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Abstract. When assessing experimentally the performance 
of metaheuristic algorithms on a set of hard instances of an 
NP-complete problem, the required time to carry out the 
experimentation can be very large. A means to reduce the 
needed effort is to incorporate variance reduction techniques 
in the computational experiments. For the incorporartion of 
these techniques, the traditional approaches propose methods 
which depend on the technique, the problem and the 
metaheuristic algorithm used. In this work we develop 
general-purpose methods, which allow incorporating 
techniques of variance reduction, independently of the 
problem and of the metaheuristic algorithm used. To validate 
the feasibility of the approach, a general-purpose method is 
described which allows incorporating the antithetic variables 
technique in computational experiments with randomized 
metaheuristic algorithms. Experimental evidence shows that 
the proposed method yields a variance reduction of the 
random outputs in 78% and that the method has the capacity 
of simultaneously reducing the variance of several random 
outputs of the algorithms tested. The overall reduction levels 
reached on the instances used in the test cases lie in the range 
from 14% to 55%. 

 
Keywords: Experimental algorithm analysis, variance 
reduction techniques and metaheuristic algorithms. 

 
Resumen. Cuando se evalúa el desempeño de algoritmos 
metaheurísticos, con un conjunto de instancias difíciles de un 
problema NP-completo, el tiempo requerido para realizar la 
experimentación puede ser muy grande. Una forma de 
reducir el esfuerzo necesario es incorporar técnicas de 
reducción de la varianza en los experimentos 
computacionales. Para incorporar dichas técnicas, los 
enfoques tradicionales proponen métodos que dependen de la 
técnica, del problema y del algoritmo usado. En este trabajo 

se propone desarrollar métodos de propósito general, los 
cuales permitan incorporar técnicas de reducción de la 
varianza, independientemente del problema y del algoritmo 
metaheurístico usado. Para validar la factibilidad del 
enfoque, se describe un método de propósito general, el cual 
permite incorporar la técnica de variables antitéticas en 
experimentos computacionales con algoritmos 
metaheurísticos aleatorizados. La evidencia experimental 
muestra que el método propuesto produce una reducción de 
la varianza de las salidas aleatorias en un 78% de las 
instancias consideradas y que el método tiene la capacidad de 
reducir simultáneamente la varianza de varias salidas 
aleatorias de los algoritmos probados. Los niveles globales 
de reducción alcanzados con las instancias usadas en los 
casos de prueba van del 14% al 55%. 

 
Palabras clave: Análisis experimental de algoritmos, 
técnicas de reducción de la varianza y algoritmos 
metaheurísticos. 

1   Introduction 

Many real-world applications require the solution of 
optimization problems which belong to a special class 
denominated NP-complete problems. Currently, 
efficient algorithms to solve large instances for this 
kind of problems are not known, and it is suspected 
that it is not possible to devise them. In [Garey and 
Johnson, 1979] and [Papadimitriou and Steiglitz, 1998] 
it is indicated that the solution of large instances of 
NP-complete problems can only be solved simplifying 
the problem or using an approximate solution method. 
Metaheuristic methods [Glover, 1986] or modern 
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heuristic methods [Revees, 1993] are approximate 
algorithms that combine basic heuristics (constructive 
or local search), aiming at navigating effectively and 
efficiently the solution space [Blum and Roli, 2003]. 
Metaheuristic algorithms implement navigation 
strategies through the solution space that permit 
escaping from local optima and approach the global 
optimum. There currently exists a large diversity of 
available metaheuristcs such as: Genetic Algorithms, 
Simulated Annealing, Threshold Accepting, Ant 
Colony Optimization, Grasp and Scatter Search [Blum 
and Roli, 2003 and Brito et al., 2004]. Many 
metaheuristics incorporate random decisions in the 
implementation of several elements of their basic 
structure such as: generation of initial solutions, 
neighbor selection, operator selection, state transition 
rules, etc. We will refer to this type of algorithms as 
randomized metaheuristic (RM) algorithms. 

