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Abstract. In this work we investigate some computational 
aspects of the eigenvalue calculation with edge elements; 
those include: the importance of the grid generator and node-
edge numbering. As the examples show, the sparse structure 
of the mass and stiffness matrices is highly influenced by the 
edge numbering. 
Tetrahedral grid generators are mainly designed for nodal 
based finite elements so an edge numbering is required. Two 
different edge numbering schemes are tested with six 
different grid generators. Significant bandwidth reduction 
can be obtained by the proper combination of the edge 
numbering scheme with the grid generator method. 
Moreover, an ordering algorithm such as the Reverse Cuthill 
McKee can improve the bandwidth reduction which is 
necessary to reduce storage requirements. 
 
Keywords: Tetrahedral grid generators, edge elements, 
RCM ordering, generalized eigenproblem. 
 
Resumen. En este trabajo se investigan algunos aspectos 
computacionales del cálculo de eigenvalores con elementos 
de contorno tales como la importancia del generador de 
mallas y la numeración de nodos y lados. Como muestran los 
ejemplos, la estructura esparcida de las matrices de masa y 
momentos es altamente influenciada  por la numeración de 
los lados. 
Generadores de mallas en tetraedros son diseñados 
principalmente para elementos finitos basados en los nodos, 
así una numeración de los lados es requerida. Se realizaron 
pruebas con dos esquemas de enumeración de los lados con 
seis generadores de mallas distintos. Una reducción de banda 
significante puede obtenerse con una combinación apropiada 
de esquema de numeración de los lados con el método 
empleado por el generador de malla. Más aún un algoritmo 
de reordenamiento como el RCM puede mejorar la reducción 
de ancho de banda lo cual es necesario para reducir los 
requerimientos de almacenamiento. 
 

Palabras Clave: Generadores de mallas en tetraedros, 
elementos de contorno, reordenamientos RCM, valores 
propios generalizados. 

1 Introduction 

In electromagnetics, eigenvalue problems that are often 
encountered include those of cavity resonance and 
wave propagation in both closed and open structures, 
such as metallic waveguides, open and shielded 
microstrip transmission lines, and optical waveguides 
or fibers. In these problems, one is interested in 
determining the resonant frequencies or propagation 
constants corresponding to eigenvalues and the 
associated resonant or propagation modes 
corresponding to eigenvectors. The finite element 
method with edge elements has been used to solve 
these kind of problems; some of the advantages of 
edge elements include: divergence free (elimination of 
spurious nonphysical solutions), interelement boundary 
conditions are automatically obtained through the 
natural boundary conditions, edge elements impose the 
continuity of only the tangential components of the 
electromagnetic field, and Dirichlet boundary 
condition can be easily imposed along the edge 
elements. Some factors that complicate the finite 
element solution of the eigenvalue analysis are the 
sparsity of the matrices and the fact that the method 
gives rise to generalized eigenproblems  where only a 
few selected eigenvalues are desired. The sparse 
structure of the matrices M and S is highly influenced 
by the edge numbering provided by the grid generator. 
Here, sparse matrix techniques are preferable since the 
storage required increases as , where denotes 
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the degrees of freedom of the problem. Moreover, 
storage can be reduced by minimizing the bandwidth 
of the connectivity matrix; thus, generalized 
eigensolvers that take advantages of the banded 
structure are highly desirable. The work is organized as 
follows: in section 2 we introduce the finite element 
formulation for eigenvalue problems in 
electromagnetics by using edge elements (three 
dimensional Whitney elements), section 3 shows the 
influence of the mesh generator in the structure of the 
mass and stiffness matrices, in section 4 we present the 
use of the RCM ordering algorithm to reduce the 
bandwidth of the matrices and section 5 includes 
conclusions of this work. 

2 The edge elements for the eigenvalue 
calculation 

The problem of calculating resonant frequencies of 
three-dimensional cavities can be formulated either by 
using the E or the H fields ([1], [2]). Let us consider 
the vector wave equation 
 

21 0                 cE k Eγ
γ

ε
µ

 
∇× ∇× − =  

 
 (1) 

 

Where   , x y zE E x E y E z µ= + +   and γε are the 
permittivity and the permeability respectively of the 
material. 
 
