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Local variables are fundamental to describe and implement computer algorithms and to specify some of their 
properties such as correctness, termination and performance. In this paper, we address the run-time assertion 
checking problem involving local variables in Java programs using Énfasis. Énfasis is a novel Aspect-Oriented 
Programming (AOP) language that introduces a join point model for crosscutting on local variables and path 
expressions to select sets of join points. The contribution of this work consists on showing that run-time assertion 
checking is more effective in Énfasis by its greater expressive power than in other approaches such as AspectJ and 
the interface specification language JML. The greater expressiveness of Énfasis assertions arises from the finer 
granularity of crosscutting, defined at the expression and statement level in contrast to the coarser granularity 
defined at the method invocation level of AspectJ. Énfasis approach characterizes not only by its non-invasiveness 
at the source code level, modularity, uniformity and generality are also improved in handling orthogonal 
crosscutting concerns. 
Keywords: Program assertion, formal grammars, local variable crosscutting, local variable pointcut, 
aspect-oriented programming. 
 
Resumen 
Las variables locales son fundamentales para describir e implementar algoritmos y para especificar algunas de sus 
propiedades tales como correctitud, terminación y desempeño. En este artículo se discute la verificación de 
aseveraciones a tiempo de ejecución en programas Java utilizando Énfasis. Énfasis es un lenguaje orientado a 
aspectos que incorpora un modelo de puntos de unión para aplicar corte sobre variables locales y expresiones de 
rutas para seleccionar conjuntos de puntos de unión. La contribución de este trabajo es mostrar que la verificación 
de aseveraciones a tiempo de ejecución es más efectiva en Énfasis por su gran poder expresivo respecto a otros 
enfoques como AspectJ y JML. La expresividad de las aseveraciones en Énfasis se debe a la granularidad fina de 
los cortes que se definen a nivel de expresiones y sentencias, a diferencia de otras granularidades más gruesas 
definidas a nivel de invocaciones de métodos como en AspectJ. El enfoque de Énfasis no solo destaca por su no 
invasividad del código fuente, modularidad, uniformidad y generalidad, sino también por el manejo ortogonal de 
incumbencias de corte. 
Palabras clave: Aserciones de programas, gramáticas formales, corte en variables locales, puntos de corte en 
variables locales, programación orientada a aspectos. 

 
1 Introduction 
 
Run-time enforcement of formal program specifications leads to the construction of more reliable software. A formal 
specification is an abstract description of the intended purpose and behavior of a software system. It is defined 
according to logical or mathematical models that capture unambiguously the most relevant system properties. In 
practice, formal specifications, called assertions, are conditions introduced at specific points in the program where 
they are expected to hold. After the notable success of the model checking techniques applied to the software 
verification problem, run-time enforcement has recently acquired more attention over other theorem-proving and 
compilation-time verification methods. The importance of assertions for the programming practice is manifold: (1) 
by enforcing the application of systematic and rigorous programming development methods, (2) by showing that the 
program implementation follows from the program specification, (3) by bringing in automated programming 
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assistants that help to check the program specifications, and (4) by producing an unambiguous, precise and high-
quality documentation.  

Assertion specifications were originated from the work of Floyd (1976) and Hoare (1969) and introduced in 
Object-Oriented Programming by Meyer (1991) as the design by contract metaphor. In this metaphor, the 
implementer and the user have agreed (through their code) a contract in which the user obliges himself in invoking 
the implementer services only if his request satisfy the contract (pre-)conditions, and in return the implementer will 
provide the service to the client as stipulated in the contract (post-)conditions. In providing his services, the 
implementer develops his behavior in a way that ensures that some guarantees (invariants) of reliability are always 
met. These principles ensure not only that at any moment the implementer’s code correctly attends the incoming 
requests, but also that his stable and well-behaved performance guarantees that the contract responsibilities will be 
always met. 

However and in spite of their importance, assertion verification is very often neglected and considered only 
when some program defects are found. From this perspective, program verification is considered as run-time 
assertion enforcement, a crosscutting concern not considered very often as part of the program design and 
implementation. Crosscutting concerns are not part of the core program functionality because they appear scattered 
and tangled across the entire system code. Modularizing crosscutting concerns then becomes fundamental to isolate 
the assertion from the program points in which they appear and from the condition implementation to be executed. 

Historically assertion checking has been approached in a variety of forms ranging in sophistication from simple 
tracing statements to program annotations, among others. Tracing statements give complete control to the 
programmer to retrieve information during the program execution. However they require modifying the source 
program for each concern, a code invasive strategy that leads to cumbersome versioning management problems. In 
contrast, program annotations are relatively easier to manage by pre-processing tools, but nowadays annotations still 
do not provide the means to inspect the program state with enough detail because they can be only applied at very 
restricted parts of the program text. 
 
1.1. Aspect-oriented programming 
Aspect-Oriented Programming (AOP) [Kiczales, 1997] is a new programming paradigm originated from the need to 
modularize non-invasive crosscutting behavior. AOP brings in new levels of modularity to separate design concerns 
to better the construction and maintainability of software systems. AOP focuses in a kind of modularization that is 
difficult to conceptualize through standard Object-Oriented Programming (OOP) languages and techniques. This 
kind of modularization generalizes the simple method invocation pattern of OOP to more complex patterns that 
enable the execution of reactive code when a specific pattern of runtime situations is detected [Cilia, et. al., 2003]. 
Among the more common situations are field access, method call and execution, and exception throwing. Many 
crosscutting concerns are associated to the occurrence of these situations.  

Behavioral pattern descriptions and aspectual behavior are grouped in aspects [Kiczales, 2001]. An aspect is a 
modular unit for implementing crosscutting concerns that consists of pointcut descriptors, advice definitions and 
member class introductions. Its organization is similar to a Java class containing fields, constructors and methods. A 
join point is a well-defined program segment that represents a crosscutting concern and upon which are implemented 
mechanisms to interleave the advice code during program execution. Among the more common join points are those 
for field access, constructors, method call and execution, and exception handling. A pointcut is an abstract 
description of a join point pattern that is observed during program execution. The pointcut specification detects those 
matching join points that satisfy the pointcut specification according to the run-time values of classes, objects, 
methods, fields, parameters, and local variables. An advice dynamically modifies the behavior of the class methods 
that it advices by crosscutting. An advice specification defines code intended to be executed when a matching join 
point is detected during and interleaved with the program execution. Execution of advice code must be ensured by an 
AOP system whenever a join point is encountered that match the pointcut specification for that advice. Interleaved 
execution of advice code with the program code is called aspect weaving. Aspect weaving can be approached 
statically (either at compile-time or load-time) and dynamically (at runtime) [Hilsdale and Hugunin, 2004; Nicoara 
and Alonso, 2005]. 
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There are three basic types of advice, according to their relative inter-leavings when they execute. When a 
matching join point is detected, the advice before is executed before the join point code is executed. If the join point 
refers to a method call, the advice is executed before the method starts executing. When a matching join point is 
detected, the advice after is executed after the join point code is executed. If the join point refers to a method call, the 
advice is executed immediately after the method terminates its execution. There are in turn two variants of after 
advice in relation to either its normal or abnormal termination. In the latter case, the advice code is executed only 
when the exception thrown is of the same type. Finally, when a matching join point is detected, the advice code is 
executed instead of the join point code. If the join point refers to a method call, the around advice may proceed to 
execute the original method code as part of the new behavior by calling to the proceed() method. An introduction 
can be used to add new fields, constructors or methods into classes and interfaces. An introduction changes the static 
type structure of the class or the interface. 

AspectJ can be considered as an aspect-oriented extension of Java implemented on it [Kiczales, et. al., 2001; 
Harbulot and Gurd, 2005]. AspectJ interleaves aspect code with the base code at compile-time. AspectJ supports 
both forms of crosscutting: static crosscutting that adds functionality to existing classes and dynamic crosscutting 
that provides additional functionality at the join points. In AspectJ, coarse-grained join points are supported but fine-
grained join points are only supported in method invocations. 
 
