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Abstract. In this work we investigate some computational
aspects of the eigenvalue calculation with edge elements;
those include: the importance of the grid generator and node-
edge numbering. As the examples show, the sparse structure
of the mass and stiffness matrices is highly influenced by the
edge numbering.

Tetrahedral grid generators are mainly designed for nodal
based finite elements so an edge numbering is required. Two
different edge numbering schemes are tested with six
different grid generators. Significant bandwidth reduction
can be obtained by the proper combination of the edge
numbering scheme with the grid generator method.
Moreover, an ordering algorithm such as the Reverse Cuthill
McKee can improve the bandwidth reduction which is
necessary to reduce storage requirements.

Keywords: Tetrahedral grid generators, edge elements,
RCM ordering, generalized eigenproblem.

Resumen. En este trabajo se investigan algunos aspectos
computacionales del calculo de eigenvalores con elementos
de contorno tales como la importancia del generador de
mallas y la numeracion de nodos y lados. Como muestran los
ejemplos, la estructura esparcida de las matrices de masa y
momentos es altamente influenciada por la numeracién de
los lados.

Generadores de mallas en tetraedros son disefiados
principalmente para elementos finitos basados en los nodos,
asi una numeracion de los lados es requerida. Se realizaron
pruebas con dos esquemas de enumeracion de los lados con
seis generadores de mallas distintos. Una reduccion de banda
significante puede obtenerse con una combinacion apropiada
de esquema de numeracion de los lados con el método
empleado por el generador de malla. Méas ain un algoritmo
de reordenamiento como el RCM puede mejorar la reduccion
de ancho de banda lo cual es necesario para reducir los
requerimientos de almacenamiento.

Palabras Clave: Generadores de mallas en tetraedros,
elementos de contorno, reordenamientos RCM, valores
propios generalizados.

1 Introduction

In electromagnetics, eigenvalue problems that are often
encountered include those of cavity resonance and
wave propagation in both closed and open structures,
such as metallic waveguides, open and shielded
microstrip transmission lines, and optical waveguides
or fibers. In these problems, one is interested in
determining the resonant frequencies or propagation
constants corresponding to eigenvalues and the
associated  resonant  or  propagation  modes
corresponding to eigenvectors. The finite element
method with edge elements has been used to solve
these kind of problems; some of the advantages of
edge elements include: divergence free (elimination of
spurious nonphysical solutions), interelement boundary
conditions are automatically obtained through the
natural boundary conditions, edge elements impose the
continuity of only the tangential components of the
electromagnetic  field, and Dirichlet boundary
condition can be easily imposed along the edge
elements. Some factors that complicate the finite
element solution of the eigenvalue analysis are the
sparsity of the matrices and the fact that the method
gives rise to generalized eigenproblems where only a
few selected eigenvalues are desired. The sparse
structure of the matrices M and S is highly influenced
by the edge numbering provided by the grid generator.
Here, sparse matrix techniques are preferable since the

storage required increases as” (!, where ¥denotes
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the degrees of freedom of the problem. Moreover,
storage can be reduced by minimizing the bandwidth
of the connectivity matrix; thus, generalized
eigensolvers that take advantages of the banded
structure are highly desirable. The work is organized as
follows: in section 2 we introduce the finite element
formulation for eigenvalue problems in
electromagnetics by using edge elements (three
dimensional Whitney elements), section 3 shows the
influence of the mesh generator in the structure of the
mass and stiffness matrices, in section 4 we present the
use of the RCM ordering algorithm to reduce the
bandwidth of the matrices and section 5 includes
conclusions of this work.

2 The edge elements for the eigenvalue
calculation

The problem of calculating resonant frequencies of
three-dimensional cavities can be formulated either by
using the E or the H fields ([1], [2]). Let us consider
the vector wave equation

V x iV><E —kcza‘yE:O (1)
Hy

Where E=EXX+Eyy+EZz,u and €,are the

permittivity and the permeability respectively of the
material.