Given the random nature of RM algorithmss, their 
performance is analyzed conducting a series of 
computational experiments. In these experiments the 
behavior of the averages of the solution quality and of 
the algorithm execution time are observed. When the 
variation of these averages is high, a large number of 
experiments is required to determine a clear trend in 
the measurements carried out. In this work the problem 
of reducing this variation, and in consequence, the 
number of experiments required to analyze the 
performance of RM algorithms is approached. 

In the following sections the problem description, 
the related works, the proposed method and the 
experimental results are presented. 

2 Problem description 

It is indicated in [McGeoch, 1992 and 2002, and 
Johnson, 2002] that for reducing the variance in 
computational experiments, variance reduction 
techniques [Wilson, 1984] must be incorporated. When 
the performance of RM algorithms is analyzed 
experimentally on a group of hard instances of an NP-
complete problem, the time required to carry out the 
experimentation is very long. A reduction in the 
number of experiments can be the only alternative to 
successfully obtain enough evidence to support the 
conclusions of the analysis of algorithm performance. 

The goal of a simulation study is to determine the 
value of certain amount θ related to a stochastic 
process. A simulation produces a variate x1 whose 

expected value is θ. A second execution of the 
simulation produces a new variate x2, independent of 
the previous one, whose average is also θ. This process 
continues until completing a total of n executions and 
producing n independent variates x1, x2, ..., xn, with 
θ=E(xi) and σ2=Var(xi). In order to estimate the mean 
(θ) and variance (σ2

x
) of the population, the sample 

mean = Σ i xi / n and the sample variance s2=Σ i ((xi

x
 

– )2

x
)/ (n–1) are used. In [Ross, 1999] it is indicated 

that for determining the goodness of the estimator  
with respect to θ, its quadratic error average E[( x – 
θ)2 x] = Var( ) = Var(Σ i xi / n) = (Σ i Var(xi)) / n2 = σ2/n 
= s2

RM algorithms perform a search through the space 
of solutions making random decisions in order to avoid 
to get stuck at some local optima and to advance 
quickly toward the global optima. Typically, in each 
computational experiment or execution of an 
algorithm, an initial solution is randomly generated 
using a uniform distribution and a local search is 
carried out in the neighborhood of this solution to 
improve it. Once the possibility of improving is 
exhausted, a new experiment begins and the process is 
repeated. In each experiment i, the target output x

/n must be used. This expression has two 
consequences: (a) that it is possible to increase the 
quality of the estimation of θ by increasing the number 
of experiments and/or reducing the sample variance, 
and (b) that it is possible to reduce the number of 
experiments without decreasing the quality of the 
estimation by reducing the sample variance. 

i is 
obtained. When all the experiments are carried out, the 
mean and the variance of xi are calculated. Given the 
randomness of RM algorithms, their outputs depend on 
a set of uniform random numbers {u i} generated 
during the algorithm execution such that xi = xi(u1, u2, 
…, ul

  

). Some of these numbers are related to the 
decisions associated to the construction of the initial 
solution, and others to the decisions in the local search 
process. Unlike simulation, in an RM algorithm the 
amount of random decisions carried out in each 
experiment is variable; this constitutes the most 
important difficulty to apply the method of antithetic 
variates for reducing the variance in experiments with 
RM algorithms. 
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3 Related work 

Unfortunately, there exist few works that address the 
problem of applying variance reduction techniques to 
the experimental analysis of algorithms. This problem 
was first introduced by Catherine McGeoch in 1992 
[McGeoch, 1992]. Some of the most recent and 
relevant works related to the problem of incorporating 
the techniques of variance reduction in computational 
experiments with RM algorithms are described next. 

McGeoch is one of the pioneers in the development 
of variance reduction methods in experiments with 
randomized algorithms. In [McGeoch, 1992] and 
[McGeoch, 2002] the use of common random 
numbers, antithetic and control variates techniques is 
proposed to reduce the variance in the experimental 
analysis of the performance of RM algorithms applied 
to the solution of the self-organized search problem. 
She states that, in the experimental analysis of 
algorithm performance, there exist many opportunities 
to apply variance reduction techniques, because the 
algorithms are simpler and have a more precise 
definition than simulation problems. The main 
limitation of this approach is that the proposed 
methods depends on the technique, the problem and 
the algorithm used. 

