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Abstract 
There are many possibilities to design a parallel program in order to obtain the best performance possible. The 
selection of a program structure, as an organisation of processes, impacts on the performance to be achieved, and 
depends on the problem to be solved. Now, in order to select a program structure as the best in terms of 
performance, the software designer requires performance modelling techniques to evaluate different alternatives. 
If the structure of the parallel program can be modelled as a set of interacting processes, described in terms of 
UML State Diagrams, this paper presents a performance modelling to estimate the average execution time of a 
parallel program. Performance modelling is achieved by calculating the average execution time of a parallel 
program, described as a set of processes which run with deterministically and exponentially distributed execution 
times. 
Keywords: .Performance modelling, parallel program, UML State Diagram 
 
Resumen 
Hay muchas posibilidades para diseñar un programa paralelo a fin de obtener el mejor desempeño posible. La 
selección de una estructura del programa, así como una organización de procesos, impacta sobre el desempeño a 
lograrse, y depende del problema a resolver. Ahora bien, para seleccionar una estructura del programa como la 
mejor en términos de desempeño, el diseñador de software requiere de técnicas de modelación para evaluar 
diferentes opciones. Si la estructura de un programa paralelo puede modelarse como un conjunto de procesos 
interactivos, descritos en términos de Diagramas de Estado de UML, este artículo presenta una modelación para 
estimar el tiempo de ejecución promedio de un programa paralelo, descrito como un conjunto de procesos que 
corren en tiempos de ejecución con distribuiciones determinística y exponencial. 
Palabras clave: Modelación de desempeño, programa paralelo, Diagrama de Estado de UML 

 
1 Introduction 
 
During the last few years, parallel computing has been proposed as a potential solution for the increasingly complex 
problems in several research and development areas like quantum chemistry, fluid mechanics, weather forecasting, 
and others. Designing and programming parallel programs requires an extraordinary effort of the software designer, 
who has to balance between the complexity of the parallel implementation and the performance expectations. At the 
initial stage of parallel software development, the software designer counts only with the information of the problem 
to solve, the available parallel hardware platform, and the programming language to use. Based solely on this 
information and on the software designer experience, a parallel program is commonly designed and implemented. 
But, as parallel programming represents a high cost in terms of development effort and time, it would be an 
advantage to count with quantifiable information before further steps are taken during design and implementation. 
Hence, the software designer could be able to select a program structure or another, regarding the parallelism 
contained in the problem at hand. In general, a software designer does not know in advance which of the various 
parallel structures, described as a set of interacting processes, would have the desired execution time on a given 
parallel platform. Thus, the software designer faces two alternatives: 
 
1. The software designer can implement the various parallel structures. The parallel hardware platform is available, 

so the implementations are possible. Nevertheless, this approach requires a lot of effort and time to test every 
possible solution, and therefore, it tends to be very expensive in terms of both, time and effort. 
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2. Instead, the software designer can model the various parallel structures, and try to find the best one by evaluating 
the models, using performance simulation models. 
 

This paper presents an approach, based on the second alternative, to obtaining an average runtime of a parallel 
program. The basic assumption is that the whole parallel program consists of processes whose states are combined to 
obtain an overall state of the parallel program. The runtimes of the states are modelled by a random variable and its 
distribution function. Moreover, the model is based on the dependency between the states of the processes. This is 
described using UML State Diagrams (Booch, et al., 1998; Fowler & Scott, 1997). Figure 1 shows the UML State 
Diagram of a simple parallel program consisting of two processes, A and B. Process A has two states a1 and a2, 
whereas process B has two states b1 and b2. The diagram indicates that processes A and B execute simultaneously in 
states a1 and b1. Process A can get to state a2 only after finishing state a1. However, process B can only get to state b2 
when both processes A and B have respectively finished states a1 and b1. 

Process A 

Process B 

a a

bb

1 2

1 2

 
Fig. 1. UML State Diagram of  a simple parallel program 

 
The analysis of this kind of diagrams tends to be very complex when increasing the number of parallel 

processes and their states. However, if it could be found an equivalent state diagram which considers the states of the 
parallel program as a single entity based on the various possible state combinations of its processes, and also, it could 
be measured the runtime distributions of all processes during such states, then it would be possible to compute the 
distribution of the overall parallel program runtime. Moreover, in order to obtain more realistic models, it is 
necessary to model the behaviour within a state using distribution functions that approximate to measured empirical 
distribution functions. 