A. Finite Element Formulation 
In order to get the weak formulation let us multiply 
equation (1) by a vector testing functionWn and 
integrate over the volume V of the cavity [3] 
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by using the identity 
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equation (2) can be written as 
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(4) 

 

 
Fig. 1. Configuration of tangential edge elements 

 
 

Table 1. Edge definition for a tetrahedral element 

Edge i  Node 2i  Node 2i   
1 
2 
3 
4 
5 
6 

1 
1 
1 
2 
4 
3 

2 
3 
4 
3 
2 
4 

 

 
by using the divergence theorem and the identity 

( )  ( )A B n A n B× = − ×  we have  
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 (5) 

 
here V indicates integration over the volume, S over 

the outer surface, n is the outward unit vector normal 
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to the surface. For a cavity bounded by perfectly 
electric conducting electric conductor, the field as well 
as the testing function Wn has to be zero on the outer 
surface; hence the last term on the right-hand side 
vanishes. Thus we have 
 

( ) ( )

2

1
n

V

c n
V

W E dv

k W Edv
γ

γ

µ

ε

∇× ∇× =∫

∫




 (6) 

 
The electric field in a single tetrahedral element is 
represented as 

6

1
m m

m
E Wε

=

=∑  (7) 

 

here ( )1 2 2 1
,  m m m m m m mW l L L L L l= ∇ − ∇ is the 

length of edge m connecting nodes m1 and m2; Lm1 and 
Lm2 are the simplex coordinates associated with nodes 
m1 and m2. Fig. 1 and table I show the definition of the 
edges. In order to obtain the finite element formulation 
we substitute equation (4) into (3) to get  
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n = 1, ・ ・ ・ 6, here _ denotes integration over the 
volume of the tetrahedron. This can be written in 
matrix form as 
 

[ ] [ ]2el el
mn c mnS e k M e   =     (9) 

 
where the element matrices are given by 
 

( ) ( )1el
mn m nS W W dv

γµ ∆

  = ∇× ∇×  ∫   (10) 

 
and 
 

( )el
mn m nM W W dvγε

∆

  =  ∫   (11) 

that after a loop over all the tetrahedrons we obtain a 
global eigenmatrix equation 
 

[ ][ ] [ ][ ]2
cS e k M e=  (12) 

3 The influence of the Mesh Generator 

The most popular element shapes employed for three-
dimensional applications are tetrahedrons; this is due 
that tetrahedral element is the simplest tessellation 
shape for modeling three dimensional geometries and 
is also well suited for automatic mesh generation. To 
investigate the influence of the mesh generator we 
considered six different tetrahedral grid generators: 
initmesh [4] (Femlab), Tetgen [5], Distmesh [6], Qmg 
[7], Gambit [8] (Fluent) and Ansys [9]. Initmesh is a 
Matlab function of the Femlab package that 
implements a Delaunay tetrahedralization algorithm, 
Tetgen is a mesh generator that uses constrained 
Delaunay tetrahedralization, Distmesh is based on an 
iterative continuous smoothing method, Qmg uses a 
quadtreebased algorithm and finally Ansys and Gambit 
use an advancing front method. We start our discussion 
with some observations about the sparsity pattern of 
the stiffness S and mass M matrices. In order to 
efficiently allocated storage the number of edges 
(degrees of freedom) can be calculated by using the 
formula provided by Hoole [10]. At [11] a bound for 
the number of nonzero entries of the stiffness and mass 
matrices for triangular meshes was given, however the 
analogy does not hold in the three dimensional case. 
For vector elements the unknowns are still associated 
with the edges of the elements; but in 3d an edge either 
on the boundary or at the interior of the computational 
domain can be shared for more than two tetrahedrons 
which make difficult to determine the number of 
neighboring edges. The sparse structure of the matrices 
S and M depends on the edge ordering; most of the 
grid generators do not provide the edge numbering 
because they were developed for node-based finite 
elements(among the grid generators tested none 
provides the edge numbering), thus we need to convert 
node numbering into edge numbering. Here we follow 
the two simple schemes by Jin [1].  