In [Fraire, 2005] and [Fraire, et al., 2006] a method 
to reduce the variance in experiments with RM 
algorithms based on the antithetic variates technique is 
presented. The method is described in the context of 
the solution of the SAT problem with the Threshold 
Accepting metaheuristic algorithm. The method 
requires that the solutions of the problem be 
represented using binary vectors and that the 
metaheuristic algorithm generate an initial random 
solution. 

As we can see the traditional approach consists of 
developing variance reduction methods that are 
dependent on the technique, the problem and the RM 
algorithm used. In this work a new approach is 
proposed, it consists of developing general-purpose 
methods that allow incorporating techniques of 
variance reduction, which are independent of the 
problem and the metaheuristic approach used. In order 
to validate the proposed approach, a general-purpose 
method based on the technique of antithetic variates is 
described and it is applied to different problems and 
RM algorithms. 

 

4 Proposed method 

4.1 Main idea 

In order to develop a general-purpose variance 
reduction method, the basic idea consists of identifying 
the first (conditional independent) random decision 
that always occurs in each computational experiment 
or algorithm execution. This decision, which will be 
denominated base decision, should be associated to the 
generation of just one random number. Unlike the rest 
of the random numbers generated in the process, the 
random number associated to the base decision must 
be stored in the global variable a∈(0,1), so that it will 
be available in the following experiment. Thus, before 
generating each number for the base decision, we must 
check if the number of the experiment currently carried 
out is even or odd. If the number of the experiment is 
odd, a new random number must be generated and 
stored in a, otherwise the random number currently 
stored in a must be complemented. The idea is to use 
only one of the random numbers generated in the 
algorithm process, to negatively correlate all the 
outputs of all experiments conducted. 

4.2 Method description 

The proposed method consists of the following four 
steps: 

 
Step 1. Identify the base decision.  
Analyze the sequence of random decisions that occurs 
in each computational experiment. Determine all the 
decisions that do not necessarily occur in each 
experiment, which happens when a conditional 
expression of the algorithm evaluates to true. Identify 
those that always occur in the experiments, their 
occurrence is non-conditional dependent. From the set 
of decisions that consistently occur, select the first one 
and consider it as the base decision. 

 
Step 2. Generate the random number associated to 
the base decision.  
Let a and c be the global variables in which the 
random number associated to the base decision and the 
current experiment number will be respectively stored. 
Now, before carrying out the base decision, if c is odd 
a new random number must be generated and stored (a 
= random()), otherwise the complement of a must be 
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stored (a=1–a). Upon completing the previous process, 
variable a is used to carry out the base decision. Now 
the pair of random numbers associated to the base 
decision in successive experiments (odd and even) will 
be negatively correlated. 

 
Step 3. Determine the outputs of each experiment.  
Execute all the experiments and record the values of 
the specified output ti, for each experiment i = 1, 2, ..., 
Nexp

 
. 

Step 4. Determine the sample mean and the sample 
variance.  
The values of the variates x, y, and z are determined, 
using the following expressions: 

  

xj(a)  =  t2j–1,  yj(1–a)  =  t (1) 2j 

and  

zj= ( xj(a) +  yj

 j = 1, 2, …, N

(1–a) )/2      

exp

(2) 

/2. 

Calculate the mean and the variance of z. 
 
By definition, ti, xj, yj, and zj are estimators of the 

expected value of variate t, and since z = (x+y)/2, then 
Var(z) = Var((x+y)/2) = ¼ [Var(x) + Var(y) + 2Cov(x, 
y)]. Now, since x and y were generated from negatively 
correlated inputs, our main assumption is that Cov(x, 
y) < 0. If this happens, the method should generate a 
variance reduction for estimator zi, with respect to the 
same estimator when this is generated from non-
negatively correlated inputs. If this method is not 
applied, the sequence of random numbers associated to 
the base decision of the even and odd experiments 
might or might not be negatively correlated. If they are 
not negatively correlated, the expected variance should 
be larger than the one obtained with the proposed 
method. Conversely, if they are negatively correlated, 
then the variance of the estimator zi

In this work, experimental evidence is presented, 
which shows that the impact of the application of the 
proposed method on the variance reduction is 
significant and that can be used with any combination 
of a RM algorithm and an NP-complete problem. The 

method is applicable to any kind of randomized 
algorithm; nevertheless in this work only the results of 
experiments conducted with RM algorithms are shown. 

 could be smaller 
or larger than the variance obtained when the proposed 
method is applied. Therefore, if the assumption is 
correct it is expected that variance reduction occurs at 
least in 50% of the cases considered. 

