
Using UML State Diagrams for Modelling the Performance
of Parallel Programs

Uso de Diagramas de Estado UML para la Modelación del Desempeño
 de Programas Paralelos

Jorge Ortega Arjona

Departamento de Matemáticas, Facultad de Ciencias, UNAM
jloa@fciencias.unam.mx

Article received on June 28, 2007; accepted on October 24,2007

Abstract
There are many possibilities to design a parallel program in order to obtain the best performance possible. The
selection of a program structure, as an organisation of processes, impacts on the performance to be achieved, and
depends on the problem to be solved. Now, in order to select a program structure as the best in terms of
performance, the software designer requires performance modelling techniques to evaluate different alternatives.
If the structure of the parallel program can be modelled as a set of interacting processes, described in terms of
UML State Diagrams, this paper presents a performance modelling to estimate the average execution time of a
parallel program. Performance modelling is achieved by calculating the average execution time of a parallel
program, described as a set of processes which run with deterministically and exponentially distributed execution
times.
Keywords: .Performance modelling, parallel program, UML State Diagram

Resumen
Hay muchas posibilidades para diseñar un programa paralelo a fin de obtener el mejor desempeño posible. La
selección de una estructura del programa, así como una organización de procesos, impacta sobre el desempeño a
lograrse, y depende del problema a resolver. Ahora bien, para seleccionar una estructura del programa como la
mejor en términos de desempeño, el diseñador de software requiere de técnicas de modelación para evaluar
diferentes opciones. Si la estructura de un programa paralelo puede modelarse como un conjunto de procesos
interactivos, descritos en términos de Diagramas de Estado de UML, este artículo presenta una modelación para
estimar el tiempo de ejecución promedio de un programa paralelo, descrito como un conjunto de procesos que
corren en tiempos de ejecución con distribuiciones determinística y exponencial.
Palabras clave: Modelación de desempeño, programa paralelo, Diagrama de Estado de UML

1 Introduction

During the last few years, parallel computing has been proposed as a potential solution for the increasingly complex
problems in several research and development areas like quantum chemistry, fluid mechanics, weather forecasting,
and others. Designing and programming parallel programs requires an extraordinary effort of the software designer,
who has to balance between the complexity of the parallel implementation and the performance expectations. At the
initial stage of parallel software development, the software designer counts only with the information of the problem
to solve, the available parallel hardware platform, and the programming language to use. Based solely on this
information and on the software designer experience, a parallel program is commonly designed and implemented.
But, as parallel programming represents a high cost in terms of development effort and time, it would be an
advantage to count with quantifiable information before further steps are taken during design and implementation.
Hence, the software designer could be able to select a program structure or another, regarding the parallelism
contained in the problem at hand. In general, a software designer does not know in advance which of the various
parallel structures, described as a set of interacting processes, would have the desired execution time on a given
parallel platform. Thus, the software designer faces two alternatives:

1. The software designer can implement the various parallel structures. The parallel hardware platform is available,

so the implementations are possible. Nevertheless, this approach requires a lot of effort and time to test every
possible solution, and therefore, it tends to be very expensive in terms of both, time and effort.

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

200 Jorge Ortega Arjona

2. Instead, the software designer can model the various parallel structures, and try to find the best one by evaluating
the models, using performance simulation models.

This paper presents an approach, based on the second alternative, to obtaining an average runtime of a parallel
program. The basic assumption is that the whole parallel program consists of processes whose states are combined to
obtain an overall state of the parallel program. The runtimes of the states are modelled by a random variable and its
distribution function. Moreover, the model is based on the dependency between the states of the processes. This is
described using UML State Diagrams (Booch, et al., 1998; Fowler & Scott, 1997). Figure 1 shows the UML State
Diagram of a simple parallel program consisting of two processes, A and B. Process A has two states a1 and a2,
whereas process B has two states b1 and b2. The diagram indicates that processes A and B execute simultaneously in
states a1 and b1. Process A can get to state a2 only after finishing state a1. However, process B can only get to state b2
when both processes A and B have respectively finished states a1 and b1.

Process A

Process B

a a

bb

1 2

1 2

Fig. 1. UML State Diagram of a simple parallel program

The analysis of this kind of diagrams tends to be very complex when increasing the number of parallel

processes and their states. However, if it could be found an equivalent state diagram which considers the states of the
parallel program as a single entity based on the various possible state combinations of its processes, and also, it could
be measured the runtime distributions of all processes during such states, then it would be possible to compute the
distribution of the overall parallel program runtime. Moreover, in order to obtain more realistic models, it is
necessary to model the behaviour within a state using distribution functions that approximate to measured empirical
distribution functions.