To describe the numbering schemes we take as an 
example the four elements tetrahedral mesh at Fig. (2). 
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its element-to-node connectivity array is given at table 
2. For the first scheme denoted by Sc1, an indicator 
(product of the nodes) to each edge is defined and the 
array of  

1 2 3 4
4 1 3 5
1 6 3 5
2 1 6 3

 

 
Table 2. Four element tetrahedral mesh                                                                                               

Indicator Nodes Elements 
2 
4 
3 
8 
6 
12 
4 
12 
20 
3 
5 
15 
6 
3 
5 
18 
30 
15 
2 
12 
6 
6 
3 
18 

12 
14 
13 
24 
23 
34 
14 
34 
45 
13 
15 
35 
16 
13 
15 
36 
56 
35 
12 
26 
23 
16 
13 
36 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 

 

 

 
Fig. 2. A four elements tetrahedral mesh 

 

Table 3. Table of edges  
Table 4. Table of sorted edges 

Indicator Nodes Element 
2 
2 
3 
3 
3 
3 
4 
4 
5 
5 
6 
6 
6 
6 
8 
12 
12 
12 
15 
15 
18 
18 
20 
30 

12 
12 
13 
13 
13 
13 
14 
14 
15 
15 
16 
16 
23 
23 
24 
26 
34 
34 
35 
35 
36 
36 
45 
56 

1 
4 
1 
2 
3 
4 
1 
2 
2 
3 
3 
4 
1 
4 
1 
4 
1 
2 
2 
3 
3 
4 
2 
3 

 

 
Table 5. Edge to node array 

 
Edge Nodes Elements 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

12 
13 
14 
15 
16 
23 
24 
26 
34 
35 
36 
45 
56 

1 
1 
1 
2 
3 
1 
1 
4 
1 
2 
3 
2 
3 
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indicators is rearranged by a sorting algorithm. Tables 
3 and 4 show the edges and sorted edges.  

Most sorting algorithms are very efficient and can 
perform the task with Nlog(N) operations (N is equal 
to six times the number of tetrahedrons). Now we 
proceed to count the edges, here the indicator is used to 
reduce the number of comparisons, thus we get the 
edge-to-node/element array given at table V. We 
finally use this array to get the element-to-edge 
connectivity array given at table VI. 

For the second scheme Sc2, no sorting algorithm 
is required; we use the element-to-node connectivity 
array to generate a table of edges displayed at table 7.  
Then the element-to-edge array is initialized with zeros 
and a counter is set to zero; to fill in it we loop over the 
elements and examine its edges, if the entry is nonzero 
this edge was already numbered and we go to the next 
edge, if it is zero we give it the value of the counter, 
this algorithm requires 18m (m− 1) operations, here m 
is the number of edges. 

 
 

 

Table 6. Element-edge array scheme 1 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
1 
3 
5 
1 

3 
9 
2 
8 

2 
12 
4 
6 

7 
2 
11 
5 

6 
4 
13 
2 

9 
10 
10 
11 

 
Table 7. Edge to node array 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
12 
14 
16 
12 

14 
34 
13 
26 

13 
45 
15 
23 

24 
13 
36 
16 

23 
15 
56 
13 

34 
35 
35 
36 

 
Table 8. Element-edge array scheme 2 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
1 
2 
10 
1 

2 
6 
3 
13 

3 
7 
8 
5 

4 
3 
11 
10 

5 
8 
12 
3 

6 
9 
9 
11 

 
Table 9. Meshes information 

Mesh Created by N-nodes N-elements N-edges Size 
1 Femlab 1411 6653 8620 0.1312 
2 Tetgen 1370 6565 8583 0.1059 
3 Distmesh 1288 6478 8325 0.1979 
4 Qmg 1508 6818 9003 0.1019 
5 Ansys 1387 6570 8514 0.1355 
6 Gambit 1504 6857 9026 0.1291 
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These schemes generate different edge 
numberings for a given tetrahedralization as seen at 
tables 5 and 8. In our first experiment we used the 
different grid generators to define a grid for the simple 
geometry of a cylinder of radius 1 and height 1 with 
approximately 6500 elements. 

The table 9 displays the information of the 
meshes. By using the two schemes of edge numbering 
we calculate the stiffness matrix S for the six meshes. 
Fig. 3-8 show the sparse structure of S for the two edge 
numbering schemes (S and M have similar structure). 
The poorly structured connectivity of an unstructured 
finite element mesh can lead to poor cache affinity 
([12]). 