A. Finite Element Formulation
In order to get the weak formulation let us multiply

equation (1) by a vector testing functionWn and
integrate over the volume V of the cavity [3]

I{Wn[[Vx('uiVxED—kfsyWn[E]dV:O )

by using the identity
A(VxB)=(VxA)B-V(AxB) (3)

equation (2) can be written as
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Fig. 1. Configuration of tangential edge elements

Table 1. Edge definition for a tetrahedral element

Edge | | Node I, | Node I
1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

by using the divergence theorem and the identity

(Ax B)D:' = _A[(ﬁx B)we have

[(vxw, )[[iw E]dv =

\% /u;/

kfgijnDEdv—jwn[{ﬁx[iw Eﬂds
Q S

(5)
Hy

here V indicates integration over the volume, S over
the outer surface, nis the outward unit vector normal
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to the surface. For a cavity bounded by perfectly
electric conducting electric conductor, the field as well
as the testing function Whn has to be zero on the outer
surface; hence the last term on the right-hand side
vanishes. Thus we have

[ (VW )(VxE)dv =

\ /uy
‘&, [W, Edv
\

(6)

The electric field in a single tetrahedral element is
represented as

E=)eW, )

here W, = Im (l—leI-m2 - LmZVLmi)' Imis the
length of edge m connecting nodes m1 and mz2; Lm: and
Lm: are the simplex coordinates associated with nodes
mz1and mz. Fig. 1 and table | show the definition of the
edges. In order to obtain the finite element formulation
we substitute equation (4) into (3) to get

6
iZJ‘ VW )V xW, )&, dv =
lu}/ m=1 A

) 8)
k2 &

m=1

4

[ (W, W,) &, dv
A

n=1, - + -+ 6, here _denotes integration over the
volume of the tetrahedron. This can be written in
matrix form as

[Son |[e]=kZ[ My [e] )

where the element matrices are given by

[S;In]:,u_-[ (VW V=W, )dv (10)
7y A

and

(M ]= gjwnN)dv (1)

that after a loop over aII the tetrahedrons we obtain a
global eigenmatrix equation

[S][e] =2 [M][e] @2

3 The influence of the Mesh Generator

The most popular element shapes employed for three-
dimensional applications are tetrahedrons; this is due
that tetrahedral element is the simplest tessellation
shape for modeling three dimensional geometries and
is also well suited for automatic mesh generation. To
investigate the influence of the mesh generator we
considered six different tetrahedral grid generators:
initmesh [4] (Femlab), Tetgen [5], Distmesh [6], Qmg
[7], Gambit [8] (Fluent) and Ansys [9]. Initmesh is a
Matlab function of the Femlab package that
implements a Delaunay tetrahedralization algorithm,
Tetgen is a mesh generator that uses constrained
Delaunay tetrahedralization, Distmesh is based on an
iterative continuous smoothing method, Qmg uses a
guadtreebased algorithm and finally Ansys and Gambit
use an advancing front method. We start our discussion
with some observations about the sparsity pattern of
the stiffness S and mass M matrices. In order to
efficiently allocated storage the number of edges
(degrees of freedom) can be calculated by using the
formula provided by Hoole [10]. At [11] a bound for
the number of nonzero entries of the stiffness and mass
matrices for triangular meshes was given, however the
analogy does not hold in the three dimensional case.
For vector elements the unknowns are still associated
with the edges of the elements; but in 3d an edge either
on the boundary or at the interior of the computational
domain can be shared for more than two tetrahedrons
which make difficult to determine the number of
neighboring edges. The sparse structure of the matrices
S and M depends on the edge ordering; most of the
grid generators do not provide the edge numbering
because they were developed for node-based finite
elements(among the grid generators tested none
provides the edge humbering), thus we need to convert
node numbering into edge numbering. Here we follow
the two simple schemes by Jin [1].

To describe the numbering schemes we take as an
example the four elements tetrahedral mesh at Fig. (2).
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its element-to-node connectivity array is given at table
2. For the first scheme denoted by Sci, an indicator
(product of the nodes) to each edge is defined and the
array of

123 4
4135
16 35
216 3

Table 2. Four element tetrahedral mesh

Indicator Nodes Elements

12
14
13
24
23
34
14
34
45
13
15
35
16
13
15
36
56
35
12
26
23
16
13
36
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Fig. 2. A four elements tetrahedral mesh
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Table 3. Table of edges
Table 4. Table of sorted edges

Indicator

Nodes

Element

VOO A, DWWWWNN

12
12
12
15
15
18
18
20
30

12
12
13
13
13
13
14
14
15
15
16
16
23
23
24
26
34
34
35
35
36
36
45
56

WNPPWWNNERPRARRPLPERARRLPRRWWLOWDNNRERPRRWNE BMPE

Table 5. Edge to node array

Edge

Nodes

Elements

Boo~vwouosrwNnr

11
12
13

12
13
14
15
16
23
24
26
34
35
36
45
56

WNWNEPRARPRPPWNRE R
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indicators is rearranged by a sorting algorithm. Tables
3 and 4 show the edges and sorted edges.