1.2. AOP and assertion checking 
Assertion checking can be approached from the AOP programming language perspective. It can be considered as a 
detection and reaction behavioral mechanism. Detection refers to identifying the joinpoints in the base code where 
the assertion is expected to hold and reaction to executing the assertion checking aspectual code. Detection and 
reaction mechanisms can vary from non-invasive to invasive code inserted in the base code. While non-invasive 
mechanisms are always preferred, non-invasive mechanisms at bytecode-level render highly inefficient due to the 
need of incessantly observing any change in the program state to detect the points of interest. Instead non-invasive 
source-level mechanisms can be used to retrieve and pass contextual information coming from the program points to 
the assertion code. 

For example, verifying that a sorting method produces an array with its elements arranged in ascending order is 
a crosscutting concern about the method correctness. Thus, instead of inserting the ascending order checking code at 
the end of every sorting method, it is possible to obtain the same effect if a call to a sorting method is detected, and 
then execute the assertion checking code, upon the completion of the method execution. In this work, we are 
interested not only in specifying assertions at the program points where they are expected to hold, but also in 
describing this aspectual behavior in a non-invasive manner, with no modification of the original source code. 

This strategy could be applied to the insertionSort() method of class SortingAndSearching shown 
in Figure 1. 
 

01 public class SortingAndSearching { 
02   public static void insertionSort(int[] a) { 
03     for (int i = 1; i < a.length; i++) { 
04       int j, v = a[i]; 
05       for (j = i-1; 0 <= j && v <= a[j]; j--) 
06         a[j+1] = a[j]; 
07       a[j+1] = v; 
08     } 
09   } 
10 ... 

Fig. 1. SortingAndSearching java class with method insertionSort() 
 

In that follows, we analyze this problem by weaving aspects in Énfasis [Juárez and Olmedo, 2008], a recent 
proposal of a non-invasive AOP language with fine-grain crosscutting that includes crosscutting on local variables. 
The joinpoint model of Énfasis describes the exact position of the joinpoint in the source program where the 
aspectual code is intended to be inserted no matter how deeply nested the joinpoint could be defined.  
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For the run-time assertion checking problem, the approach adopted in Énfasis is more effective by its finer 
granularity and greater expressive power than in other approaches like those adopted in AspectJ and in the interface 
specification language JML, as discussed next.  

The coarse crosscutting granularity of AspectJ precludes the precise placement of assertions before or after of 
any kind of statement. For example, termination condition of a for statement must be placed immediately after the 
statement to check that the condition became false upon the loop completion, but AspectJ coarse granularity is 
unable to describe this join point of interest. In contrast, the finer granularity model of Énfasis makes possible to 
define a joinpoint before or after any statement including for statements. Overcoming coarse granularity is 
important because assertions need to be defined arbitrarily depth in recursive compound statements. Furthermore, 
AspectJ neglects the importance of local variables in its joinpoint model, leaving out the possibility of expressing 
assertion conditions involving local variables which are the most common kind of assertions in program assertion 
verification. 

JML [Leavens et al., 1999] is an interface behavioral specification language (BISL) that contains a formal 
notation to introduce the DbC approach [Meyer, 1991] in Java. JML uses lightweight and heavyweight annotations 
to describe the expected behavior of the methods of a class. A BISL describes both the details of a module's interface 
with clients and its behavior from the client's point of view [Hoare, 1969]. By using a BISL, it is possible to formally 
specify both the behavior and the exact interface of Java program modules, which is an essential step towards their 
formal verification. As JML is introduced into the source program by annotations, it suffers from the same 
disadvantages, among annotation name conflicts, incomplete pass of information from the source text to the assertion 
tool, and difficulties in reading and maintaining unrelated annotations. Énfasis solve this problem by:  

• keeping encapsulated aspect name components,  
• giving the programmer complete control on the source program information, and  
• maintaining unrelated annotations separated from the source program and from each other.  

Being an assertion checking tool, JML outperforms Énfasis in its program verification capabilities. Nonetheless, 
by equipping Énfasis with appropriate language compilers and interpreters, automated theorem provers, model 
checkers, static program analyzers and other programming language tools, it may reproduce closer the outstanding 
JML results. 

However, there are a number of disadvantages that remains to be further solved in Énfasis too: 
• Decoupling assertions from base program reduces readability and programming tools are still required 

to deal with this problem 
• Dependencies on the lexical and syntactical structure of the base program and the Énfasis descriptions. 

This paper is organized as follows. In Section 2 the assertion checking problem is stated and analyzed in 
relation to the design decision of embedding assertions directly into source code. In Section 3 it is explained how 
assertions can be expressed as aspects. The programming model is presented in Section 4 and the crosscutting 
programming model in Section 5. In Section 6 the relationship between weaving mechanism and assertion 
verification is given. Related work and conclusions are shown in Section 7 and 8 respectively. 
 
2 The Run-Time Assertion Checking Problem 
 
Originally, Java did not provide native support for assertions until version 1.4 [Gosling, et. al., 2005]. However, 
embedding assertion directly into the program code may be inconvenient because changing the assertion condition 
may alter the program behavior. The assertion describes some program property that is satisfied at a specific point 
within the program text. In consequence, assertion checking requires specifying both the assertion condition and the 
point in the program text where it holds. In that follows, a number of solutions to this problem are presented, 
beginning with a program annotated with assertions in a tailored assertion language, and ending with the original 
source program along with the corresponding assertions placed separately in a descriptor program that includes 
linking information that relates the assertions to the points where they hold in the source program. 
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2.1. Assertion specification 
Design by contract (DbC) [Meyer, 1991] is a programming approach to design software components that must 
implement behavioral interface specifications (BISL). DbC assigns responsibilities to both sides of a method call 
interaction, the client’s caller-code and the implementer’s called-code, following a business contract metaphor. As 
explained before, the client’s code must guarantee that the pre-conditions specified in the interface hold before the 
method is called. In return the implementer’s code ensures that the corresponding post-conditions specified in the 
interface hold after the method call. The DbC is a refinement from the original concept of Hoare triple, where pre- 
and post-conditions provide a very precise description of both the implementer’s code and the client’s call. The 
Hoare triple for the insertionSort() method could be written as follows: 
 

{a != null && a.length > 1} 
insertionSort(int[] a) 

{A int k; 0 <= k && k < n-1 ==> a[k] <= a[k+1]} 
 

The Hoare triple affirms that if a client’s call to insertionSort(int[] a) provides a non-null array a as 
parameter with more than one element, the implementer’s code ensures that the elements of the array will be sorted 
in ascending order after the method terminates. The precondition {a != null && a.length > 1} and the 
postcondition {A int k; 0 <= k && k < n-1 ==> a[k] <= a[k+1]} are written in a tailored 
assertion specification language that extends Java with additional operators, connectives and quantifiers. An 
introduction to this language and to its semantics is given in section 4, but for now some notation and intuition will 
be sufficient to state the assertion checking problem. 

The fundamental concepts of pre- and post-conditions were introduced by Hoare (1969) based on the earlier 
work of Floyd (1967). Hoare introduced these concepts in the form a logical system (also known as Floyd-Hoare 
logic) to reason about the correctness of computer programs. The correctness of a program is asserted when it is 
correct with respect to the specification of its pre- and post-conditions. Pre- and post-conditions are related to a well-
formed program J in a Hoare triple }{}{ QJP . Partial correctness affirms that Hoare triple }{}{ QJP is true if pre-
condition P holds in a state σ where program J starts its execution, and assuming its termination, the program 
reaches a state σ ′  where post-condition Q holds. Total correctness is more stringent than partial correctness and 
requires in addition proving program termination. An invariant condition I holds before and after the execution of 
program J, occurring in both pre- and postconditions }{}{ IQJIP ∧∧ . A loop-invariant is a condition that holds 
through the successive iterations of an iterative statement. A deterministic program J always reaches exactly one 
state σ ′  for the same initial state σ . 

