and Pattern 
Recognition 2005, Washington, USA, 486-493. 

Beckmann, N., Kriegel, H., Schneider, R., & Seeger, 
B. (1990). The R*-Tree: An Efficient and Robust 
Access Method for Points and Rectangles. ACM 
SIGMOD Record 19 (2), New Jersey, USA, 322-
331. 

Blake, C., & Merz, C. (1998). UCI Repository of 
machine learning databases.  

[http://archive.ics.uci.edu/ml/datasets.html], 
Department of Information and Computer Science, 
University of California, Irvine, CA, January 2006. 

Chávez E., & Navarro G. (2005). A compact space 
decomposition for effective metric indexing. 
Pattern Recognition Letters, 26(9), 1363-1376. 

Cheng, D., Gersho, A., Ramamurthi, B., & Shoham, 
Y. (1984). Fast search algorithms for vector 
quantization and pattern matching. IEEE 
International Conference on Acoustics, Speech and 
Signal Processing, California, USA, 372-375. 

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor 
pattern classification. IEEE Transactions on 
Information Theory, 13(1), 21-27. 

Denny, M., & Franklin, M.J. (2006). Operators for 
Expensive Functions in Continuous Queries. 22nd

Dietterich, T. (1998). Statistical Tests for comparing 
Supervised Classification Learning Algorithms. 

 
International Conference on Data Engineering  
ICDE´06, Georgia, USA, 147-147.  

Neural Computation
D’haes, W., Dyck, D., and Rodel, X. (2002) PCA-

based branch and bound search algorithms for 
computing k nearest neighbors. Pattern 
Recognition Letters, 24(9-10), 1437-1451. 

, 10(7), 1895-1923. 

Figueroa, K., Chávez, E., Navarro, G., and Paredes, 
R. (2006). On the last cost for proximity searching 
in metric spaces. Workshop on Experimental 
Algorithms. Lecture Notes in Computer Science, 
4007, 279-290. 

Fredriksson K. (2007). Engineering efficient metric 
indexes. Pattern Recognition Letters, 28(1), 75-84. 

Friedman J. H., Bentley J. L., & Finkel R. A. 
(1977). An algorithm for finding best matches in 
logarithmic expected time. ACM Transactions on 
Mathematical Software, 3(3), 209-226. 

Fukunaga, K., & Narendra, P. (1975). A branch and 
bound algorithm for computing k-nearest 
neighbors. IEEE Transactions on Computers, C-
24(7), 750-753. 

García-Serrano, J. R., & Martínez-Trinidad, J. F. 
(1999). Extension to C-Means Algorithm for the 
use of Similarity Functions. European Conference 
on Principles of Data Mining and Knowledge 
Discovery. Lectures Notes in Artificial Intelligence, 
1704, 354-359. 

Goh K., Li B., & Chang E. (2002). DynDex: A 
Dynamic and Non-metric Space Indexer. 
Proceedings of the tenth ACM international 
conference on Multimedia, Juan-les-Pins, France, 
466-475. 

Gómez-Ballester, E., Mico, L., and Oncina, J. 
(2006). Some approaches to improve tree-based 
nearest neighbor search algorithms. Pattern 
Recognition, 39(2), 171-179. 

Guttman, A. (1984). R-trees: A Dynamic Index 
Structure for Spatial Searching. ACM SIGMOD 
International Conference on Management of Data, 
New York, USA, 47-57. 

Hernández-Rodríguez, S., Martínez-Trinidad, J., & 
Carrasco-Ochoa, A. (2007). Fast k Most Similar 
Neighbor Classifier for Mixed Data Based on a 
Tree Structure. Iberoamerican congress on Pattern 

javascript:AL_get(this,%20'jour',%20'Neural%20Comput.');�


84   Selene Hernández Rodríguez 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85 
ISSN 1405-5546 

Recognition. Lecture Notes in Computer Science, 
4756, 407-416. 