Most sorting algorithms are very efficient and can
perform the task with Nlog(N) operations (N is equal
to six times the number of tetrahedrons). Now we
proceed to count the edges, here the indicator is used to
reduce the number of comparisons, thus we get the
edge-to-node/element array given at table V. We
finally use this array to get the element-to-edge
connectivity array given at table VI.

For the second scheme Sc2, no sorting algorithm
is required; we use the element-to-node connectivity
array to generate a table of edges displayed at table 7.
Then the element-to-edge array is initialized with zeros
and a counter is set to zero; to fill in it we loop over the
elements and examine its edges, if the entry is nonzero
this edge was already numbered and we go to the next
edge, if it is zero we give it the value of the counter,
this algorithm requires 18m (m— 1) operations, here m
is the number of edges.

Table 6. Element-edge array scheme 1

Edge 1l | Edge2 | Edge 3 | Edge 4 Edge5 | Edge6
1 3 2 7 6 9
3 9 12 2 4 10
5 2 4 11 13 10
1 8 6 5 2 11
Table 7. Edge to node array
Edgel | Edge2 | Edge3 | Edge4 | Edge5 | Edge6
12 14 13 24 23 34
14 34 45 13 15 35
16 13 15 36 56 35
12 26 23 16 13 36
Table 8. Element-edge array scheme 2
Edgel | Edge2 | Edge3 | Edge4 | Edge5 | Edge6
1 2 3 4 5 6
2 6 7 3 8 9
10 3 8 11 12 9
1 13 5 10 3 11
Table 9. Meshes information
Mesh | Created by | N-nodes | N-elements | N-edges Size
1 Femlab 1411 6653 8620 0.1312
2 Tetgen 1370 6565 8583 0.1059
3 Distmesh 1288 6478 8325 0.1979
4 Qmg 1508 6818 9003 0.1019
5 Ansys 1387 6570 8514 0.1355
6 Gambit 1504 6857 9026 0.1291
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These schemes generate different edge
numberings for a given tetrahedralization as seen at
tables 5 and 8. In our first experiment we used the
different grid generators to define a grid for the simple
geometry of a cylinder of radius 1 and height 1 with
approximately 6500 elements.

The table 9 displays the information of the
meshes. By using the two schemes of edge numbering
we calculate the stiffness matrix S for the six meshes.
Fig. 3-8 show the sparse structure of S for the two edge
numbering schemes (S and M have similar structure).
The poorly structured connectivity of an unstructured
finite element mesh can lead to poor cache affinity
([12).

Fig. (9) shows bandwidth for the six meshes with
the two schemes. In this plot we refer to bandwidth as
the half bandwidth over the number of degrees of
freedom. Here we notice no significant changes in the
bandwidth for the first two meshes (obtained by
Delaunay tetrahedralization methods) with both

0 2000 4000 6000 8000
nz = 131716

schemes; similar results are observed with last two.
However we note that Sci works better (lower
bandwidth) for the mesh generated by Distmesh while
Sc2 works better for the mesh generated by Qmg.

In fact the bandwidth obtained by using Sci is
only the 15.8% of the one obtained with Sc2 for
Distmesh; while for Qmg we have the opposite
situation the bandwidth obtained with Sc2 is the
17.96% of the one obtained with Sci. The grid
generator Distmesh is based on the iterative method of
Persson which tries to optimize the node locations by a
force-based smoothing procedure while Qmg uses a
quadtree method. It seems that grid generators based
on Delaunay methods produce no significant changes
in the bandwidth size with both edge numbering
schemes. However Sci produces a lower bandwidth
that Sc2 for Distmesh, here the iterative method of
Persson gives an optimal node numbering for the Sc1
which is based on a sorting algorithm.

2000
40001 °
P

6000

8000 ps o ar ¢ N

0 2000 4000 6000 8000
nz = 131716

Fig. 3. Matrix Structure Femlab; left Sc 1, right Sc 2

0 2000 4000 6000 8000

nz = 130647

4000 6000 8000
nz = 130647

0 2000

Fig. 4. Matrix Structure Tetgen; left Sc 1, right Sc 2
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On the other hand Sc2 produces lower bandwidth that
Sc1 for Qmg. In this case Sc2 makes a loop over the
elements so it seems that Qmg gives and optimal
element ordering. Similar results were observed by
testing twenty different geometries showing that the
bandwidth is influenced by the method used for the
grid generator [13]. Unstructured grid generators
usually create numbers for vertices and cells as they
produce them. For a frontal grid generator the vertices
are often numbered in a spiral fashion, for octree
methods cubes containing the geometric model are
recursively divided until a desired resolution thus
nodes and faces are formed whenever the internal