In Figure 2, assertions have been introduced in the source program in a form that closely follows the proposed 
by Hoare. The assertions are written as comments, surrounded by brackets and preceded by a label (beginning with 
A), in the program points where they are expected to hold. For example, A1 labels the method precondition, whereas 
A6 the postcondition. Intuitively, a label represents the location within the method code that marks a point of 
interest; its precise meaning for the model will be introduced in section 3. Notice, that there are other labels in Figure 
2, some of them beginning with G (getter/reader) and other with S (setter/writer) to designate the points of interest 
for local variables when they respectively appear in the left or in the right hand side of an assignment. For example, 
G1 and G4 are the points where local variable i is accessed for reading, whereas S6 and S7 are the points where 
element a[j+1] is accessed for writing (depending on the value of j). For reasons of readability not all labels were 
annotated. 

The assertions of Figure 2 describe method correctness as a crosscutting concern, upon which may be added 
some others concerns later on, among program termination and time-complexity estimation to name a few. However, 
for the sake of simplicity we restrict ourselves to partial correctness only, though the results and conclusions can be 
extended to other concerns in a similar way. Briefly, insertion sort requires a non-null array as input parameter with 
more than one element (line 2.a) and ensures that their elements will be sorted in ascending order upon its 
completion (line 8.a). The method splits the input array a in sorted and unsorted parts. The sorted part has elements 
with index ranging from 0 to i-1, whereas the unsorted part has elements with index ranging from i to n-1. 
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02  public static void insertionSort(int[] a) { 
02a   //A1: {a != null && a.length > 1} 
03    for (/*S1:*/int i = 1; /*G1:*/i < /*G2:*/a.length; /*S2:*/i++) { 
04      int j, /*S3:*/v = /*G3:*/a[/*G4:*/i]; 
04a     //A2: {A int k; 0 <= k && k < i ==> a[k] <= a[k+1]} 
05      for (/*S4:*/j = i-1; 0 <= j && v <= a[j]; /*S5:*/j--) 
06        /*S6:*/a[j+1] = a[j]; 
06a     //A3: {j == -1 ==> v < a[j+1]} 
06b     //A4: {0 <= j && j < i ==> a[j] <= v && v < a[j+1]} 
07      /*S7:*/a[j+1] = v; 
07a     //A5: {A int k; 0 <= k && k < i+1 ==> a[k] <= a[k+1]} 
08    } 
08a   //A6: {A int k; 0 <= k && k < n-1 ==> a[k] <= a[k+1]} 
09  } 

Fig. 2. Method insertionSort() with embedded assertions 
 

The sorted part satisfies the ascending order condition given by {A int k; 0 <= k && k < i ==> 
a[k] <= a[k+1]} (line 4a). This is actually a loop invariant that holds before (line 4a) and after (line 8a) of the 
outer loop body (from lines 4 to 8). The method reduces the unsorted part by removing its first element, and 
increases the sorted part by inserting the element at its correct position j. The position is scanned through the sorted 
part by the inner loop (lines 5 and 6). The insertion position occurs either at the beginning with v < a[j+1] if 
j == -1 (assertion at line 6a), or at any other position whenever a[j] <= v < a[j+1] if 0 <= j < i 
(assertion at line 6b), and in any case v == a[j] (after executing line 4). The invariant condition of insertion sort 
states that the sorted part remains ordered after inserting the element. The invariant condition holds because the 
greater elements are moved upwards, keeping their relative positions with each other, and then placing the element in 
the correct position with respect to its neighbors, either at the beginning {j == -1 ==> v < a[j+1]} (line 6a) 
or somewhere else {0 <= j && j < i ==> a[j] <= v && v < a[j+1]} (line 6b).  

Assertions as annotated comments are intended to better the understanding about the program behavior by the 
programmer. However, 

• Introducing comments is still a source code invasiveness practice in the sense that new assertions may 
affect program reuse and evolution. 

• Consistency between the source base program and the assertion specifications is difficult to maintain. 
• Numerous, diverse, long and complex assertions (not always needed) tends to obscure program 

readability. 
• Annotated comments are not code. 

Assertions should be implemented in the base programming language to produce a version that checks in run-
time the assertion specifications. 
 
2.2. Assertion checking 
The most common strategy for implementing assertions follows the property of producing no effect if the assertion is 
valid and of producing an abnormal program termination if the assertion is invalid. 
 

{P} -> skip if P holds 
{P} -> throw new Error("..."); if P fails 

 
The first property uses pseudo-statement skip to denote the statement that does nothing (in Java for most 

contexts it corresponds to the semicolon). Both properties can be implemented using if statements whose condition 
is the negation of the assertion and whose protected statement is, among possibly others, the throwing of an error. 
Exceptions to this rule are quantifications that are examined later on. 
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Implications are not part of the Java logical connectives but it can be implemented in terms of negation and 
disjunction, as shown in Table 1. Recall that Java connectives evaluate subexpressions from left to right by 
shortcutting, stopping the evaluation as soon as the result is determined. Therefore in order to produce consistent 
results, side-effects in assertion evaluation must be avoided. 

The simplest form of universal and existential quantification is also shown in Table 1. In this work, the 
quantified variables must be declared in a finite subset of an ordered domain, upon which are defined successor (and 
predecessor) functions that obtain the next element according to the order relation defined in the domain. Thus the 
schema provided in Table 1 can be easily extended to include variables ranging in enumerations and in any type of 
the Java collections (among lists, dictionaries, and maps). Java generic type system allows considering elements not 
only of predefined types but also of user-defined types, requiring only be finite in number. Quantification binds the 
quantified variable to all values ranging in the finite subset of the domain using the successor function, from the first 
to the last element, checking the validity of the assertion for each element. Universal quantification A fails if there is 
at least one element for which the assertion failed and succeeds otherwise. Existential quantification E succeeds if 
there is at least one element for which the assertion succeeds and fails otherwise. Other quantifiers like min, max, 
and sum, may be defined to obtain, respectively, the minimum, maximum and sum of all elements of an array, 
enumeration or collection. However, in our tailored assertion language we restrict to universal and existential 
quantification only. 

Quantification should be wisely used because it takes a linear time on the number of elements of the collection 
to evaluate it. In the insertionSort() example, testing the condition that a subarray is in ascending order may 
be prohibitive to evaluate if the assertion is placed inside the outer loop due to the quadratic time cost of evaluating 
all the assertions even if the input array is already ordered.  

 
Table 1. A simple implementation scheme for some basic assertions 

Assertion Implementation schema Description 
//{P} 

 
{ if (!P) throw new Error("..."); 
} 

If P holds, program 
continues after this 
point; otherwise, 
program aborts 

//{P ==> Q} { if (P && !Q) 
    throw new Error("..."); 
} 

If P holds, then Q holds 

//{A int x;  
a <= x && x < b 
==> C(x)} 

{ int x; 
  for (x = a; x < b && C(x); x++) 
    ;  
  if (a < b && x != b)  
    throw new Error("...");  
} 

C(x) holds for all integer 
x in non-empty interval 
[a,b) ( ba < ) such that 

bxba <∧≤  and also 
holds in any empty 
interval ( ba ≥ ) 

//{E int x; 
a <= x && x < b 
&& C(x)} 

{ int x; 
  for (x = a; x < b && C(x); x++) 
    ; 
  if (a >= b || x == b)  
    throw new Error("...");  
} 

C(x) holds for some 
integer x in non-empty 
interval [a,b) ( ba < )  
such that bxba <∧≤   

 
The implementation schema for the assertion language is summarized in Table 1. All assertion implementation 

schemas are translated into one or more Java statements, being the last one an if statement that throws an error 
when the assertion condition fails. For universally quantified assertions, a for statement makes quantified variable x 
to take all its values in interval bxxa <∧≤  , checking the condition for each value of x. If the quantified variable 
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reaches the greatest value 1−b  in the interval, then the assertion is true. A similar schema is used in existentially 
quantified assertions, though it differs in that the quantified variable must not exceed the greatest value in the 
interval. Note that for empty intervals, universally quantified assertions are true, whereas existentially quantified 
assertions are false. 