Fig. (9) shows bandwidth for the six meshes with 
the two schemes. In this plot we refer to bandwidth as 
the half bandwidth over the number of degrees of 
freedom. Here we notice no significant changes in the 
bandwidth for the first two meshes (obtained by 
Delaunay tetrahedralization methods) with both 

schemes; similar results are observed with last two. 
However we note that Sc1 works better (lower 
bandwidth) for the mesh generated by Distmesh while 
Sc2 works better for the mesh generated by Qmg.  

In fact the bandwidth obtained by using Sc1 is 
only the 15.8% of the one obtained with Sc2 for 
Distmesh; while for Qmg we have the opposite 
situation the bandwidth obtained with Sc2 is the 
17.96% of the one obtained with Sc1. The grid 
generator Distmesh is based on the iterative method of 
Persson which tries to optimize the node locations by a 
force-based smoothing procedure while Qmg uses a 
quadtree method. It seems that grid generators based 
on Delaunay methods produce no significant changes 
in the bandwidth size with both edge numbering 
schemes. However Sc1 produces a lower bandwidth 
that Sc2 for Distmesh, here the iterative method of 
Persson gives an optimal node numbering for the Sc1 

which is based on a sorting algorithm. 
 

 

Fig. 3. Matrix Structure Femlab; left Sc 1, right Sc 2 
  

Fig. 4. Matrix Structure Tetgen; left Sc 1, right Sc 2 
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On the other hand Sc2 produces lower bandwidth that 
Sc1 for Qmg. In this case Sc2 makes a loop over the 
elements so it seems that Qmg gives and optimal 
element ordering. Similar results were observed by 
testing twenty different geometries showing that the 
bandwidth is influenced by the method used for the 
grid generator [13]. Unstructured grid generators 
usually create numbers for vertices and cells as they 
produce them. For a frontal grid generator the vertices 
are often numbered in a spiral fashion, for octree 
methods cubes containing the geometric model are 
recursively divided until a desired resolution thus 
nodes and faces are formed whenever the internal 

octree structure intersects the boundary; whereas 
Delaunay generators have random numbering. Fig. 10 
shows the mesh obtained by Distmesh. As we 
mentioned above, the finite element formulation with 
edge elements requires the edge numbering to 
assemble the matrices and the boundary edges to 
imposed boundary conditions. Table 10 summarizes 
some useful information of the grid generators. Among 
them, none provides the edge numbering, initmesh 
(Femlab), Tetgen and Qmg only provide the boundary 
edges. Here E.N. and B.E. means edge numbering and 
boundary elements respectively. 

 

 
Fig. 5. Matrix Structure Distmesh; left Sc 1, right Sc 2 

 
 

 
Fig. 6. Matrix Structure Qmg; left Sc 1, right Sc 2 
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Fig. 7. Matrix Structure Ansys; left Sc 1, right Sc 2 

 
 

 
Fig. 8: Matrix Structure Gambit; left Sc 1, right Sc 2 

 
 

 
 

Fig. 9. Bandwidth 
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Fig. 10. Mesh for a cylinder 

 
 

Table 10. Grid generators information 

 Availability Method E.N. B.E. Language 
Femlab Commercial Delaunay X Ok Matlab 
Tetgen OpenSource Delaunay X Ok C++ 

Distmesh OpenSource Continuous smoothing X X Matlab 
Qmg OpenSource Quadtree X Ok Matlab-C++ 

Ansys Commercial Advancing front X X User interface 
Gambit Commercial Advancing front X X User interface 

 

4 Reordering 

Reordering of sparse matrices is essential for good 
performance on parallel computers, a good reordering 
algorithm can lead to much better load balance of the 
computer and thus to a dramatic increase in 
performance compared to a naive ordering ([14],[15]). 

In order to reduce the bandwidth of the stiffness 
and mass matrices an ordering scheme can be used. 
Nodal ordering for the formation of suitable sparsity 
patters for the finite element matrices are often 
performed using graph theory ([16], [17]). A widely 
used but rather simple ordering algorithm is the reverse 
Cuthill-McKee ordering algorithm [18]. The 
algorithms first find a pseudo peripheral vertex of the 
graph of the matrix. It then generates a level structure 
by breadth-first search (bfs) and orders the vertices by 
decreasing distance from the pseudo peripheral vertex. 
The cost of bfs is O(|V| + |E|) with |V| and |E| the 
number of nodes and edges respectively. 