2000

4000

600D

aoon

0 2000 4000 &000 8000
nz = 126263

octree structure intersects the boundary; whereas
Delaunay generators have random numbering. Fig. 10
shows the mesh obtained by Distmesh. As we
mentioned above, the finite element formulation with
edge elements requires the edge numbering to
assemble the matrices and the boundary edges to
imposed boundary conditions. Table 10 summarizes
some useful information of the grid generators. Among
them, none provides the edge numbering, initmesh
(Femlab), Tetgen and Qmg only provide the boundary
edges. Here E.N. and B.E. means edge numbering and
boundary elements respectively.

0 2000 4000 &000 8000
nz = 126206

Fig. 5. Matrix Structure Distmesh; left Sc 1, right Sc 2

: "y
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-
2000
4000
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a 2000 4000 G000 8000
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Fig. 6. Matrix Structure Qmpg; left Sc 1, right Sc 2
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] 2000 4000 6000 8000 1] 2000 4000 6000 8000
nz = 150722 nz = 130122

Fig. 7. Matrix Structure Ansys; left Sc 1, right Sc 2
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Fig. 8: Matrix Structure Gambit; left Sc 1, right Sc 2
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Fig. 9. Bandwidth
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Fig. 10. Mesh for a cylinder

Table 10. Grid generators information

Availability Method E.N. | B.E. Language
Femlab Commercial Delaunay X Ok Matlab
Tetgen OpenSource Delaunay X Ok C++
Distmesh | OpenSource | Continuous smoothing X X Matlab
Qmg OpenSource Quadtree X Ok Matlab-C++
Ansys Commercial Advancing front X X User interface
Gambit Commercial Advancing front X X User interface

4 Reordering

Reordering of sparse matrices is essential for good
performance on parallel computers, a good reordering
algorithm can lead to much better load balance of the
computer and thus to a dramatic increase in
performance compared to a naive ordering ([14],[15]).

In order to reduce the bandwidth of the stiffness
and mass matrices an ordering scheme can be used.
Nodal ordering for the formation of suitable sparsity
patters for the finite element matrices are often
performed using graph theory ([16], [17]). A widely
used but rather simple ordering algorithm is the reverse
Cuthill-McKee  ordering algorithm  [18]. The
algorithms first find a pseudo peripheral vertex of the
graph of the matrix. It then generates a level structure
by breadth-first search (bfs) and orders the vertices by
decreasing distance from the pseudo peripheral vertex.
The cost of bfs is O(|V| + |E|) with |V| and |E| the
number of nodes and edges respectively.

Here we use RCM with two approaches: in the
first one the ordering is applied to the graph of the
mesh (the nodes and elements) and then we assemble
the matrices.

On the second one we assemble the matrices and
use the RCM to reorder the rows and columns of the
matrices (the eigenvalues remain invariant); a Matlab
implementation of this ordering is provided by the
function symrcm. It is desirable that the grid generator
can provide optimal meshes, so the RCM should be
considered as part of the grid generator.

A. Reordering the meshes

As we mentioned we generate a mesh, apply the RCM
algorithm and then we assemble the matrices. By the
nature of the edge ordering schemes, we expect to
obtain better results by using Sci after the RCM
ordering.

Fig. 11 shows the bandwidth reduction produced
by the RCM algorithm. At each group the height of the
columns represent the bandwidth, the first one is
obtained by using Sci, the second one is RCM
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followed by Sct, the third is Sc2 and the fourth is RCM
followed by Sc2. Bandwidth reduction is attained with
all grid generators when a RCM followed by Scu is
used except with Distmesh, it seems that the node
ordering of the mesh generated by Distmesh is optimal
and a RCM reordering is not needed. Note that even
though a RCM ordering of the mesh was used the Sc2
does not provide bandwidth reduction.