Following the implementation schema presented in Table 1, the new version of the insertionSort() 
method shown in Figure 3 replaces the assertion specification by the implementation code exactly at the same 
position of the program text. 

In this example, the class has been extended with a number of public boolean methods that encapsulates the 
implementation of assertions. Otherwise, the assertion code would be inserted line by line into the 
insertionSort() code, turning difficult to discern between the method code and the assertion code. Inserted 
methods pre_insertionSort(), post_insertionSort(), ascendingOrderCheck() and 
validPositionCheck() are implementations of the assertion specifications given in Figure 2. The relatively 
complex condition of the if statement in method validPositionCheck() could be simplified applying the 
equivalences of logical connectives, but it has been written just following the translation schema of Table 1. 
 

02  public static void insertionSort(int[] a) { 
02a   pre_insertionSort(a); 
03    for (int i = 1; i < a.length; i++) { 
04      int j, v = a[i]; 
05      for (j = i-1; 0 <= j && v <= a[j]; j--) 
06        a[j+1] = a[j]; 
06a     validPositionCheck(a,i,j,v); 
07      a[j+1] = v; 
07a     ascendingOrderCheck(a,i+1); 
08    } 
08a   post_insertionSort(a); 
09  } 
10  public static boolean pre_insertionSort(int[] a) { 
11    if (a == null && a.length > 1) 
12      throw new Error(“Null array or array with less than two elements”); 
13    return true; 
14  } 
15  public static boolean post_insertionSort(int[] a) { 
16    return ascendingOrderCheck(a,a.length); 
17  } 
18  public static boolean ascendingOrderCheck(int[] a, int n) { 
19    //{A int k; 0 <= k && k < n-1 ==> a[k] <= a[k+1]} 
20    int i; 
21    for (i = 0; i < n-1 && a[i] <= a[i+1]; i++) 
22      ; 
23    if (0 <= n-1 && i != n-1) 
24      throw new Error("Not in ascending order"); 
25    return true; 
26  } 
27  public static boolean validPositionCheck(int[] a, int i, int j, int v) { 
28    //{j == -1 ==> v < a[j+1]} 
29    //{0 <= j && j < i ==> a[j] <= v && v < a[j+1]} 
30    if (!((!(j+1 == 0) || v < a[j+1]) || !(0 <= j && j < i) || v < a[j+1])) 
31      throw new Error("Not a valid position "+j+" to insert "+v); 
32    return true; 
33  } 

Fig. 3. Implementation of assertions by Java boolean methods and its use 
 

These methods definitions and invocations show a straightforward manner of implementing the assertion 
checking code. The implementation illustrates the approach adopted in this work of inserting the externally defined 
assertion code into specific points within the base method code. These specific points of interest, marked by the 
labels shown in Figure 2, still need to be externally specified without modifying the base code if non-intrusiveness is 
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expected. Both specifications, the assertion code and its insertion position, are given in a separated descriptor 
program that transforms the original base program into a run-time assertion checked program. Figure 3 shows the 
resulting method code after applying our program transformation technique. 

Among the advantages of this approach: 
• Modularity, uniformity and generality are improved in handling orthogonal crosscutting concerns. 
• For many simple assertions, the corresponding implementations are relatively easy to build. 
• Programming tools can be used to generate the assertion checking code from the assertion specification. 

However, there are a number of disadvantages that remains in this approach too: 
• Correct implementations are generally difficult to meet and the implementation may still need to be 

verified. 
• Value-passing parameter mechanism of Java is in general not adequate for implementing assertions as 

boolean methods; instead, macro expansion-passing mechanism is more appropriate (including hygienic 
macro handling) 

• Single returned value in methods is insufficient to handle the multiple assignments of values to 
variables. 

Though these problems are not approached in this work, our proposal still offers the advantages discussed 
before over previous works. 
 
3 Assertions as Aspects 
 
Though AspectJ [Kickzales, et. Al., 2001; Hilsdale and Hugunin, 2004] is widely agreed as the most representative 
and influential AOP language developed so far, we will no discuss it here. A brief comparison with Énfasis is 
discussed in section 7 on the related work. 
 
3.1. Aspects as Assertions in Énfasis 
Énfasis is a novel AOP language that contributes in several respects to approach the run-time assertion checking 
problem in: (1) avoiding invasiveness at source code level, (2) defining a join point model for fine crosscutting 
granularity, (3) providing a path expression language to describe the pointcuts of interest, and (4) introducing a join 
point model for local variables. 

Fine crosscutting granularity is defined not only for method invocations but also for statements and expressions 
[Rho, et. al., 2006; Eaddy and Aho, 2006]. Run-time assertion checking requires getting access to all the local 
variables that appear in the assertion. However, as assertions appear scattered through the method body, in order to 
deal with this crosscutting concern it is necessary to identify the join points of interest by providing a pointcut 
description of them. Énfasis determines a basic set of join points for a local variable by specifying a path in the 
abstract syntax tree of the method body to the method fragment in which the variable exists along with some of the 
assertions that use it. A path expression describes the traversal in the abstract syntax tree required to reach a set of 
join points of interest for a local variable within the method code. A path expression consists of a pattern and a path. 
A pattern selects the package, the class, and the method by means of simple regular expressions. A path selects the 
method fragment where the local variable occurs. A pointcut descriptor is a complete path expression. 

For example in Figure 3, denoting each join point by the labels of Figure 2, as shown by the excerpt given next:   
 

02  public static void insertionSort(int[] a) { 
02a   //A1: {a != null && a.length > 1} 
03    for (/*S1:*/int i = 1; /*G1:*/i < /*G2:*/a.length; /*S2:*/i++) { 
04      int j, /*S3:*/v = /*G3:*/a[/*G4:*/i]; 
04a     //A2: {A int k; 0 <= k && k < i ==> a[k] <= a[k+1]} 
05      for (/*S4:*/j = i-1; 0 <= j && v <= a[j]; /*S5:*/j--) 
06        /*S6:*/a[j+1] = a[j]; 
06a     //A3: {j == -1 ==> v < a[j+1]} 
06b     //A4: {0 <= j && j < i ==> a[j] <= v && v < a[j+1]} 
07      /*S7:*/a[j+1] = v; 
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the path expression that contains only a pattern: 
 
public static int SearchingAndSorting.insertionSort(int[] a)/*::setLocal(int *); 
 
denotes the set {S1,S2,...,S7} of all join points (for any variable of type int) that appear anywhere in the 
method body of insertionSort() method of class SearchingAndSorting, whereas the path expression 
that contains both a pattern and a path: 
 
public static int SearchingAndSorting.insertionSort(int[] a) 
/for/do/for/do/assignment::setLocal(int i, a[]); 
 

describes the set {S6,S7} of all join points where local integer variables i and a[], appear in the left-hand side of 
the first assignment occurring in the body of the first inner for loop which in turn occurs in the body of the first 
outer for loop. Finally, the path expression: 
 
public static int SearchingAndSorting.insertionSort(int[] a) 
/for/condition::getLocal(int i, j, v, a[]); 
 

describes the set {G1,G2} of join points appearing in the condition of the first outer for loop. 
The matching join points are combined with a minimal set of composition operations defined on sets of join 

points like complement, union, and intersection. This model provides a rich pointcut description language to query 
for join points with fine granularity upon which can be defined advising code. In this respect, neither AspectJ-like 
languages nor Prolog-like query based languages join point query languages support this kind of crosscutting. 