Here we use RCM with two approaches: in the 
first one the ordering is applied to the graph of the 
mesh (the nodes and elements) and then we assemble 
the matrices. 

On the second one we assemble the matrices and 
use the RCM to reorder the rows and columns of the 
matrices (the eigenvalues remain invariant); a Matlab 
implementation of this ordering is provided by the 
function symrcm. It is desirable that the grid generator 
can provide optimal meshes, so the RCM should be 
considered as part of the grid generator. 

A. Reordering the meshes 

As we mentioned we generate a mesh, apply the RCM 
algorithm and then we assemble the matrices. By the 
nature of the edge ordering schemes, we expect to 
obtain better results by using Sc1 after the RCM 
ordering. 

Fig. 11 shows the bandwidth reduction produced 
by the RCM algorithm. At each group the height of the 
columns represent the bandwidth, the first one is 
obtained by using Sc1, the second one is RCM 
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followed by Sc1, the third is Sc2 and the fourth is RCM 
followed by Sc2. Bandwidth reduction is attained with 
all grid generators when a RCM followed by Sc1 is 
used except with Distmesh, it seems that the node 
ordering of the mesh generated by Distmesh is optimal 
and a RCM reordering is not needed. Note that even 
though a RCM ordering of the mesh was used the Sc2 

does not provide bandwidth reduction. 
 

 
Fig. 11. Reordering the meshes 

B. Reordering the matrices 

 
Fig. 12. Reordering the matrices 

 
 
In this case the RCM ordering is applied after the 
matrices are assembled. Fig. 12 shows the bandwidth  
reduction by using RCM to the meshes (rcm1) and to 
the assembled matrices (rcm2). At each group the 

height of the columns represents the bandwidth, the 
first column is the obtained by rcm1 with scheme 1, 
the second column is rcm2 with scheme 1, the third 
column is rcm1 with scheme 2 and the fourth one is 
rcm2 with scheme 2. In all the cases bandwidth 
reduction is obtained by rcm2. 

5 Eigenvalue calculation 

After discretization by the edge finite element method 
we arrive to 
 

[ ][ ] [ ][ ]2
cS e k M e=  (13) 

 
here we have assumed constant material parameters so 
the matrices are symmetric. We are now faced with the 
problem of numerically solve a generalized 
eigenproblem; one approach is to reduce it to a 
standard eigenvalue problem by means of congruence 
transformations and then use an iterative method to 
calculate the eigenvalues (the resulting eigenproblem 
amounts to solving the eigenvalues of a symmetric 
tridiagonal matrix); sometimes this approach is called 
by using direct solvers, the other approach is to directly 
write an iterative method for the generalized 
eigenproblem (iterative solvers). A review of direct 
solvers for the generalized eigenproblem can be found 
at ([19]). 

Over the years, several numerical methods and 
software to solve large scale eigenproblems have been 
developed, for a comprehensible list of software and 
references we refer to ([20], [21]). A vast majority of 
the programs are based on the Lanczos algorithm 
including irbleigs ([22]) and eigs (Matlab 
implementation of Arpack) [23]; these kind of methods 
require the invertion of M, if the eigenvalues are badly 
separated a shift and invert transformation is required. 
Other programs such as jdqz([24]) and lopbcg([25]) do 
not required shift-and-invert transformation or the 
inversion of M but require more user inputs as initial 
approximations or preconditioners. An alternative 
matlab program that does not require user’s inputs is 
eigifp ([26]), which uses an inverse free preconditioned 
Krylov subspace projection method. Perhaps one of the 
simplest ways to solve generalized eigenproblems is by 
using the Matlab function eigs. This function 
implements an Implicitly Restarted Arnoldi algorithm 
[23]. We investigate the performance of this solver in 
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the cases of banded and nonbanded sparse matrices. 
For this end, we consider the eigenvalue calculation of 
the resonances of a closed rectangular empty cavity 
1cm × 0.5cm×. Here the mesh has 1547 nodes, 7416 
elements and 9709 edges. The first cutoff 
wavenumbers are given by 5.23, 7.01, 7.55, 7.56, and 
8.16 in agreement with the calculated values in 
literature. 