4.3 Example 

In this example the SAT problem instance f600 is used 
[SATLIB]. The instance was solved executing 30 
times the Threshold Accepting metaheuristic algorithm 
reported in [Pérez, 1999]. This algorithm starts the 
navigation process from an initial feasible solution, 
which is randomly generated in each run of the 
algorithm. In this case the assignment of values to each 
of the components of the initial solution constitute 
random decisions that are carried out unconditionally 
in each experiment. Therefore, any of these decisions 
can be used as base decision. In this case the base 
decision was decided to be the one associated to the 
determination of the value of the first component of the 
initial solution. Once the base decision was identified, 
the remaining steps of the proposed approach were 
applied. As a result of step 2, in the odd experiments, 
the first component of the initial solution is randomly 
generated and stored; while in the even experiments 
the value of such component is determined by 
complementing the random number that was generated 
in the previous experiment. Step 3 consists of 
recording the random outputs of the experiment, in this 
case the output recorded was the execution time of 
each experiment ti, for  i = 1, 2, ..., Nexp

to variate x, and those from the second correspond to 
variate y. Finally, the values of variate z are calculated 
(average of variates x and y) and its variance is 
calculated. 

. In step 4 the 
set of the random outputs of the experiments are 
divided into two sets: one for holding the outputs 
generated from the independent random numbers (odd 
experiments) and the other for holding those generated 
from the complements of those numbers (even 
experiments). The outputs from the first set correspond  

Table 1 shows the execution time ti

Table 2 shows the x

 observed for 
each experiment i = 1, 2, …, 30, when the proposed 
method is not applied (all the components of the initial 
solution are randomly generated in each experiment). 
In this case, both the mean and variance of variate t 
must be directly calculated. However, variates x, y, and 
z will be calculated to show the effects produced by the 
application of the method. 

j, yj, and zj values obtained 
without applying the method. As we can see, the 
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covariance of x and y is 0.0035 and the variance of  z is 
0.0142. 

Table 3 shows the execution time ti

Table 4 shows the x

 observed when 
the proposed method is applied. In this case, both the 
mean and variance of variate t are calculated using the 
proposed method. 

j, yj, and zj

5 Experimental results 

 values obtained 
when the proposed method is applied. In this case, the 
covariance of x and y is –0.00052 and the variance of  z 
is 0.00088. In this case the method produces a variance 
reduction of 37%. 

A set of experiments were conducted to evaluate the 
variance reduction level when the proposed method is 
applied in experiments with RM algorithms. A set of 
problem instances were used, and each one was solved 
with two implementations. For each algorithm an 
implementation incorporates the proposed method and 
the other not. Thirty experiments were carried out with 
each instance and the specified outputs were measured. 
Finally, the variances before and after the application 
of the method were used to determine the variance 
reduction level. 

To describe a typical set of experimental results, 
three test cases will be used, which include three 
problems and three RM algorithms. A test case 
includes the SAT problem and the GRASP [González-
Velarde, 1996] and the Tabu Search [Glover and 
Laguna, 1997] metaheuristic algorithms, another 
includes the Lennard-Jones problem and two variants 
of the genetic algorithm described in [Romero, et al., 
1999], and the last test case includes the hot rolling 
scheduling problem and a genetic algorithm [Espriella, 
2008]. 

Table 5 shows the variance reduction level of the 
average solution quality Avg(%E), obtained when the 
instances were solved with the GRASP metaheuristic 
algorithm. The first column indicates the instances 
used in the experiments. Columns VB and VA show 
the variance obtained before and after the method 
application. Column %R shows the variance reduction 
percentage. Also, the table includes the overall average 
of the reduction level reached. 