Assertions, as advice code, are inserted in the set of join points determined by the pointcut descriptor. As 
mentioned before, they can be inserted instead, before or after the instruction where the join point is located. Thus, 
for example, given the pointcut insert: 
 
public static int SearchingAndSorting.insertionSort(int[] a) 
/for/do/assignment::setLocal(int i, j, v, a[]); 
 

that describes the set {S7} of join points that assign a value to element a[j+1]. By applying advice before and 
after:  
 
before({S7}, validPositionCheck(a,i,j,v);); 
after({S7}, ascendingOrderCheck(a,i+1);); 
 
respectively, the following program fragment is obtained:  
 
06a           validPositionCheck(a,i,j,v); 
07    /*S7:*/a[j+1] = v; 
07a           ascendingOrderCheck(a,i+1); 
 
as shown in Figure 2. 

The Correctness class that implements an aspect by extending the Aspect class is shown in Figure 3. This 
program is compiled separately from the SearchingAndSorting class and executed only after this class has 
been compiled into bytecodes. Énfasis weaves the assertions as advice code in to the base code of 
insertionSort() method. The result is the asserted version of the class shown in Figure 2. 

Crosscutting on local variables in Énfasis introduces a notation to describe local variable pointcuts with name, 
type, occurrence number within a program fragment, and accessing instruction for reading or writing. Though 
refactoring on fields has been considered as an implementation option for local variable crosscutting, this option is 
unacceptable in recursive definitions because memory allocation code for fields is not reentrant. Besides, it leads to 
inefficient implementations both in terms of time and memory space. Local variables have a number of advantages 
over fields: 1) well-defined lexicographic scoping rules, 2) efficient memory handling through stack allocation, 3) 
optimized memory instructions, 4) well-suited for recursive definitions, and 5) improved expressiveness for assertion 
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descriptions. This advantages leads to a considerable increase in both descriptive power and in efficiency of the 
generated code by avoiding refactoring. 

 
01 public class Correctness extends Aspect { 
02 public static void main(){ 
03   String method = "public static int SearchingAndSorting.insertionSort(int[]a)"; 
04   Pointcut body = new Pointcut(method+"/*;"); 
05   Advice precondition = new Advice("pre_insertionSort(a);"); 
06   Advice postcondition = new Advice("post_insertionSort(a);"); 
07   Pointcut insert = new Pointcut(method+"/for/do/assignment::getLocal(int i, j, v, 
     a[]);"); 
08   Advice position_check = new Advice("validPositionCheck(a,i,j,v);"); 
09   Advice ordering_check = new Advice("ascendingOrderCheck(a,i+1);"); 
10   Weaver w = new Weaver(); 
11   w.add(new Before(body, precondition)); 
12   w.add(new After(body, postcondition)); 
13   w.add(new Before(insert, position_check)); 
14   w.add(new After(insert, ordering_check)); 
15   w.weave(); 
16 }... 

Fig. 4. Assertions in Énfasis. The Correctness aspect written in Énfasis for the SearchingAndSorting class 
 

Nonetheless, the asserted version of the program still needs to be checked at run-time. Assuming that the 
programmer guarantees the correctness of the assertion code, it still remains to show that the inserted code correctly 
checks the original program. In order to do so, in the next section we introduce the structured operational semantics 
upon a Java subset that is interesting enough to test our approach. We will prove that a partially correct method if 
terminates, it is correct with respect to its assertions; otherwise, it will terminate by throwing an error. 
 
4 Base Programming Model 
 
In the remaining part of this section, the notion of assertion evaluation is formalized in order to decide on the validity 
of assertions. The abstract syntax of deterministic programs is generated from the following grammar rules of the 
Java subset considered here: 
 

),...,(|}{||)(|)(|][|||:: 21212121 EEmJJJJB JJBEEaExJ whileelseif;;skiperror ===  
 

A program fragment or simply a program J consists of statements among assignments on simple variables x and 
array variables a, selective instructions, iterative instructions, sequential composition, grouping of instructions 
enclosed by brackets called block, and method calls. Method declaration is not considered because this work focuses 
in method definition. Class declaration is not included because class invariants are not considered here. 

Arithmetic expressions E consist of integer constants, integer variables, and compound expressions formed by 
composition of arithmetic expressions with usual arithmetic operators, according to the following abstract syntax: 
 

|||][:: 2121 EEEEEa|x|c|E ×+⊥=
  

where E (along with its decorations) denotes the usual arithmetic expressions including constants, variables, 
elements of array variables, and compound arithmetic expressions. Boolean expressions B consist of the boolean 
constants, simple boolean expressions formed by the comparison of arithmetic expressions with the usual relational 
operators of equality and inequality and by compound boolean expressions formed by the composition of boolean 
expressions with the logical connectives of negation, conjunction, and disjunction, according to the following 
abstract syntax: 

21212121 |||||:: BBBBBEEEE|||B ||&&!falsetrue <=⊥=
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The assertion language is defined according to the following abstract syntax: 
AxAx|BA|BA .|.:: intEintA==>=

  

Assertions use either program variables or logical variables and include all boolean expressions written using 
the common relational operators. Logical variables, known as model variables, are not declared in the program but 
are required in the assertion language to improve its expressiveness. All quantified expressions are closed, i.e. there 
are no unbound free logical variables. 
A value of type T is an element in carrier set TD  of T. An array of type T is a finite partial function TD→N  from 
natural numbers to values ranking on carrier set TD  of T. For example, integer type int denotes the set intD  of 
integers ...},2,1,0{ ±±  that can be represented by the JVM, whereas Boolean type boolean denotes the set 

booleanD  of logical constants },{ falsetrue .  
A program state is a partial function TT DV → + TT DA →→ N  defined on variable names TV  to values on TD  

and array variable names TA  to arrays on TD→N . The }|{)( fexxfdom ∈=   of partial function f is the set of 
values where the function is defined. The values of the array are indexed and the index ranks in )(adom , i.e. from 0 
to 1. −lengtha  where lengtha.  denotes the number of elements in array a. As an example, program state 

}}62,41,20{,1,0{  ayx=σ  comprises variable x bound to value 8, variable y bound to value 1, 
and array variable a bound to array }62,41,20{   of length 3. The value )(xσ  of variable x in state σ  is 
either defined or undefined. The value ex =)(σ  of variable x is defined if exists some value e of the same type 
bound to x in σ  (i.e. σ∈ex  ), and undefined, written ⊥=)(xσ , otherwise. The value of element i of array a, 
written ][ia , is defined ))()((])[( iaia σσσ =  if i is in rank (i.e. in )(adom ). The values of x and a, are respectively 

0)( =xσ , }62,41,10{)( =aσ  and =])[( xaσ =))()(( xa σσ 2)0}(62,41,20{ = . A change in 
program state }{ ex σ  results in a new state after updating the previous one by assigning new value e to variable x 
of the same type such that exex =)})({( σ . Note that a valuation of a variable always takes its last assigned value 
(i.e. exexex ′=′ )})(}{{( σ ) and also that a valuation looks for the variable definition in the program state (i.e. 

exeyex =′ )})(}{{( σ ). 
The value (evaluation) of arithmetic and Boolean expressions is defined by induction on the structure of the 

abstract syntax of expressions: 
σ⊥  = ⊥  
σc  = c  
σx  = e  if ex =)(σ  
σx  = ⊥  if )(σdomx∉  
σ][Ea  = )()( aEaσ  
σ][Ea  = ⊥  if )(σdoma∉  

     or if )(σdoma∈  and )(adomE ∉σ  
σ)( 21 EE +  = σσ 21 EE +  
σ)( 21 EE ×  = σσ 21 EE ×  
σ)( 21 EE =  = σσ 21 EE =  
σ)( 21 EE <  = σσ 21 EE <  
σ)( B!  = σ)( B¬  
σ)( 21 BB &&  = σσ 21 BB <  
σ)( 21 BB ||  = σσ 21 BB ∨  



Run-Time Assertion Checking with Énfasis   285 

Computación y Sistemas Vol. 13 No. 3, 2010, pp 273-294 
ISSN 1405-5546 

The valuation of an expression is a compositional partial function whose value is obtained from the application 
of the denotation of the operator (relational or connective) to the values of the corresponding operands 
(subexpressions). The value of an expression may be undefined if there is an undefined variable occurring in the 
expression. In case of an element of an array, the value is undefined if the index is out of rank. Other operators may 
lead to undefined valuations as in the case of division by zero. The valuation of any unary or binary operation is 
undefined if one of its operands is undefined. 