The objective of this paper is to present an analysis method which can be applied to compute the distribution of
the overall parallel program runtime based on an equivalent state diagram of the parallel program and measured data
about the runtime distributions of the parallel processes. Section 2 presents some related work in the areas of
Reliability Engineering, Performance Engineering, and Parallel Programming. Section 3 explains how to compute
the average runtime of a program which consists of processes with exponentially distributed runtime variables
(Kleinrock, 1975). Section 4 presents the analysis method that allows to approximate the overall parallel program
runtime by modelling the processes’ runtimes using exponentially and deterministically distributed random variables.
Finally, Section 5 presents the execution of simulation models that solve the Heat Equation problem, as a case study
to validate the method.

2 Related Work

Several other similar approaches have been developed for modelling the performance and reliability of software
systems, whether these make use of reduction of state diagrams for Reliability Engineering (Billington & Allan,
1992), make use of UML diagrams for Performance Engineering (Pooley & King, 1999), or are used for basic
parallel programming (Lui et al., 1998).

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

Using UML State Diagrams for Modelling the Performance of Parallel Programs 201

Billington and Allan (1992) make use of space state diagrams and network modelling techniques for evaluating
the reliability of a system, a model and/or a component. Mostly, these diagrams are used to represent failure-repair
processes. The essence is to derive a set of equations suitable for series-parallel systems: (a) in series system, all
components must operate for system success, and (b) for a parallel system, one component need to work for system
success. So, these equations are used to deduce the probability of the system to be in down state or up state, by
reducing the different probabilities of residing in each of the system states, deriving the approximate state
probabilities for each model in a series-parallel system.

In a similar way, here we make use of UML state diagrams as space state diagrams for depicting the parallel
components’ states. However, the way in which the state probabilities are reduced is different: states are not reduced
using equations of the series or parallel probability of residence of each component in each state, but the state of the
system is globally considered by considering the precedence of states, and hence, the system state is modelled as a
single entity, obtaining an equivalent UML diagram which takes into consideration only precedence of states to
model the system’s performance.

Pooley and King (1999) present a thorough revision of UML, and its potential to be used in Performance
Engineering. They provide a brief but description of each UML diagram as a potential modelling tool for
performance. Nevertheless, they only shallowly describe how to exploit use case diagrams, implementation
diagrams, sequence diagrams, collaboration diagrams, activity diagrams, and state diagrams. They complement these
UML diagrams with queuing models in order to derive performance models. Unfortunately, they do not deeper into
further describing any of the UML diagrams for modelling performance. In the particular case of UML state
diagrams, they ultimately mention that this approach “requires a lot of work”, providing no further information about
it.

In the present paper, we exclusively focus on UML state diagrams to reduce the states of a parallel system,
obtaining an equivalent state diagram, which is actually used for performance modelling. In fact, the treatment given
here goes beyond simply considering the state of the parallel components, deeper into an analysis of the states within
the diagram and their reduction into a single equivalent UML diagram. The equivalent states of this UML diagram
are modelled by deterministically and exponentially distributed variables.

Lui et al. (1998) perhaps provide the closest approach to the one presented here. They also make use of space
state diagrams and series-parallel reduction, as well as exponentially distributed variables, for deriving performance
models for simple fork-join parallel programs executing on a multiprocessor environment. Nevertheless, they do not
take into consideration another or more realistic parallel program structure. Fork-join programs are common, but
they tend to neglect the communication between parallel components. Hence, these programs do not cover other
different types of parallel systems, such as Communicating Sequential Elements (Ortega-Arjona, 2000), which
highly depends on the communication between parallel components.

In this paper, UML state diagrams are derived directly by the precedence relations of the parallel program
structure. Thus, such state diagrams reflect the behaviour of the parallel program depending on both, computation
(within components) and communication (which affects the precedence of computations). So, depending on the
organization of parallel components, different state diagrams are obtained. These diagrams are reduced regarding the
precedence of states into a simpler model of computation, which is actually used for performance modelling by
taking into consideration variations of the time consumed by the states of the parallel program as a whole. The
following sections explain how execution times are modelled using deterministically and exponentially distributed
variables.