Even though bandwidth reduction is obtained by 
the proper choice of the grid generator or rcm ordering, 
no significant reduction have been observed in the 
execution time of eigs (arpack) when calculating the 
eigenvalues (cutoff wave numbers). The eigensolver 
was not affected by the bandwidth of the matrices 
because the command eigs in Matlab solves linear 
systems internally when the eigenproblem is 
generalized.  
This suggests that in order to speed up the 
computations a further study with banded generalized 
eigensolvers either direct or iterative must be 
conducted [27]. 

6 Conclusions 

In this work we have investigated the importance of 
the grid generator and edge numbering in the 
eigenvalue calculation with edge elements. We have 
observed how the sparse structure of the mass and 
stiffness matrices is highly influenced by the edge 
numbering. Grid generators are mainly designed for 
node based finite element, so an edge numbering is 
required. Two numbering schemes for the edges were 
investigated, six grid generators were tested 
summarizing their suitableness for the edge element 
formulation. Significant bandwidth reduction can be 
obtained by the proper combination of the edge 
numbering scheme with the grid generator method. In 
fact Sc2 only gives good results with Qmg (quadtree 
based), for the other grid generators Sc1 is a better 
choice. The RCM reordering of the mesh followed by 
the Sc1 can improve the bandwidth reduction with all 
the grid generators except with Distmesh. The ordering 
of Distmesh is optimal with Sc1, thus no RCM 
ordering is required which make this grid generator a 
suitable choice for edge element formulation. 

We remark the point that a RCM ordering of the 
mesh followed by Sc2 does not provide bandwidth 
reduction. Moreover, RCM of the assembled matrices 
improves the bandwidth reduction reducing the storage 

requirements (reordering the assembled matrices 
leaves the eigenvalues invariant) with the downside of 
requiring the assemble of the matrices. As future work 
it is due to investigate the performance of the available 
eigensolvers in order to determine the most suitable 
one for the kind of generalized eigenproblems arising 
in electromagnetics. 

References 

1 Jianming J. (2002).The Finite Element Method in 
Electromagnetics (2nd

2 Volakis, J. L.,  Chatterjee, A., &  Kempel,  L. C. 
(1998). Finite Element Method for 
electromagnetics: to antennas, microwave circuits, 
and scattering applications. New York: IEEE 
Press. 

 ed.). New  York: John Wiley 
and Sons. 

3 Reddy, C.J., Deshpande, M.D., Cockrell, C. R., 
& Beck, F. B. (1998). Finite element method for 
eigenvalue problems in electromagnetics. (NASA 
Technical Paper 3485). Hampton, Virginia: NASA 
Center for AeroSpace Information  

4 Multiphysics Modeling and Simulation 
Software- COMSOL. (s.f.). Retrieved from   
http://www.comsol.com/  

5 Hang, S., & Gartner, K. (2005). Meshing 
piecewise linear complexes by constrained 
Delaunay tetrahedralizations. 14th International 
Meshing Roundtable, San Diego, CA, USA, 147–
164. 

6 Persson, P.O., & Strang, G. (2004). A 
simplemesh generator in matlab. SIAM Review, 
46(2), 329–345. 

7 Qmg 2.0 (s.f.) Retrieved from 
http://www.cs.cornell.edu/home/vavasis/qmg2.0/q
mg2_0_home.html 

8 CFD Flow Modeling Software & Solutions from 
Fluent (s.f.). Retrieved from  
http://www.fluent.com./  

9 Ansys Simulation Driven Product Development 
(s.f.). Retrieved from  http://www.ansys.com/ 

10 Hoole, S.R.H., Jayakumaran, S.,  & Yoganathan 
S. (1986).  Tetrahedrons, edges and nodes in 3d 
finite element meshes. Electronic Letters, 22 (14), 
735–737. 