The validity relation A=|σ  of assertion A in state σ  means that A holds in σ  and is defined inductively on the 
structure of the abstract syntax of assertions.  
 

false=⊥ |   
A=|σ  true=σA  

21| AA ==>=σ  σσ 21 AA ⇒  
Ax.| intA=σ  Anxn =∈∀ |}{. σN  
Ax.| intE=σ  Anxn =∈∃ |}{. σN  

 
Inconsistent state ⊥  is an abnormal state that is reached by a program that does not terminate, making invalid 

any assertion if the state could be reached. Evaluation of A is well-defined when all variables in σ  are defined. 
Assertion A is valid for state σ  if value of A is true. Implication of assertions holds if the implication of the 
corresponding assertions holds. Quantification over integer variables has the usual interpretation. Universal 
quantification of an assertion is valid if the assertion is valid for all integer values that the quantified variable can 
take, whereas existential quantification is valid if there is some integer value that the quantified variable can take for 
which the assertion is valid. 

Assertion evaluation can be defined using the structural operational semantics [Reynolds, 1998] by defining a 
transition relation over pairs of program constructs and program states, as follows:  
 

σσ ′′,, JJ   

σσ ′,J  
meaning that whenever program J starts executing at state σ , the program execution leads to either the program 
fragment J ¢ that continues executing afterwards at state σ′  or the program termination at state σ′ . 
 

σσ ,skip  

σσ ,, errorerror   

⊥σ,error  

{ }σσσ
σ

ExEx
E

,;=
⊥≠  

σσ
σ

,, error; Ex
E

=
⊥=  

{ }σσσσ
σσ

2121

1
)(,][

,
EEaEEa

EE
;=

⊥≠  
σσ

σσ
,,][ 21

1
error; EEa

EE
=

⊥=∨=⊥  

σσ
σ

,,)( 121 JJJB
B

elseif
true=  

σσ
σ

,,)( 221 JJJB
B

elseif
false=  

σσ
σ

,,)( 21 errorelseif JJB
B ⊥=  
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σσ
σ

,)(,)( JBJJB
B

whilewhile
true



=  

σσ
σ

,,)( skipwhile
false
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B =  

σσ
σ

,,)( errorwhile JB
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∉  
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∈  
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( ) { }σσσσ nnnn
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ExExxxJEEm
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 ,...,,,,,...

}){...,,(
1111

1
;unbind;;unbind

void  

 
Null program skip does nothing, maintaining program state unchanged. Error program error leads to a non 

terminating configuration, and if it could terminate, it would be in an inconsistent state (i.e. satisfying false). 
Assignment to simple variable ;Ex =  evaluates expression E at the right-hand side and binds this value to variable x 
at the left-hand side, updating program state to { }σσ Ex  . Similarly assignment to an element of an array variable 

;21][ EEa =  evaluates expression 2E  at the right-hand side and binds this value to element of array a given by 
evaluating expression 1E . In this case, updating program state consists on updating array )(aσ  at element given by 

)( 1Eσ . Selective program 21)( JJB elseif  does not change program state, assuming that no side-effects arise 
when evaluating condition B. Program 1J  is selected if condition B is valid at s , otherwise 2J  is selected. 

Iterative program JB)(while  can be rewritten by unwinding to { } skip;elsewhileif JBJB )()( . It 
does not change program state, assuming that no side-effects are present when evaluating condition B. Iterative 
program unwinds program J while condition B is valid at current state; otherwise it behaves like skip. Sequence of 
programs 1J 2J  starts executing 1J  and upon its completion continues executing 2J . The execution of a block 
program behaves like the execution of its enclosed statement. Variable declaration, including array variable, 
introduces a new binding into the program state if the variable has not been declared before; otherwise it causes an 
error. Variable scope is provided by unbinding the variables declared at the end of its block by means of special 
statement unbind. Finally, method invocation behaves like its defining block at the same state but extended with 
the parameters passed. 
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Null program skip has not a unique notation in Java and depends on the context in which it occurs: it may be 
represented by a single semicolon (;) but it may also appear as an empty instruction, as for example, in the 
initialization and re-initialization parts of the for statement. Furthermore, there is a number of programming 
features not included in the Java subset that can still be captured by this notation and semantics. The family of 
increment and decrement operators can be translated to simple assignment statements with additions and 
substractions, respectively. Simple if statement JB)(if  can be represented as skipelseif JB)( , representing 
skip as a semicolon. The iterative for statement JEEE )( 321 ;;for  can be represented as { }321 )( EJEE while . 
Throwing errors is considered as an abnormal program termination and behaves like error which leads to 
abnormal program termination. Method declaration and definition is not included in the transition relation because 
this work focuses on the body of the method.  

The meaning of partial correctness of a Hoare triple can now be formally defined as follows: 
 

}{}{| QJP=σ  
if and only if 

( ) QPJ =′⇒=∧′′∀∀ ||,.. σσσσσσ   
 

Hoare triple }{}{ QJP  is valid at state σ  if and only if program J starts executing at σ  where assertion P is 
valid, and then the program terminates at state σ′ where assertion Q is valid.  

Hoare triples can be deduced from the inference rules of the Floyd-Hoare logic. However, because this work is 
focused on assertion runtime checking, this logic does not need to be elaborated here. Automated proving of program 
correctness in the Floyd-Hoare requires the use of sophisticated automated reasoning tools assisted with effective 
theorem proving strategies. Nonetheless, some proof assistants can be adapted to read both the program and the 
assertions specified in Énfasis. Besides, model checking methods can also be adapted, but it requires an entire 
research by itself. 
 
5 Crosscutting Programming Model 
 
The programming model defines a join point for a local variable as the address of the instruction that get access to 
the variable. From this definition, a mechanism can be devised to retrieve run-time information of the local variable 
such as its name, type, location (slot) and accessing instruction.  

This notion of join point also provides an operational interpretation based on the mapping between a pointcut 
descriptor and the join points (instruction addresses) that it specifies. 

In this model, high level description of local variables pointcuts is achieved by introducing a source program 
notation for join points and by binding each join point to its corresponding accessing instruction address. The 
binding can be produced by visiting in post-order the abstract syntax tree (AST) of the source program and by 
visiting the bytecode program in a synchronized manner. The synchronization consists in pairing a program fragment 
(as a subtree in the AST) with the corresponding segment of the byte code generated by the compiler.  

Binding join point labels to instruction addresses helps to maintain a high level perspective for the pointcut 
descriptor. Énfasis introduces a language for pointcut descriptors to recognize patterns of join points detected at run-
time. The language incorporates some novel features like path and filter expressions to better the resolution in the 
join point selection mechanisms. 
 