The objective of this paper is to present an analysis method which can be applied to compute the distribution of 
the overall parallel program runtime based on an equivalent state diagram of the parallel program and measured data 
about the runtime distributions of the parallel processes. Section 2 presents some related work in the areas of 
Reliability Engineering,  Performance Engineering, and Parallel Programming. Section 3 explains how to compute 
the average runtime of a program which consists of processes with exponentially distributed runtime variables 
(Kleinrock, 1975). Section 4 presents the analysis method that allows to approximate the overall parallel program 
runtime by modelling the processes’ runtimes using exponentially and deterministically distributed random variables. 
Finally, Section 5 presents the execution of simulation models that solve the Heat Equation problem, as a case study 
to validate the method.  
 
2 Related Work 
 
Several other similar approaches have been developed for modelling the performance and reliability of software 
systems, whether these make use of reduction of state diagrams for Reliability Engineering (Billington & Allan, 
1992), make use of UML diagrams for Performance Engineering (Pooley & King, 1999), or are used for basic 
parallel programming (Lui et al., 1998). 
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Billington and Allan (1992) make use of space state diagrams and network modelling techniques for evaluating 
the reliability of a system, a model and/or a component. Mostly, these diagrams are used to represent failure-repair 
processes. The essence is to derive a set of equations suitable for series-parallel systems: (a) in series system, all 
components must operate for system success, and (b) for a parallel system, one component need to work for system 
success. So, these equations are used to deduce the probability of the system to be in down state or up state, by 
reducing the different probabilities of residing in each of the system states, deriving the approximate state 
probabilities for each model in a series-parallel system. 

In a similar way, here we make use of UML state diagrams as space state diagrams for depicting the parallel 
components’ states. However, the way in which the state probabilities are reduced is different: states are not reduced 
using equations of the series or parallel probability of residence of each component in each state, but the state of the 
system is globally considered by considering the precedence of states, and hence, the system state is modelled as a 
single entity, obtaining an equivalent UML diagram which takes into consideration only precedence of states to 
model the system’s performance. 

Pooley and King (1999) present a thorough revision of UML, and its potential to be used in Performance 
Engineering. They provide a brief but description of each UML diagram as a potential modelling tool for 
performance. Nevertheless, they only shallowly describe how to exploit use case diagrams, implementation 
diagrams, sequence diagrams, collaboration diagrams, activity diagrams, and state diagrams. They complement these 
UML diagrams with queuing models in order to derive performance models. Unfortunately, they do not deeper into 
further describing any of the UML diagrams for modelling performance. In the particular case of UML state 
diagrams, they ultimately mention that this approach “requires a lot of work”, providing no further information about 
it. 

In the present paper, we exclusively focus on UML state diagrams to reduce the states of a parallel system, 
obtaining an equivalent state diagram, which is actually used for performance modelling. In fact, the treatment given 
here goes beyond simply considering the state of the parallel components, deeper into an analysis of the states within 
the diagram and their reduction into a single equivalent UML diagram. The equivalent states of this UML diagram 
are modelled by deterministically and exponentially distributed variables. 

Lui et al. (1998) perhaps provide the closest approach to the one presented here. They also make use of space 
state diagrams and series-parallel reduction, as well as exponentially distributed variables, for deriving performance 
models for simple fork-join parallel programs executing on a multiprocessor environment. Nevertheless, they do not 
take into consideration another or more realistic parallel program structure. Fork-join programs are common, but 
they tend to neglect the communication between parallel components. Hence, these programs do not cover other 
different types of parallel systems, such as Communicating Sequential Elements (Ortega-Arjona, 2000), which 
highly depends on the communication between parallel components. 

In this paper, UML state diagrams are derived directly by the precedence relations of the parallel program 
structure. Thus, such state diagrams reflect the behaviour of the parallel program depending on both, computation 
(within components) and communication (which affects the precedence of computations). So, depending on the 
organization of parallel components, different state diagrams are obtained. These diagrams are reduced regarding the 
precedence of states into a simpler model of computation, which is actually used for performance modelling by 
taking into consideration variations of the time consumed by the states of the parallel program as a whole. The 
following sections explain how execution times are modelled using deterministically and exponentially distributed 
variables.  
  