3 Using Exponentially Distributed Variables for Modelling Execution Times

In order to analyse a state diagram with only exponentially distributed runtimes, it can be used the state space
method (Thomasian & Bay, 1986). In this method, every state of the state space is characterised by the set of
processes of the parallel program which execute simultaneously in state . The runtime

s
},,{)(1 nPPsP L= s it of

process iP is an exponentially distributed random variable with parameter iλ . The density and distribution functions

of the runtime are respectively and . The whole system changes from state to state if process)(tfi)(tFi s is' iP is

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

202 Jorge Ortega Arjona

the first to change state. The new set of processes running in the state results from joined

with the set of state of processes which can start if

)'(isP is' }{ \)(iPsP
)(is PS iP is the first to change state in (Figure 2): s

)(}){ \)(()'(isii PSPsPsP ∪=

P1, P2, ..., Pn

s

Ss(P1), P2, ..., Pn

s’1

p(P1(s))

P1, Ss(P2), ..., Pn

s’2

P1, P2,..., Ss(Pn)

s’n

p(P2(s))

p(Pn(s))

Fig. 2. UML State Diagram of a stage of the equivalent state diagram as part of the state space

Considering the example in Figure 1, the UML State Diagram for the equivalent state diagram is shown in

Figure 3.

a1

a1, b1

a2, b1

a2, b2

b1

a2

b2

Fig.3. Equivalent UML State Diagram of the state space for the example in Figure 1

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

Using UML State Diagrams for Modelling the Performance of Parallel Programs 203

In order to calculate the average runtime of the whole parallel program, it is required to define the average
service time in state and the probability of s iP being the first process which changes state in . Therefore, the

average runtime of the whole parallel program () can be recursively calculated using the following expression:

s
][SE

∑
∈

+=
)(

])'[)]([))(((p][
SPP

iii
i

SESPESPSE

where:
)]([sPE i is the average service time of process iP in state under the condition that s iP is the first

process to change state;
))((p sPi is the probability that iP is the first process to change state in ; and s

S is the first state of the whole parallel program in the state space.

As the exponential distribution has the memoryless property (Kleinrock, 1975), the behaviour of the parallel
program in state is independent of its history. Using this property, it is obtained for that: s))((p sPi

∑

∏∫

Λ

=

≠∧=

∞

≠∧=

=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=

n

j
j

i

n

ijj
ji

ji

n

ijj
i

dttFtf

ttsP

1

10

1

))(1()(

p))((p

λ

λ

and for that:)]([sPE i

∑

∏∫

∏∫
∫

∫ Λ

=

≠∧=

∞
≠∧=

∞

∞

≠∧=

=

−

−

∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<≤

∂
∂

=

n

i
i

n

ijj
ji

n

ijj
j

t

i

ji

n

ijj
ii

dt
dttFtf

dttFtf

t
t

dttttt
t

tsPE

1

10

10

0

0 1

1

))(1()(

))(1()(

p)]([

λ

It is noticeable that is equal to the first moment of the distribution of the minimum ,

and it is independent of the process which change state first. Only the branching probabilities depends on
.

)]([sPE i),...,min(1 ntt
))((p sPi

i

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

204 Jorge Ortega Arjona

4 Using Deterministically and Exponentially Distributed Variables for Modelling Execution
 Times

Modelling the runtime of a process in a particular state using only a simple exponentially distribution is not a very
realistic approach for the process’ real behaviour. Hence, the use of other arbitrary distribution functions are
proposed here as part of the models, and thus, it could be possible to analyse the models by the phase method.
Moreover, the use of phase type distributions, like the Erlang distribution (Kleinrock, 1975), may simplify the
analysis.

In general, there are parallel programs with processes whose states have runtime distributions with a small
variance. Here, it is proposed the use of Erlang-k distributions (Kleinrock, 1975), which requires a high number

of phases () for its computation. Nevertheless, models that use Erlang-k distributions tend to become intractable
because of the so-called state space explosion (Thomasian & Bay, 1986). To avoid this problem, the number of
phases must be reduced and finite. This can be done by approximating the -distribution (with its first moment

kE
k

kE
E and variance V) by a state with a deterministic phase with parameter and an exponential phase with parameter d
λ (Kleinrock, 1975). Therefore, the number of phases of one node is reduced from k to two (Figure 4).