5.1. Pointcut Descriptor Syntax 
The abstract syntax of the Java subset includes only a minimal extension that can be hidden during lexicographic 
analysis. The extension consists on decorating each local variable with a unique label that fix the position of a join 
point for the variable. 
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J ::= |:][ JN  

E ::= ||][:][|:][| 21 EEEaNxNc +  

B ::= |||| 2121 BBEE &&falsetrue <  

V ::= ][][)]([][ NNLFPH #@::/  

H ::= ])([LQT  

M ::= ])([AQ  

T ::= |||||[] floatintbytebooleanT  

L ::= 21 ,|| LLxTT  

A ::= 21 ,| AAE  

P ::= ||| KPK /*  

K ::= SCnC ||][  

C ::= |||| callwhileifassign  

S ::= |||| doelsethencond  

F ::= setLgetLhasL ||  

D ::= 2121 ||| DDDDDV !!&&!  

 
in the above grammar rules, x ranks over simple variable names, a ranks over array variable names, c and n ranks 
over the integer and natural numbers respectively, and N ranks over sets of ordered natural numbers. Syntactic 
category M describes a restricted form of method declaration comprising only the method name, type and parameter 
list. By simplicity types are restricted to either int or int[]. Program statements are as usual except that variables 
are possibly labeled. Thus, labels appear in the left-hand side of assignments an in any part of a program in which 
(arithmetic or boolean) expressions may occur. However, expressions that are not allowed in this version of 
Énfasis are those obtained from the increment and decrement operators due to their difficult side-effect semantics. In 
that follows, syntactical parenthesis ]][[ P  denote the ordered set of joint points in program fragment P (represented 
by its abstract syntax tree). 
 
5.2. Pointcut Descriptor Semantics 
Path expression is a novel feature introduced in Énfasis to address a finer granularity in pointcut descriptors. A path 
expression describes the sequence of subtree selections on an AST. Syntactic category P above describes the 
structure of a path as a sequence of constructors and selectors. A constructor in C corresponds to a symbolic name 
for each Java statement. A constructor can be followed by a skip index enclosed in brackets C[i] intended to resume 
the traversing of the AST at the i-th sibling constructor C if any; otherwise it has no effect. A selector in S indicates 
the part of the statement to be chosen next. Thus, in any given level of the AST (i.e. a block), a constructor skips all 
subtrees whose root does not correspond to the same constructor. If a skip index is included in a constructor, then it 
also skips the number of subtrees rooted with the same constructor. The subtree selection process begins with the 
AST representing the entire code of a given method. For example, the path expression 
SortAndSearch.insertionSort(int[] a, int n)/while/do states that the first while statement 
should be selected and then its do part. By unfolding the method definition of search() for the method body, the 
subtree selection process can begin. The meaning of path expressions is given by the following equations. 
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]][[ M  = ]][[ J  if }{JM is declared in class 

PJ /*/]][[  = ]][[ J  

PExL /assign/; ]]:[[ =  = }{L  

PJJB /if/cond/elseif ]])([[ 21  = ]][[ B  

PJJB /if/then/elseif ]])([[ 21  = PJ /]][[ 1  

PJJB /if/else/elseif ]])([[ 21  = PJ /]][[ 2  

PJB d//while/conwhile ]])([[  = ]][[ B  

PJB /while/do/while ]])([[  = PJ /]][[  

]0[C  = C  

PiCJJ // ][]][[ 21  = PiCJ // ][]][[ 2  if CJcons ≠)( 1  

PiCJJ // ][]][[ 21  = PiCJ // ]1[]][[ 2 −  if 0)( 1 >∧= iCJcons  

PCJJ // ]0[]][[ 21  = PCJ //]][[ 1  if CJcons =)( 1  

 
where intrinsic function ()cons  returns the name of the constructor placed at the root of the given abstract syntax 
subtree. 

Filter expressions select only the join points that correspond to the local variable given and also for the kind of 
accessing instruction (for reading or writing). Syntactic structure of filters is given by category F and used in the 
context of category V of the abstract syntax. The meaning of a filter expression is given by the following equations. 
 

)(]][[ xTJ hasL::  = )()(]][[ xTxTJ getLsetL:: ∪  
)(]]:[[ xTExL setL::;=  = ∅= elsethenif }{Lxv  
)(]]:[[ xTExL getL::;=  = )(]][[ xTE getL::  
)(]][[ xTc getL::  = ∅  
)(]]:[[ xTxL getL::  = ∅= elsethenif }{Lxv  
)(]][[ 21 xTEE getL::+  = )(]][[)(]][[ 21 xTExTE getL::getL:: ∪  
)(]][[ 21 xTJJ xL::  = )(]][[)(]][[ 21 xTJxTJ xL::xL:: ∪  
)(]])([[ 21 xTJJB xL::elseif  = )(]][[)(]][[)(]][[ 21 xTJxTJxTB xL::xL::xL:: ∪∪  
)(]])([[ xTJB xL::while  = )(]][[)(]][[ xTJxTB xL::xL:: ∪  

 
where xL stands for either setLocal or getLocal. 
 

Selecting specific occurrences of a set of join points is a very useful operation that avoids having to decompose 
arithmetic and boolean expressions in all their fragments as it was done for statements. The programmer does not 
need to analyze the AST of an expression and only needs to count the number of occurrence of interest, following the 
order in that they appear in the source program. This approach considerably simplifies the notation of pointcut 
descriptors, avoiding verbose and unreadable path expressions. 

The occurrence number selector @ and the line number selector # are defined by the set comprehensions: 
 

NJ @]][[  = { }NiJjij ∈∧∈|!!  
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NJ #]][[  = ( ) Nl
lOccsAtLineJ

∈
)(]][[ @  

 
where notation j!!i takes element i from ordered set j. The occurrence number selector @ collects the set of all join 
points from the ordered set ]][[ J occurring at the positions given by set N. The line number selector # firstly collects 
all the variables occurring in each line l of set N, by using the OccsAtLine() function, and then applies the occurrence 
number selector. 

From the definition of join point also arise a natural definition of pointcut descriptor composition. Composition 
rules are given by category D in the grammar. Basic logic connectives like conjunction, disjunction and negation 
correspond to the basic operations of intersection, union and complement on ordered sets of join points. Complement 
of a set is obtained with respect to the complete set of join points in a method. 
 

]][[]][[ 21 DD &&  = ]][[]][[ 21 DD ∩  
]][[]][[ 21 DD ||  = ]][[]][[ 21 DD ∪  
]][[ D!  = ]][[\]][[ DM  

 
These operations provide the means to compose complex pointcut descriptors from simpler ones. 

 
5.3 Advice Semantics 
The set of join points, once defined, identify the points in the source program where the aspectual code will be 
inserted. The only two basic advice mechanisms considered here are defined as: 
 

),:( AJLbefore  = { }JLA :  
),:( AJLafter  = { }AJL :  

 
where notation L: J denotes source instruction J labeled with join point location L, and aspectual code A. Each advice 
structure introduces a block to group both the source and the aspectual code in order to extend the scope in which the 
former originally appeared. It is assumed that no free local variables are introduced by the advice code to avoid the 
name capturing problem. Besides, if any local variable is declared, its scope is lexically restricted to the scope of the 
advice as it often occurs in control variables of for loops. In case of assertions, the advice code must not cause any 
side-effect, ensuring that the program state is maintained with no change.  
 
6 Proving Program Correctness in Énfasis 
 
In this section, we show that weaving aspects in Énfasis for the assertion verification problem produces a 
semantically equivalent program with assertion handling.  
ASSUMPTION. Assertion implementation does not modify program behavior if assertion holds; otherwise, it throws 
an error. 
 