10000

8000 P
A st
T so00f
z
g 4000
20001
- ‘ . mm
Femlab Tetgen Distmesh
10000
8000 ]
=e]
E G000
5 4000
0
2000
il | [Nl |
Qmg Ansys Gambit

Fig. 11. Reordering the meshes

B. Reordering the matrices

10000

8000+
6000

bandwidth

4000
2000

oL Mmml i Meml— el

Tetgen Distmesh

10000

8000
6000 -

bandwidth

4000

Omg Ansys Gambit
Fig. 12. Reordering the matrices

In this case the RCM ordering is applied after the
matrices are assembled. Fig. 12 shows the bandwidth
reduction by using RCM to the meshes (rcml) and to
the assembled matrices (rcm2). At each group the
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2000+ g
OJ_-.|_|I_| B Hm —

height of the columns represents the bandwidth, the
first column is the obtained by rcml with scheme 1,
the second column is rcm2 with scheme 1, the third
column is rcml with scheme 2 and the fourth one is
rcm2 with scheme 2. In all the cases bandwidth
reduction is obtained by rcmz2.

5 Eigenvalue calculation

After discretization by the edge finite element method
we arrive to

[S][e] =2 [M][e] @

here we have assumed constant material parameters so
the matrices are symmetric. We are now faced with the
problem of numerically solve a generalized
eigenproblem; one approach is to reduce it to a
standard eigenvalue problem by means of congruence
transformations and then use an iterative method to
calculate the eigenvalues (the resulting eigenproblem
amounts to solving the eigenvalues of a symmetric
tridiagonal matrix); sometimes this approach is called
by using direct solvers, the other approach is to directly
write an iterative method for the generalized
eigenproblem (iterative solvers). A review of direct
solvers for the generalized eigenproblem can be found
at ([19]).

Over the years, several numerical methods and
software to solve large scale eigenproblems have been
developed, for a comprehensible list of software and
references we refer to ([20], [21]). A vast majority of
the programs are based on the Lanczos algorithm
including irbleigs ([22]) and eigs (Matlab
implementation of Arpack) [23]; these kind of methods
require the invertion of M, if the eigenvalues are badly
separated a shift and invert transformation is required.
Other programs such as jdqz([24]) and lopbcg([25]) do
not required shift-and-invert transformation or the
inversion of M but require more user inputs as initial
approximations or preconditioners. An alternative
matlab program that does not require user’s inputs is
eigifp ([26]), which uses an inverse free preconditioned
Krylov subspace projection method. Perhaps one of the
simplest ways to solve generalized eigenproblems is by
using the Matlab function eigs. This function
implements an Implicitly Restarted Arnoldi algorithm
[23]. We investigate the performance of this solver in
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the cases of banded and nonbanded sparse matrices.
For this end, we consider the eigenvalue calculation of
the resonances of a closed rectangular empty cavity
lcm x 0.5cmx. Here the mesh has 1547 nodes, 7416
elements and 9709 edges. The first cutoff
wavenumbers are given by 5.23, 7.01, 7.55, 7.56, and
8.16 in agreement with the calculated values in
literature.

Even though bandwidth reduction is obtained by

the proper choice of the grid generator or rcm ordering,
no significant reduction have been observed in the
execution time of eigs (arpack) when calculating the
eigenvalues (cutoff wave numbers). The eigensolver
was not affected by the bandwidth of the matrices
because the command eigs in Matlab solves linear
systems internally when the eigenproblem is
generalized.
This suggests that in order to speed up the
computations a further study with banded generalized
eigensolvers either direct or iterative must be
conducted [27].

6 Conclusions

In this work we have investigated the importance of
the grid generator and edge numbering in the
eigenvalue calculation with edge elements. We have
observed how the sparse structure of the mass and
stiffness matrices is highly influenced by the edge
numbering. Grid generators are mainly designed for
node based finite element, so an edge numbering is
required. Two numbering schemes for the edges were
investigated, six grid generators were tested
summarizing their suitableness for the edge element
formulation. Significant bandwidth reduction can be
obtained by the proper combination of the edge
numbering scheme with the grid generator method. In
fact Sc2 only gives good results with Qmg (quadtree
based), for the other grid generators Sci is a better
choice. The RCM reordering of the mesh followed by
the Sci1 can improve the bandwidth reduction with all
the grid generators except with Distmesh. The ordering
of Distmesh is optimal with Sci, thus no RCM
ordering is required which make this grid generator a
suitable choice for edge element formulation.

We remark the point that a RCM ordering of the
mesh followed by Sc2 does not provide bandwidth
reduction. Moreover, RCM of the assembled matrices
improves the bandwidth reduction reducing the storage

requirements (reordering the assembled matrices
leaves the eigenvalues invariant) with the downside of
requiring the assemble of the matrices. As future work
it is due to investigate the performance of the available
eigensolvers in order to determine the most suitable
one for the kind of generalized eigenproblems arising
in electromagnetics.
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