21 k

Model of a state with Ek distributed runtime

Approximation

Ed

Approximation by a state with deterministically distributed runtime and a
state with exponentially distributed runtime

Fig. 4. Approximation of a state with Ek distributed runtime with two states with deterministically distributed runtime d and a

state with exponentially distributed runtime E.

Approximating the runtime of the state of a process by a deterministic and an exponential phase implies that the
modelled runtime always has the minimum of time . This is a better model of the real behaviour than a simple

exponential distribution function with a positive probability for all positive runtimes. Notice that for

d
V1=λ and

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

Using UML State Diagrams for Modelling the Performance of Parallel Programs 205

VEd −= , the first two moments of the -distribution and of the approximate distribution are the same.

Moreover, a better approximation can be achieved by approximating with a deterministic distribution and an -

distribution with parameters

kE

2E
V2=λ and VEd 2−= . The second exponential phase causes a slower

increase of the distribution function at time d . Thus, as the exponential phase increases, it tend to be close and
closer to the original -distribution. kE

Now, it is required to approximately analyse a state diagram consisting of states which model their runtime by
deterministically and/or exponentially distributed random variables. Nevertheless, notice that the memoryless
property of the exponentially distributed random variables is lost, since when introducing deterministically
distributed variables, the state space method only allows an approximation to the exact value. Therefore, because the
deterministically distributed variables do not accomplish the memoryless property, the behaviour in a particular state
depends on all previous states, and since there are deterministically distributed phases running in , they have been
running from the start. Considering these dependencies, the modelling complexity increases to a point already
untractable for small examples.

s

Hence, it is now required to approximately obtain the time in which the parallel program remains in state ,

considering the use of the approximation above. Let
is'

},,,,,,{)(121 nkk PPPPPsP LL += be the set of processes
which simultaneously execute in state of the parallel program. Let us consider that the phases of a state of the
process () have deterministically distributed service times with parameter . Now,

 is the minimum of the deterministic phases and the process have the shortest

deterministic runtime in state . Therefore,

s
jP kj ≤≤1 jd

),,,min(21 kdddd L= mP
s ddm = .

For the service time is an exponentially distributed random variable with parameter njk ≤< jλ . The

running tasks in are obtained as is')(}{\},,',,','{)'(121 isinkki PSPPPPPPsP ULL += with parameter

 for and)]([' sPEdd ijj −= kj ≤≤1 jλ for . kj >
It is noticeable that, for , the random variable is approximated by a deterministically distributed

variable with parameter . To obtain the branching probability and the expected remaining time in any state, let us

make use of the Dirac function

kj ≤ jt'

jd '
)(tδ (Kleinrock, 1975):

⎩
⎨
⎧

≠
=∞

=
0,0
0,

)(
tif
tif

tδ

∫
∞

=
0

1)(dttδ

Using this function and the previous definitions, three cases can be distinguished:

1. . This means considering all deterministic phases except the shortest, and hence: miki ≠∧≤≤1

0))((p =sPi

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

206 Jorge Ortega Arjona

2. . This means considering the shortest deterministic phase, and thus: mi =

dsPE
e

dtedt

dttFtf

ttsP

i

t

t

n

kj
ji

ji

n

kj
i

n

kj
i

n

kj
i

=

∑
=

∑
−=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<=

+=

+=

−

∞ −

∞

+=

+=

∫

∫ ∏

Λ

)]([

)(

))(1()(

p))((p

1

1

0

0 1

1

λ

λ

δ

3. . This means considering the exponentially distributed phases, so: nik ≤<

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑
−=

−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤∧≤=

+=

−

+=

≠∧+=

∞

≠∧+=

∑

∏∫

Λ

n

kj
jd

n

kj
j

i

n

ijkj
jmi

ji

n

ijkj
mii

e

dttFtFtf

ttttsP

11

))(1())(1)((

p))((p

1

10

1

λ

λ

λ

∑

∑

∫ Λ

+=

−

−

+=

∞

≠∧+=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑
−

∑
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<<≤

∂
∂

=

+=

+=

n

kj
i

d

dn

kj
i

ji

n

ijkj
miii

n

kj
i

n

kj
i

e

ed

dttttttt
t

tsPE

1

1

0 1

1

1

1

11

p)]([

λ

λ

λ

λ

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

Using UML State Diagrams for Modelling the Performance of Parallel Programs 207

5 Case Study – The Heat Equation Problem

The Heat Equation problem is to calculate the heat diffusion through a substrate, using a parallel program (Ortega-
Arjona, 2000). Let us consider the simplest case, in which the Heat Equation is used to model the heat distribution on
a one-dimensional body, a thin substrate, such as a wire. Different intervals expose a different temperature,
determining a particular distribution at different times. The heat diffusion is obtained as data representing the way in
which the temperature of each interval varies through time, tending to increase or decrease depending on the
exchange of heat with other intervals.