1. σσ ],][[ PI  if P=|σ  
2. σσ ,],][[ errorPI  if P¬=|σ  
 
Proposition 1 establishes that Énfasis does not change original program behavior if assertions are considered 

special instructions with no effect (like comments). 
PROPOSITION 1. Given Hoare triple }{:}{ QJLP  and p is the path to join point label L of J, weaving advices 

),( PJp/before  and ),( QJp/after  into the source program correctly generates the Hoare triple. 
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PROOF. The proposition follows immediately from the definition of advices before and after when instruction J 
is at the top level in the block in which the instruction appears. However, in case of that J is not in a block but the 
sole instruction, then it must be changed by semantically equivalent block instruction {J}, and then proceed as 
before. QED 

Proposition 2 is similar to the previous one except by the fact that assertions are correctly implemented by 
aspectual code. 
PROPOSITION 2. Given ]][[ PI  and ]][[ QI  correct implementations of precondition P and postcondition Q of :L J , 
and p the path to label L, weaving advices ])][[,( PIJp/before  and ])][[,( QIJp/after  into the source program 
produces instruction ]}][[:]][[{ QIJLPI  that correctly check the assertions for J. 
PROOF. From the previous proof, advices before and after interlace a correctly generated Hoare triple. Then it 
remains to show that sequential instruction ]}][[:]][[{ QIJLPI  behaves like :L J  only if precondition P holds; 
otherwise, the behavior departs from the original one by throwing an error. Therefore, we want to show that: 
 

1. σσ ′]},][[:]][[{ QIJLPI  if σσ ′,J , σσ ],][[ PI  and σσ ′′ ],][[ QI , and 
2. σσ ,]},][[:]][[{ errorQIJLPI  if σσ ,],][[ errorPI  

For case 1, from the operational semantics of the base language: 
1.1 σσ ],][[:]][[]},][[:]][[{ QIJLPIQIJLPI   by the block rule 
1.2 σσ ],][[:],][[:]][[ QIJLQIJLPI 

 
by assumption σσ ],][[ PI and by sequential composition 

1.3 σσσ ′= ],][[],][[],][[: QIQIJQIJL   by assumption σσ ′,J and by sequential composition 
1.4 σσ ′′ ],][[ QI  by assumption 

For case 2, the conclusion follows immediately from sequential composition if the precondition throws an error: 
2.1 σσ ,]},][[:]][[{ errorQIJLPI  by σσ ,],][[ errorPI  and by sequential composition 

 
By introducing error throwing in assertion verification, the program behavior is changed to avoid either 

returning an arbitrary value from a computation that does not produce a correct one or modifying (corrupting) 
application files, or even crashing the system. 
Advices before and after have been considered only because they provide the required properties to implement pre- 
and postconditions. Semantic descriptions of other types of advice mechanism (i.e. around, cflow, etc.) have been not 
considered here. 
 
7 Related Work 
 
Different researches have noted that a join point model with support for local variable crosscutting is necessary. For 
instance, Usui and Chiba (2005) present Bugdel, a specialized tool for debugging based on aspect-orientation. They 
extend thisJoinPoint variable with specific information about liner numbers and local variables visible at the join 
point. In [Rho, et. al., 2006] the authors explore a minimal language design based on fine-grained pointcuts to 
express structures of the base language through logic-meta variables. This approach is able to express new kind of 
pointcuts like setL() and getL() for local variables. However, with this approach is possible to get substitutions 
of expressions where sentences are expected and vice-versa. Each join point model extensions address different 
approaches to solve a particular problem in regard to local variables. Generalizing local variable crosscutting on 
other application areas may require a better design as it was attempted in Énfasis.  

Despite its expressive power, pointcut expressions in this approach tend to be very lengthy and unreadable when 
join points of interest are selected within deeply nested statements. This is due to the use of logical meta-variables 
and predicate-like pointcuts that brings in much of the programming style of logic programming. LogicAJ2 [Rho, et. 
al., 2006] introduces the concept of fine-grained genericity for aspect languages. Based on static analysis and logic-
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meta variables is possible to construct any new pointcut designators such as getL and setL for local variables. 
However, those designators are not capable for selecting specific join points for local variables neither show source 
code information. 

Bugdel [Usui and Chiba, 2005] is an aspect-oriented system designed exclusively for debugging. It provides 
two pointcut designators: line(line number) and allLines(method name). thisJoinPoint variable 
is extended with line and variables to provide information about local variables available at a specific line of source 
code. In this sense, Énfasis take a step further with a more precise pattern matching mechanism to select local 
variables and with a join point model for many application areas. Josh [Chiba and Nakagawa, 2004] uses all 
capabilities of Javassist [Chiba, 2000; Chiba and Nishizawa, 2003] to implements and AspectJ-like language with an 
extensible pointcut language. The extensions are limited to Javassist capabilities, thus it does not support local 
variable crosscutting. Although PROSE [Nicoara and Alonso, 2005] was designed to show the potential of dynamic 
AOP, it is related to Énfasis. Both define aspects in the same base language but PROSE uses nested classes notation. 

As mentioned in section 1.2, JML [Leavens et al., 1999] is a BISL (Behavioral Interface Specification 
Language) specially designed to deal with the assertion checking problem. Unfortunately, because JML are used as 
annotations introduced in the source code, this approach has the same disadvantages when an application requires 
that multiple kinds of disparate annotations being used all together though they maybe unrelated, turning the program 
difficult to read and maintain. Énfasis solve this problem by keeping separated unrelated annotations from the source 
program and from each other. Unfortunately, this higher degree of modularity comes with a price, called the fragile 
pointcut problem.  

According to Kellens, et. al. (2006), the fragile pointcut problem (FPP) occurs in aspect-oriented systems when 
pointcuts unintentionally capture or miss particular join points as a consequence of their fragility with respect to 
seemingly safe modifications to the base program. Pointcut descriptions as defined in Énfasis depend on the lexical 
and syntactical structure of the base program because they are based on the AST. Any substantial modification on the 
base program may turn invalid the path on the AST to the joinpoints of interest. Thus the joinpoints are tightly 
coupled with the program structure that changes quite often during program evolution, demanding consistent changes 
in the pointcut description. Though this is a general problem in aspect-oriented programming, in Énfasis seems to be 
worsen because they depend not only in the variable and method names but also in the method structure. A possible 
solution to this problem that needs to be further investigated is to consider only stable versions of both base and 
aspect programs by introducing a versioning identifier in their package name that can be used in the pointcut 
descriptor as part of the qualified class name. By linking them by means of a versioning identifier, pointcuts may be 
more specific to indicate upon which base programs they may apply.  

Classical pointcut definitions suffer the same FPP problem, but they are related to less frequently changed 
pieces of code, such as field members or method names. In this respect, a better idea to deal with the FPP problem in 
Énfasis consists in a combination of both approaches: (1) by placing abstract annotations within the source program 
with no relation to any use or application and with the sole purpose of indicating the joinpoints of interest, and (2) by 
keeping apart the Énfasis descriptions that use these abstract annotations. In this regard, the separation of cutpoint 
descriptions from advice code in AOP programming may be an interesting venue of research to be further 
investigated. 
 
8 Conclusions 
 
The main contribution of this work is on defining crosscutting on local variables by means of a simple operational 
interpretation of join points based on the addresses (labels/join points) where the load/store instructions are located. 
The path and filter expression approach used in Énfasis simplifies the writing of pointcut descriptions and offers an 
alternative to the current trend of using Prolog-like query languages to define the pointcut semantics of AOP 
languages. 

Unfortunately, Énfasis pointcut descriptions depend on the lexical and syntactical structure of the base program 
becoming tightly coupled with the program code. A fragile pointcut problem arises when method code changes 
during program evolution, demanding consistent changes in the pointcut definition. Though this is a general problem 
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in aspect-oriented programming, in Énfasis seems to be worsen because they depend not only in the variable and 
method names but also in the method structure. A possible solution to this problem that needs to be further 
investigated is to consider only stable versions of both base and aspect programs by introducing a versioning 
identifier in their package name. By linking them by means of a versioning identifier, pointcuts may be more specific 
to indicate upon which base classes they may apply. 

It is also convenient to extend the pointcut language and model to improve its expressive power. So far, 
pointcuts are anonymous leaving out the possibility to the user of defining its own pointcuts. Finally, the Énfasis 
programming model enjoys several algebraic properties that need to be investigated to establish a mathematical 
foundation for the model. As a consequence, it could be possible to state and prove useful properties that can be used 
to transform programs for either verification or optimization purposes. 

This paper presented Énfasis, a formal join point model for local variable crosscutting and its implementation in 
Java. The model is based on set theory where each element represents an insertion point to instrument (weave) Java 
classes. The model allows: 1) pointcut composition, 2) signature patterns to choose specific variables, and 3) a join 
point model to generalized local variable crosscutting for different application areas. 
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