Table 6 shows the variance reduction level of the 
average solution quality Avg(%E), obtained with the 
Tabu Search metaheuristic algorithm. The structure of 
Table 6 is similar to that of Table 5. 

Table 7 shows the variance reduction level observed 
in three random outputs. In this test case 15 instances 
of the Lennard Jones problem were solved with a 
genetic algorithm (v1). The random outputs were the 
average error percentage Avg(%E), the average 
number of evaluations of the objective function 
Avg(NEOF) and the average number of generations 
Avg(NG). The first column indicates the instances 
used in the experiments, and the additional columns 
are grouped in three subtables, each one with three 
columns. The structure of the sub-tables is similar to 
that of Table 5.  

Table 8 has the same structure as that of Table 7, 
and contains the reduction level observed when a 
variant of the genetic algorithm (v2) was used. 

Table 9 shows the variance reduction level observed 
in two random outputs. In this test case 17 industrial 
instances of the hot rolling scheduling problem were 
solved with a genetic algorithm. The random outputs 
were the average rolling time Avg(%RT) and the 
average of the time required to obtain the best solution 
Avg(TB). The first column indicates the instances used 
in the experiments, and the additional columns are 
grouped in two sub-tables, each one with three 
columns. The structure of the sub-tables is similar to 
that of Table 5. 

The experimental evidence shows that the proposed 
method reduces the variance for 29 out of 37 instances 
considered, independently of the problem and the 
solution method employed. This means that in 78% of 
the cases considered a variance reduction is observed, 
which is consistent with the forecast established as a 
consequence of the assumption expressed. 

As can be seen, the proposed method can reduce the 
variance of the random outputs for most of the 
instances considered and the overall reduction level 
lies in the range from 14% to 55%. The investment of 
resources required to obtain this reduction level is 
minimum, since it only requires controlling one of the 
random numbers generated by the algorithm. An 
outstanding observed behavior of the method is that it 
simultaneously produces a reduction in the variance of 
all the random outputs of the algorithm. In Tables 3, 4 
and 8 we can see that the method operates 
simultaneously on several outputs. As we can see the 
proposed method allows to incorporate a variance 
reduction technique in computational experiments, 
independently of the problem solved and of the RM 
algorithm used. 

 





Reducing the Experiments Required to Assess the Performance of Metaheuristic    49 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 44-53 
ISSN 1405-5546 

Table 1. Execution times obtained without applying the proposed method 

i t I i t i i t I i t I i t i i ti 
1 0.704 6 0.906 11 0.828 16 1.125 21 1.015 26 1.110 
2 0.718 7 0.657 12 0.907 17 0.906 22 0.953 27 0.625 
3 1.188 8 0.937 13 0.890 18 1.063 23 0.719 28 0.781 
4 0.890 9 0.656 14 0.688 19 0.797 24 0.890 29 0.844 
5 0.641 10 0.797 15 0.734 20 1.156 25 0.922 30 0.687 

 
 

 

Table 2. Values of x, y, and z obtained without applying the proposed method 

j x yj zj J j x yj zj j 
1 0.704 0.718 0.711 9 0.906 1.063 0.984 
2 1.188 0.890 1.039 10 0.797 1.156 0.976 
3 0.641 0.906 0.773 11 1.015 0.953 0.984 
4 0.657 0.937 0.797 12 0.719 0.890 0.804 
5 0.656 0.797 0.726 13 0.922 1.110 1.016 
6 0.828 0.907 0.867 14 0.625 0.781 0.703 
7 0.890 0.688 0.789 15 0.844 0.687 0.765 
8 0.734 1.125 0.929     

 
 

 

Table 3. Execution times obtained applying the proposed method 

i t i i t ti ti I i t I i t i i ti 
1 0.704 6 0.641 11 0.688 16 0.922 21 0.922 26 0.703 
2 0.687 7 0.922 12 0.734 17 0.782 22 1.000 27 0.797 
3 1.000 8 0.812 13 0.907 18 0.843 23 0.875 28 0.891 
4 0.750 9 0.641 14 0.640 19 0.844 24 0.860 29 0.625 
5 0.734 10 1.109 15 1.031 20 0.609 25 0.937 30 0.781 