Hernández-Rodríguez, S., Martínez-Trinidad, J., & 
Carrasco-Ochoa, A. (2007). Fast Most Similar 
Neighbor Classifier for Mixed Data. The 20th 
Canadian Conference on Artificial Intelligence. 
Lecture Notes in Artificial Intelligence, 4509, 146-
158. 

Hernández-Rodríguez, S., Martínez-Trinidad, J., & 
Carrasco-Ochoa, A. (2008). Fast k Most Similar 
Neighbor Classifier for Mixed Data based on 
Approximating and Eliminating. Pacific-Asia 
Conference on Knowledge Discovery and Data Mining. 
Lecture Notes in Artificial Intelligence, 5012, 697-
704. 

Hernández-Rodríguez, S., Martínez-Trinidad, J., & 
Carrasco-Ochoa, A. (2008). Fast k Most Similar 
Neighbor Classifier for Mixed Data based on a 
Tree Structure and Approximating-Eliminating. 
13th Iberoamerican congress on Pattern 
Recognition: Progress in Pattern Recognition, 
Image Analysis and Applications, Lecture Notes in 
Computer Science, 5197, 364-371. 

Hernández-Rodríguez, S., Martínez-Trinidad, J., & 
Carrasco-Ochoa, A. (2008). On the Selection of 
Base Prototypes for LAESA and TLAESA 
Classifier. 19th

Hwang W., & Wen K. (2002). Fast kNN 
classification algorithm based on partial distance 
search. Electronics Letters, 34(21), 2062-2063. 

 International Conference on Pattern 
Recognition. Florida, USA, 407-416. 

Kalantari, I., & McDonald, G. (1983) A data 
structure and an algorithm for the nearest point 
problem. IEEE Transactions on Software 
Engineering, 9(5), 631-634. 

Katayama, N., & Satoh, S. (1997). The sr-tree: An 
index structure for high-dimensional nearest 
neighbor queries. ACM SIGMOD International 
Conference on Management of Data, Tucson, 
Arizona, USA, 369-380. 

McNames, J. (2001). A Fast Nearest Neighbor 
Algorithm Based on a Principal Axis Search Tree. 
IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 23(9), 964-976. 

Micó, L., Oncina, J., and Vidal, E. (1994). A new 
version of the nearest-neighbour approximating and 
eliminating search algorithm (AESA) with linear 
preprocessing-time and memory requirements. 
Pattern Recognition Letters, 15(1), 9-17. 

Mico, L., Oncina, J., & Carrasco, R. (1996). A fast 
Branch and Bound nearest neighbor classifier in 
metric spaces. Pattern Recognition Letters, 17(7), 
731-739. 

Moreno-Seco, F., Mico, L., & Oncina, J. (2003). 
Approximate Nearest Neighbor Search with the 
Fukunaga and Narendra Algorithm and its 
Application to Chromosome Classification. 
Iberoamerican congress on Pattern Recognition, 
Lecture Notes in Computer Science 2905, 322-328. 

Nene, S. A., & Nayar, S. K. (1997). A simple 
algorithm for nearest neighbour search in high 
dimensions. IEEE Transactions in Pattern Analysis 
and Machine Intelligence, 19(9), 989-1003. 

Omachi, S., & Aso, H. (2000). A fast algorithm for a 
k-NN Classifier based on branch and bound 
method and computational quantity estimation. 
Systems and Computers in Japan, 31(6), 1-9. 

Oncina, J., Thollard, F., Gómez-Ballester, E. Micó, 
L., & Moreno-Seco, F. (2007). A Tabular Pruning 
Rule in Tree-Based Fast Nearest Neighbor Search 
Algorithms. Iberian Conference on Pattern Recognition 
and Image Analysis. Lecture Notes in Computer 
Science, 4478, 306-313. 