A simple method developed for deriving a numerical solution to the Heat Equation is the method of finite
differences (Geist et al., 1994; Ortega-Arjona, 2000). Consider the discrete form for the one-dimensional heat
equation:

))1,(),(2)1,((),(),1(2 −+−+
Δ
Δ

+=+ jiAjiAjiA
x
tjiAjiA

where i represents time steps and j indicates wire subintervals. The numerical solution is now computed simply by
calculating the value for each interval at a given time frame, considering the temperature from both its previous and
its next intervals (Ortega-Arjona, 2000).

Figure 5 shows a description of the Manager-Workers pattern (Ortega-Arjona, 2004) and the Communicating
Sequential Elements pattern (Ortega-Arjona, 2000) as two Architectural Patterns for Parallel Programming (Ortega-
Arjona & Roberts, 1998) whose runtimes are compared when solving a particular problem. These two architectural
patterns are used to obtain two different solutions for the Heat Equation problem, represented as the equation above,
on a cluster of 16 computers (Geist et al., 1994). Notice that the UML State Diagram for each architectural pattern
represents the data dependencies that such a pattern describes. For example, the data dependencies of the
Communicating Sequential Elements pattern constrain that a process on stage i must wait until its own predecessor
and the predecessor of its left and its right neighbour have changed state on stage 1−i . On the other hand, the
Manager-Workers pattern proposes that every process on stage 1−i must finish computing before changing state to
level . Notice that for the Manager-Workers pattern, the states marked with are synchronisation states, which are
considered to cause no delay (this means, they are deterministically distributed with parameter).

i S
0=d

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

208 Jorge Ortega Arjona

Manager-Workers pattern

Communicating Sequential Elements pattern

S S S S S

Stage 1 Stage 2 Stage 3 Stage N

Fig. 5. UML State Diagrams for two Architectural Patterns for Parallel Programming

In order to compare the approximated runtimes with simulation results, ten simulations have been performed for

each model and for both architectural patterns, considering the variations on (a) the number of processes, (b) the
number of phases () for the Erlang-k distributions (), and (c) variations of the parameters and k kE d λ for the
deterministic phase and the exponential phase, respectively. These variations represent different workloads for the
parallel system. Table 1 shows only four of these variations, which are considered relevant for the present analysis,
since they accomplish the t-test criteria for comparing the two sets of values (Weiss, 1999; Montgomery, 1991). The
errors between approximated and simulation results lie between 0% and 1.5% of the greater result in these
simulations. Notice that the present method should be theoretically exact if the simulation model consists of only
deterministically or only exponentially distributed runtimes.

Some comments about the simulations and their results:

1. The comparisons between approximated results, exact values, and simulation results are obtained for the
Communicating Sequential Elements pattern in Figure 5. It is supposed that all processes have identically
distributed runtimes, as workload. The accuracy of the approximation is tested by workload distributions of
type Erlang. In order to be able to compare results, λ and have been chosen to get the first moment
constant, for different variances.

k

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

Using UML State Diagrams for Modelling the Performance of Parallel Programs 209

Table 1. Comparison of exact, approximated, and simulation results

Exact Worklo
States Runtime appr

ion ad De- Simulat
oximation result

)25.0(1E 256 39.84 39.84 39 7 .64±0.2

)5.0(2E 5120 33.75 33.77 33.35±0.42

)0.1(4E 28.27 28.26±0.37

)0.2(8E

Too high compu l tationa
costs for calculating it 25.43 25.67±0.53

he de-approximation column presents the computed runtime for approximated models. The T

)(λkE distributed runtimes are approximated by a model with a deterministically distributed runtime and
nentially distributed phase. An exact results is obtained only when the process runtimes are

modelled by)(1

an expo
λE or)(2 λE distributed random variables. In the case of)(4 λE and)(8 λE

distributed runt e c ion costs of an exact Markovian analysis are too n terms of t
number of states in the state space. The approximation results and simulation results are compared to obtain
information about the quality of the approximation method. The runtimes in the simulation models are also
approximated by a model with a deterministically distributed runtime and an exponentially distributed
phase. The approximated runtimes lie in the 0.99 confidence interval of the simulation results in Table 1.

ime, th omputat high i he

2. he comparisons between approximated runtimes of a model structured with the Communicating Sequential

Table 2. Comparison of CSE and MW runtimes.