3 Using Exponentially Distributed Variables for Modelling Execution Times 
 
In order to analyse a state diagram with only exponentially distributed runtimes, it can be used the state space 
method (Thomasian & Bay, 1986). In this method, every state  of the state space is characterised by the set of 
processes  of the parallel program which execute simultaneously in state . The runtime 

s
},,{)( 1 nPPsP L= s it  of 

process iP  is an exponentially distributed random variable with parameter iλ . The density and distribution functions 

of the runtime are respectively and . The whole system changes from state  to state  if process )(tfi )(tFi s is' iP  is 
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the first to change state. The new set of processes  running in the state  results from  joined 

with the set of state of processes  which can start if 

)'( isP is' }{ \)( iPsP
)( is PS iP  is the first to change state in (Figure 2): s

 
)(}){ \)(()'( isii PSPsPsP ∪=  

P1, P2, ..., Pn

s 

Ss(P1), P2, ..., Pn

s’1

p(P1(s)) 

P1, Ss(P2), ..., Pn

s’2

P1, P2,..., Ss(Pn)

s’n

p(P2(s)) 

p(Pn(s)) 

 
Fig. 2. UML State Diagram of a stage of the equivalent state diagram as part of the state space 

 
 
Considering the example in Figure 1, the UML State Diagram for the equivalent state diagram is shown in 

Figure 3. 

a1

a1, b1 

a2, b1

a2, b2

b1

a2

b2

 
Fig.3. Equivalent UML State Diagram of the state space for the example in Figure 1 
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In order to calculate the average runtime of the whole parallel program, it is required to define the average 
service time in state  and the probability of s iP   being the first process which changes state in . Therefore, the 

average runtime of the whole parallel program ( ) can be recursively calculated using the following expression: 

s
][SE

 

∑
∈
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)(

])'[)]([))(((p][
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i
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where: 
)]([ sPE i  is the average service time of process iP  in state  under the condition that s iP  is the first 

process to change state; 
))((p sPi  is the probability that iP  is the first process to change state in ; and s

S is the first state of the whole parallel program in the state space. 
 

As the exponential distribution has the memoryless property (Kleinrock, 1975), the behaviour of the parallel 
program in state  is independent of its history. Using this property, it is obtained for  that: s ))((p sPi
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It is noticeable that  is equal to the first moment of the distribution of the minimum , 

and it is independent of the process which change state first. Only the branching probabilities  depends on 
. 

)]([ sPE i ),...,min( 1 ntt
))((p sPi

i
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4 Using Deterministically and Exponentially Distributed Variables for Modelling Execution 
   Times 
 
Modelling the runtime of a process in a particular state using only a simple exponentially distribution is not a very 
realistic approach for the process’ real behaviour. Hence, the use of other arbitrary distribution functions are 
proposed here as part of the models, and thus, it could be possible to analyse the models by the phase method. 
Moreover, the use of phase type distributions, like the Erlang distribution (Kleinrock, 1975), may simplify the 
analysis. 

In general, there are parallel programs with processes whose states have runtime distributions with a small 
variance. Here, it is proposed the use of Erlang-k distributions  (Kleinrock, 1975), which requires a high number 

of phases ( ) for its computation. Nevertheless, models that use Erlang-k distributions tend to become intractable 
because of the so-called state space explosion (Thomasian & Bay, 1986). To avoid this problem, the number of 
phases must be reduced and finite. This can be done by approximating the -distribution (with its first moment 

kE
k

kE
E and variance V ) by a state with a deterministic phase with parameter and an exponential phase with parameter d
λ  (Kleinrock, 1975). Therefore, the number of phases of one node is reduced from k  to two (Figure 4). 

21 k

Model of a state with Ek distributed runtime

Approximation

Ed

Approximation by a state with deterministically distributed runtime and a 
state with exponentially distributed runtime

 
Fig.  4. Approximation of a state with Ek distributed runtime with two states with deterministically distributed runtime d and a 

state with exponentially distributed runtime E. 
 

Approximating the runtime of the state of a process by a deterministic and an exponential phase implies that the 
modelled runtime always has the minimum of time . This is a better model of the real behaviour than a simple 

exponential distribution function with a positive probability for all positive runtimes. Notice that for 

d
V1=λ and 
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VEd −= , the first two moments of the -distribution and of the approximate distribution are the same. 