Panigrahi, R. (2008), An Improved Algorithm 
Finding Nearest Neighbor Using Kd-trees. 8th 
Latin American conference on Theoretical 
informatics. Lecture Notes in Computer Science, 

Ramasubramanian, V., & Paliwal, K. (2000). Fast 
Nearest-Neighbor Search Algorithms based on 
Approximation-Elimination search. Pattern 
Recognition 33(9), 1497-1510.  

4957, 387-398. 

Tokoro, K., Yamaguchi, K., & Masuda, S. (2006). 
Improvements of TLAESA Nearest Neighbour 
Search Algorithm and Extension to Approximation 
Search. 29th

Uhlmann, J. (1991). Metric trees. Applied 
Mathematics Letters, 4(5), 61-62. 

 Australasian Computer Science 
Conference, Hobart, Australia, 48, 77-83.  

Vidal, E. (1986). An algorithm for finding nearest 
neighbours in (approximately) constant average 
time complexity. Pattern Recognition Letters, 4(3), 
145-157. 

White, D., & Jain, R. (1996). Similarity indexing with 
the ss-tree. ICDE '96: Twelfth International 
Conference on Data Engineering, Washington, 
USA, 516-523. 



Fast Most Similar Neighbor (MSN) classifiers for Mixed Data   85 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 73-85 
ISSN 1405-5546 

Wilson, D., & Martínez, T. (2000). Reduction 
techniques for instance based learning algorithms. 
Machine Learning, 38, 257-286. 

Yianilos, P. (1993). Data structures and algorithms for 
nearest neighbor search in general metric spaces. 
SODA '93: Fourth annual ACM-SIAM Symposium 
on Discrete algorithms, Philadelphia, USA, 311-
321. 

Yong-Sheng, C., Yi-Ping, H., & Chiou-Shann, F. 
(2007). Fast and versatile algorithm for nearest 
neighbor search based on lower bound tree, Pattern 
Recognition Letters, 40(2), 360-375. 

Yunck T. (1976). A technique to identify nearest 
neighbors. IEEE Transactions on Systems, Man 
and Cybernetics, 6(10), 678-683. 

Zhang B., & Srihari S. (2004). Fast k- nearest 
neighbour classification using cluster-based tree. 
IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 26(4), 5 

 

 
Selene Hernández Rodríguez. Received her B. S. 
degree in Computer Science from the Computer 
Science faculty of the Autonomous University of 
Puebla (BUAP), Mexico in 2004; her M.Sc. degree in 
Computer Science from the National Institute of 
Astrophysics, Optics and Electronics (INAOE), 
Mexico, in 2006 and her Ph.D. degree in Computer 
Science from INAOE, Mexico, in 2009. Her research 
interests are Pattern Recognition, Machine Learning, 
Data Mining and Supervised Classification. 
 

 
José Francisco Martínez Trinidad. Received his B.S. 
degree in Computer Science from Physics and 
Mathematics School of the Autonomous University of 
Puebla (BUAP), Mexico in 1995, his M.Sc. degree in 

Computer Science from the faculty of Computers 
Science of the Autonomous University of Puebla, 
Mexico in 1997 and his Ph.D. degree in the Center for 
Computing Research of the National Polytechnic 
Institute (CIC, IPN), Mexico in 2000. Professor 
Martinez-Trinidad edited/authored four books and 
over fifty journal and conference papers, on subjects 
related to Pattern Recognition. 
 

 
Jesús Ariel Carrasco Ochoa. Received his Ph.D. 
degree in Computer Science from the Center for 
Computing Research of the National Polytechnic 
Institute (CIC-IPN), Mexico, in 2001. Currently, he is 
a full time researcher at the National Institute for 
Astrophysics, Optics and Electronics (INAOE) of 
Mexico. His current research interests include 
Sensitivity Analysis, Logical Combinatorial Patter 
Recognition, Testor Theory, Feature Selection, 
Prototype Selection and Clustering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