Workload Runtime CSE Runtime MW

T
Elements pattern and the approximated runtimes of a model structured with the Manager-Workers pattern
are obtained for various workloads, represented by the parameters moment and variance, when solving the
Heat Equation.

(seconds) (seconds)
Moment = 5
Variance=25

41.66±0.43 46.63±0.38

Moment = 5
Variance=5

30.27±0.26 32.46±0.22

Moment = 5
Variance=2.5

27.42±0.22 29.15±0.18

Moment = 5
Variance=0

21.0±0.17 20.97±0.21

It is noticeable from Table 2 that MW model presents always a higher execution runtime than the CSE

 Conclusion

his paper presents a method to approximately compute the runtime of a parallel program. The method allows to

type distributions. Thus, the method is composed of two approximations:

model. The difference of the total expected runtime increases with the increasing variances of the process
runtimes. In the case of constant process runtimes, the two models have very similar expected runtimes.
This is, for the shortest runtime, the variance of the process runtimes is 0.

6

T
evaluate models that are structurally more complex in terms of processes and their states. Using deterministically and
exponentially distributed runtimes, more realistic models of the real behaviour can be obtained than using only phase

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

210 Jorge Ortega Arjona

1. Runtimes are approximated by a deterministically distributed and an exponentially distributed runtime
variable.

2. The overall runtime is obtained by an approximate evaluation of the model.

 shown that the approximation
sults differ less than 1.5 percent from exact Markovian results.

., and Allan, R.N. (1992). Reliability Evaluation of Engineering Systems: Concepts and
Techniques. Springer.

4. , Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1994). PVM: Parallel

6. join parallel
Distributed Systems, Vol. 9

7.
8. -Arjona, J., and Roberts, G. (1998). Architectural Patterns for Parallel Programming. Proceedings of

LoP 98).

 2000).

nd

11.

omputers, December 1986.

The experiments for solving the Heat Equation with CSE and MW models have
re

7 References

1. Billinton, R

2. Booch, G., Rumbaugh, J., and Jacobson I. (1998). The Unified Modeling Language User Guide. Addison-
Wesley.

3. Fowler, M., and Scott, K. (1997). UML Distilled. Addison-Wesley Longman Inc., Reading MA.
Geist, A.
Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing. The MIT Press.

5. Kleinrock, L. (1975). Queueing Systems. Volume 1: Theory. John Wiley and Sons.
Lui, J.C.S., Muntz, R.R., and Towsley, D. (1998). Computer performance bounds of fork-
programs under a multiprocessor environment. IEEE Transactions on Parallel and
No. 3.
Montgomery, D.C. (1991). Design and Analysis of Experiments. John Wiley & Sons, Inc.
Ortega
the 3rd European Conference on Pattern Languages of Programming and Computing (EuroP

9. Ortega-Arjona, J. (2000). The Communicating Sequential Elements pattern. An Architectural Pattern for
Domain Parallelism. Proceedings of the 7th Conference on Pattern Languages of Programming (PLoP

10. Ortega-Arjona, J. (2004). The Manager-Workers pattern. An Activity Parallelism Architectural Pattern for
Parallel Programming. Proceedings of the 9th European Conference on Pattern Languages of Programming a
Computing (EuroPLoP 2004).
Pooley, R., and King, P. (1999) The Unified Modeling Language and Performance Engineering. IEE
Proceedings – Software 146(2).

12. Thomasian, A. and Bay, P. (1986). Analytic Queueing Network Models for Parallel Processing of Task
Systems. IEEE Transactions on C

13. Weiss, B. (1999). Introductory Statistics. Addison-Wesley.

Jorge L. Ortega Arjona is a full-time lecturer of the Departmen f Mathematics, Faculty of Sciences, UNAM. He

tained a BSc. in Electronic Engineering, as well as a MSc in mputer Science, at UNAM, and a PhD from the
t o
Coob

University College London (UCL), U.K. His research interests include Software Architecture and Design, Software
Patterns, and Parallel Processing.

Computación y Sistemas Vol. 11 No. 3, 2008, pp 199-210
ISSN 1405-5546