 
 

 

Table 4. Values of x, y, and z obtained when the proposed method is applied 

j x yj zj J j x yj zj j 
1 0.704 0.687 0.695 9 0.782 0.843 0.812 
2 1.000 0.750 0.875 10 0.844 0.609 0.726 
3 0.734 0.641 0.687 11 0.922 1.000 0.961 
4 0.922 0.812 0.867 12 0.875 0.860 0.867 
5 0.641 1.109 0.875 13 0.937 0.703 0.820 
6 0.688 0.734 0.711 14 0.797 0.891 0.844 
7 0.907 0.640 0.773 15 0.625 0.781 0.703 
8 1.031 0.922 0.9765     

 
  



50   Héctor Joaquín Fraire Huacuja, et al. 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 44-53 
ISSN 1405-5546 

Table 5. Variance reduction level observed with the SAT 
problem and a GRASP algorithm 

 Avg(%E) 
Instance VB VA %R 

uf200-0100 7.40221 1.809563 76% 
uf250-01 3.68832 2.1144068 43% 
uf250-010 4.80004 2.8571141 40% 

f600 9.0066 10.409657 -16% 
f1000 24.0414 9.4095563 61% 

Overall average reduction 41% 

Table 6. Variance reduction level observed with the SAT 
problem and a tabu search algorithm 

 Avg(%E) 
Instance VB VA %R 

uf200-0100 9.13128 4.12374 55% 
uf250-01 15.0622 7.20976 52% 
uf250-010 11.3515 3.35256 70% 

F600 164.599 101.353 38% 
F1000 256.397 101.923 60% 

Overall average reduction 55% 
 
 

Table 7. Variance reduction observed with the Lennard Jones problem and a genetic algorithm (v1) 

 Avg(%E) Avg(NEOF) Avg(NG) 
I VB VA %R VB VA %R VB VA %R 

15 0.05 0.03 40% 61,407  15,761  74% 1.08 0.54 50% 
16 0.05 0.07 -40% 139,689    42,153  70% 3.46 1.27 63% 
17 0 0 0%        9,760      3,789  61% 0.03 0.03 0% 
18 0.06 0.02 67% 250,824  142,806  43% 5.1 3.31 35% 
19 0.78 0.24 69% 294,092  210,221  29% 6.16 2.99 51% 
20 0.49 0.29 41% 280,123  208,500  26% 4.64 2.36 49% 
21 0.45 0.2 56% 411,777  160,780  61% 6.88 2.55 63% 
22 0.82 0.28 66%  462,982  156,176  66% 6.22 1.98 68% 
23 0.97 0.51 47% 338,332  285,224  16% 4.31 3.94 9% 
24 0.46 0.16 65% 462,886  378,918  18% 5.79 5.37 7% 
25 0.26 0.15 42% 198,652  357,526  -80% 3.21 5.3 -65% 
26 0.81 0.19 77% 688,233  228,416  67% 8.72 2.62 70% 
27 0.81 0.23 72% 535,909  129,526  76% 6.38 2.43 62% 
28 0.64 0.27 58% 403,537  194,353  52% 4.99 3.04 39% 
29 0.4 0.42 -5% 495,611  344,752  30% 4.88 3.88 20% 
30 0.41 0.24 41% 1,341,653  112,631  92% 12.74 1.14 91% 
Overall reduction (Avg) 43%  38%  38% 

 
 

Table 8. Variance reduction observed with  the Lennard Jones problem and a genetic algorithm (v2) 