Moreover, a better approximation can be achieved by approximating with a deterministic distribution and an -

distribution with parameters 

kE

2E
V2=λ and VEd 2−= . The second exponential phase causes a slower 

increase of the distribution function at time d . Thus, as the exponential phase increases, it tend to be close and 
closer to the original -distribution.  kE

Now, it is required to approximately analyse a state diagram consisting of states which model their runtime by 
deterministically and/or exponentially distributed random variables. Nevertheless, notice that the memoryless 
property of the exponentially distributed random variables is lost, since when introducing deterministically 
distributed variables, the state space method only allows an approximation to the exact value. Therefore, because the 
deterministically distributed variables do not accomplish the memoryless property, the behaviour in a particular state 
depends on all previous states, and since there are deterministically distributed phases running in , they have been 
running from the start. Considering these dependencies, the modelling complexity increases to a point already 
untractable for small examples. 

s

Hence, it is now required to approximately obtain the time in which the parallel program remains in state , 

considering the use of the approximation above. Let 
is'

},,,,,,{)( 121 nkk PPPPPsP LL +=  be the set of processes 
which simultaneously execute in state  of the parallel program. Let us consider that the phases of a state of the 
process ( ) have deterministically distributed service times with parameter . Now, 

 is the minimum of the deterministic phases and  the process have the shortest 

deterministic runtime in state . Therefore, 

s
jP kj ≤≤1 jd

),,,min( 21 kdddd L= mP
s ddm = . 

For  the service time is an exponentially distributed random variable with parameter njk ≤< jλ . The 

running tasks in  are obtained as is' )(}{\},,',,','{)'( 121 isinkki PSPPPPPPsP ULL +=  with parameter 

 for  and )]([' sPEdd ijj −= kj ≤≤1 jλ  for . kj >
It is noticeable that, for , the random variable  is approximated by a deterministically distributed 

variable with parameter . To obtain the branching probability and the expected remaining time in any state, let us 

make use of the Dirac function 

kj ≤ jt'

jd '
)(tδ  (Kleinrock, 1975): 
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Using this function and the previous definitions, three cases can be distinguished: 

 
1. . This means considering all deterministic phases except the shortest, and hence: miki ≠∧≤≤1
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2. . This means considering the shortest deterministic phase, and thus: mi =
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5 Case Study – The Heat Equation Problem 
 
The Heat Equation problem is to calculate the heat diffusion through a substrate, using a parallel program (Ortega-
Arjona, 2000). Let us consider the simplest case, in which the Heat Equation is used to model the heat distribution on 
a one-dimensional body, a thin substrate, such as a wire. Different intervals expose a different temperature, 
determining a particular distribution at different times. The heat diffusion is obtained as data representing the way in 
which the temperature of each interval varies through time, tending to increase or decrease depending on the 
exchange of heat with other intervals. 

A simple method developed for deriving a numerical solution to the Heat Equation is the method of finite 
differences (Geist et al., 1994; Ortega-Arjona, 2000). Consider the discrete form for the one-dimensional heat 
equation: 

))1,(),(2)1,((),(),1( 2 −+−+
Δ
Δ

+=+ jiAjiAjiA
x
tjiAjiA  

 
where i represents time steps and j indicates wire subintervals. The numerical solution is now computed simply by 
calculating the value for each interval at a given time frame, considering the temperature from both its previous and 
its next intervals (Ortega-Arjona, 2000). 

Figure 5 shows a description of the Manager-Workers pattern (Ortega-Arjona, 2004) and the Communicating 
Sequential Elements pattern (Ortega-Arjona, 2000) as two Architectural Patterns for Parallel Programming (Ortega-
Arjona & Roberts, 1998) whose runtimes are compared when solving a particular problem. These two architectural 
patterns are used to obtain two different solutions for the Heat Equation problem, represented as the equation above, 
on a cluster of 16 computers (Geist et al., 1994). Notice that the UML State Diagram for each architectural pattern 
represents the data dependencies that such a pattern describes. For example, the data dependencies of the 
Communicating Sequential Elements pattern constrain that a process on stage i  must wait until its own predecessor 
and the predecessor of its left and its right neighbour have changed state on stage 1−i . On the other hand, the 
Manager-Workers pattern proposes that every process on stage 1−i  must finish computing before changing state to 
level . Notice that for the Manager-Workers pattern, the states marked with are synchronisation states, which are 
considered to cause no delay (this means, they are deterministically distributed with parameter ). 