11 Ortigoza, G. (2009). Triangular grid generators for 
the eigenvalue calculation with edge elements. 
Revista Mexicana de Física, 55 (2), 154-160. 

http://www.google.com.mx/url?sa=t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A%2F%2Fwww.comsol.com%2F&ei=j4BlTMDOJMWclgeD0OXVDg&usg=AFQjCNHBmCwOCoBpEN0PnOgSxGs-J0YI8g�
http://www.google.com.mx/url?sa=t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A%2F%2Fwww.comsol.com%2F&ei=j4BlTMDOJMWclgeD0OXVDg&usg=AFQjCNHBmCwOCoBpEN0PnOgSxGs-J0YI8g�


16   Gerardo Mario Ortigoza Capetillo 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16 
ISSN 1405-5546 

12 Shires D., & Mohan R. (2003). Optimization and 
performance of a FORTRAN 90 mpi-based 
unstructured code on large-scale parallel systems. 
The Journal of Supercomputing, 25 (2), 131–141.  

13 A survey of unstructured mesh generation 
technology retrieved from 
www.andrew.cmu.edu/user/sowen/survey/ 

14 Hansen, P. C. T., Ostromsky, A., Basermann, P., 
(1994). Weidner., Reordering of sparse matrices for 
parallel processing. APPARC PaA3a Technical 
report,  

15 Burgess D. A., & Giles, M. B.  (1997). 
Renumbering unstructured grids to improve 
performance of codes on hierarchical memory 
machines. Advances in Engineering Software, 28 
(3), 189–201. 

16 Kaveh, A. & Rahimi Bondarabady, H. A. (2002). 
An hybrid method for finite element ordering. 
Computers & Structures, 80 (3-4), 219-225. 

17 Paulino, G. H., Meneses, I.F., Gattass M., & 
Mukherjee, S. (1994). Node and element 
resequencing using the Laplacian of a finite 
element graph: Part I – General concepts and 
algorithm. International Journal for Numerical 
Methods in Engineering, 37(9), 1511–1530. 

18 Cuthill, E., & McKee, J.  (1969). Reducing the 
bandwidth of sparse symmetric matrices. ACM 
Annual Conference 24th national conference, New 
York, USA, 157–172. 

19 Lang, B. & Aachen, R. (2000). Direct solvers for 
symmetric eigenvalue problems. In Johannes 
Grotendorst (Ed.) Modern methods and algorithms 
of quantum chemistry proceedings, Jülich, 
Alemania, 3, 231–259. 

20 Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. & 
Van der Vorst, H. (2000). Templates for the 
Solution of Algebraic Eigenvalue Problems: A 
Practical Guide. Philadelphia: Society for 
Industrial and Applied Mathematics 

21 Hernandez, V., Román, J.E. Tomas, A., & Vidal, 
V. (2007). A survey of software for sparse 
eigenvalue problems. (SLEPc Technical Report 
STR-6). España: Universidad Politécnica de 
Valencia. 

22 Baglama, J., Calvetti, D., & Reichel, L. (2003). 
Algorithm 827: irbleigs: a matlab program for 
computing a few eigenpairs of a large sparse 
hermitian matrix. ACM transactions on 
mathematical software, 29 (3), 337–348,  

23 Lehoucq, R. B., Sorensen, D. C., & Yang, C. 
(1998). Arpack: user’s guide: Solution of large-
scale eigenvalue problems with implicit restarted 
arnoldi methods. Philadelphia : SIAM.  

24 Fokkema D., Sleijpen G., & Van der, H. (1998). 
Jacobi-Davidson style qr and qz algorithms for the 
reduction of matrix pencils. SIAM Journal on 
Scientific Computing, 20 (1), 94–125. 

25 Knyazev, A. (2001) Towards the optimal 
preconditioned eigensolver: locally conditioned 
conjugate gradient method. SIAM Journal of 
Scientific Computation, 23 (2), 517–541. 

26 Money J. H. & Ye Q. (2005). Algorithm 845: 
Eigifp: a matlab program for solving large 
symmetric generalized eigenvalue problems. ACM 
transactions on mathematical software, 31 (2), 
270–279. 

27 Kaufman L. (2000). Band reduction algorithms 
revisited. ACM Transactions on Mathematical 
Software, 26 (4), 551–567. 

 

 
 
Gerardo M. Ortigoza C. is a full time professor and 
researcher in Electrical and Mechanical Engineering 
at the Universidad de Veracruz, Veracruz. He got a 
Ph.D in Mathematics Applied to Industry in Minnesota 
University, USA. His research interest are in 
mathematical modelling and numerical simulation 
 
 