I Avg(%E) Avg(NEOF) Avg(NG) 
 VB VA %R VB VA %R VB BA %R 

15 0.08 0 100%       175,755        71,702  59% 4.2 2.5 40% 
16 0.03 0 100%        37,722        26,511  81% 4.2 0.83 80% 
17 0 0 0%          4,647          2,253  52% 0 0 0% 
18 0.11 0.04 64%       679,707      512,567  25% 14.7 10.8 27% 
19 0.55 0.22 60%       953,268      397,323  58% 18.39 6.59 64% 
20 0.68 0.21 69%    1,758,666   1,021,182  42% 28.48 16.7 41% 
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21 0.45 0.25 44%       916,672      997,527  -9% 15.93 13 19% 
22 0.62 0.24 61%    1,547,998      750,757  52% 25.79 11.2 57% 
23 0.33 0.25 24%    2,357,355      986,281  58% 29.86 13.1 56% 
24 0.38 0.28 26%       873,663   1,758,849  -101% 11.43 26.8 -134% 
25 0.29 0.1 66%    1,777,160      391,122  78% 21.61 6.85 68% 
26 0.48 0.18 63%    2,334,290   1,020,252  56% 34.12 13.7 60% 
27 0.54 0.39 28%    3,261,303   1,257,075  61% 44.78 14 69% 
28 0.62 0.28 55%    2,197,110      597,272  73% 26.33 7.46 72% 
29 0.49 0.22 55%    2,885,274      716,521  75% 31.06 8.7 72% 
30 0.27 0.26 4%    4,187,946      722,313  83% 48.33 6.98 86% 

Overall reduction (avg) 51%  42%  42% 
 
 

Table 9. Variance reduction observed with  the hot rolling scheduling problem and a genetic algorithm 

 Avg(RT) Avg(TB) 
Instance VB VA %R VB VA %R 

hsm002.txt 0.000229 0.000188 17.90% 28.619 34.049 -18.97% 

hsm003.txt 0.000186 0.000115 38.17% 3.591 2.812 21.69% 

hsm004.txt 0.000180 0.000143 20.56% 4.901 2.275 53.58% 

hsm005.txt 0.000183 0.000149 18.58% 5.089 10.467 -105.68% 

hsm006.txt 0.000394 0.000312 20.81% 4.230 10.849 -156.48% 

hsm007.txt 0.000395 0.000293 25.82% 4.807 3.265 32.08% 

hsm008.txt 0.000472 0.000317 32.84% 4.840 3.031 37.38% 

hsm009.txt 0.000302 0.000332 -9.93% 4.027 3.794 5.79% 

hsm010.txt 0.000288 0.000196 31.94% 5.606 2.063 63.20% 

hsm011.txt 0.000299 0.000161 46.15% 2.586 2.298 11.14% 

hsm012.txt 0.000230 0.000154 33.04% 3.951 2.441 38.22% 

hsm013.txt 0.000217 0.000129 40.55% 2.991 1.954 34.67% 

hsm014.txt 0.000840 0.000626 25.48% 4.187 1.907 54.45% 

hsm015.txt 0.000846 0.000624 26.24% 3.648 1.861 48.99% 

hsm016.txt 0.000835 0.000661 20.84% 4.114 2.102 48.91% 

hsm017.txt 0.000922 0.000494 46.42% 3.148 1.957 37.83% 

hyl001.txt 0.001740 0.000503 71.09% 4.441 2.823 36.43% 
Overall reduction (avg) 29.79%   14.31% 

 

6 Conclusions and future work 

In this paper the problem of how to reduce the number 
of required experiments to analyze the performance of 
RM algorithms was approached. Traditional 
approaches propose to apply variance reduction 

methods that depend on the technique, the problem and 
the randomized metaheuristic (RM) algorithm used. 
The solution approach proposed in this work consists 
of developing reduction methods which are 
independent of the problem and of the RM algorithm 
used. In order to validate the proposed approach, a 
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general-purpose method based on the antithetic 
variates technique is introduced and it was applied to 
three NP-complete problems and three RM algorithms. 
The experimental evidence shows that the proposed 
method yields a variance reduction in 78% of the cases 
considered. Additionally, the method shows the 
capacity of simultaneously reducing the variance of 
several random outputs of the algorithms tested. The 
overall reduction levels on the instances used in the 
test cases lie in the range from 14% to 55%.  

    The proposed method is one of the first general-
purpose methods that allows to incorporate a variance 
reduction technique in computational experiments, 
independently of the problem solved and of the RM 
algorithm used. The method is applicable without 
significant modifications to any type of randomized 
algorithm. 

    As a future work we are considering to develop 
new general purpose methods to apply other variance 
reduction techniques in the experimental algorithms 
analysis. 
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