i S
0=d
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Manager-Workers pattern 

Communicating Sequential Elements pattern

S S S S S 

Stage 1 Stage 2 Stage 3 Stage N 

 
Fig. 5. UML State Diagrams for two Architectural Patterns for Parallel Programming 

 
In order to compare the approximated runtimes with simulation results, ten simulations have been performed for 

each model and for both architectural patterns, considering the variations on (a) the number of processes, (b) the 
number of phases ( ) for the Erlang-k distributions ( ), and (c) variations of the parameters  and k kE d λ  for the 
deterministic phase and the exponential phase, respectively. These variations represent different workloads for the 
parallel system. Table 1 shows only four of these variations, which are considered relevant for the present analysis, 
since they accomplish the t-test criteria for comparing the two sets of values (Weiss, 1999; Montgomery, 1991). The 
errors between approximated and simulation results lie between 0% and 1.5% of the greater result in these 
simulations. Notice that the present method should be theoretically exact if the simulation model consists of only 
deterministically or only exponentially distributed runtimes. 
 

Some comments about the simulations and their results: 
 

1. The comparisons between approximated results, exact values, and simulation results are obtained for the 
Communicating Sequential Elements pattern in Figure 5. It is supposed that all processes have identically 
distributed runtimes, as workload. The accuracy of the approximation is tested by workload distributions of 
type Erlang. In order to be able to compare results, λ  and have been chosen to get the first moment 
constant, for different variances. 

k
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Table 1. Comparison of exact, approximated, and simulation results 

Exact Worklo
States Runtime appr

ion ad De- Simulat
oximation result 

)25.0(1E  256 39.84 39.84 39 7 .64±0.2

)5.0(2E  5120 33.75 33.77 33.35±0.42 

)0.1(4E  28.27 28.26±0.37 

)0.2(8E  

Too high compu l tationa
costs for calculating it 25.43 25.67±0.53 

 
he de-approximation column presents the computed runtime for approximated models. The T

)(λkE distributed runtimes are approximated by a model with a deterministically distributed runtime and 
nentially distributed phase. An exact results is obtained only when the process runtimes are 

modelled by )(1

an expo
λE or )(2 λE  distributed random variables. In the case of )(4 λE  and )(8 λE  

distributed runt e c ion costs of an exact  Markovian analysis are too n terms of t  
number of states in the state space. The approximation results and simulation results are compared to obtain 
information about the quality of the approximation method. The runtimes in the simulation models are also 
approximated by a model with a deterministically distributed runtime and an exponentially distributed 
phase. The approximated runtimes lie in the 0.99 confidence interval of the simulation results in Table 1. 
 

ime, th omputat  high i he

2. he comparisons between approximated runtimes of a model structured with the Communicating Sequential 

 
Table 2. Comparison of CSE and MW runtimes. 

 
Workload Runtime CSE Runtime MW 

T
Elements pattern and the approximated runtimes of a model structured with the Manager-Workers pattern 
are obtained for various workloads, represented by the parameters moment and variance, when solving the 
Heat Equation. 

(seconds) (seconds) 
Moment = 5 
Variance=25 

41.66±0.43 46.63±0.38 

Moment = 5 
Variance=5 

30.27±0.26 32.46±0.22 

Moment = 5 
Variance=2.5 

27.42±0.22 29.15±0.18 

Moment = 5 
Variance=0 

21.0±0.17 20.97±0.21 

 
It is noticeable from Table 2 that MW model presents always a higher execution runtime than the CSE 

 
 Conclusion 

his paper presents a method to approximately compute the runtime of a parallel program. The method allows to 

type distributions. Thus, the method is composed of two approximations: 

model. The difference of the total expected runtime increases with the increasing variances of the process 
runtimes. In the case of constant process runtimes, the two models have very similar expected runtimes. 
This is, for the shortest runtime, the variance of the process runtimes is 0. 

6
 
T
evaluate models that are structurally more complex in terms of processes and their states. Using deterministically and 
exponentially distributed runtimes, more realistic models of the real behaviour can be obtained than using only phase 
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1. Runtimes are approximated by a deterministically distributed and an exponentially distributed runtime 
variable. 

2. The overall runtime is obtained by an approximate evaluation of the model. 
 

 shown that the approximation 
sults differ less than 1.5 percent from exact Markovian results. 
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