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Abstract 
We present a secure deterministic cipher and decipher mechanism based on the well-known Lorenz dynamic 
system. The ciphering process is performed by the combination of the message to be ciphered and the states of the 
Lorenz dynamic system, which act as the ciphering key. The deciphering process is implemented by the 
reconstruction of the key, which is generated using a Lorenz system state observer. The observed key is then used 
in the decipher process in order to recover the ciphered message. 
Keywords: Cipher/Decipher, Chaotic System, State Observer, Discrete Lorenz System  
 
Resumen 
En este artículo presentamos un mecanismo seguro de cifrado y descifrado determinístico basado en el muy 
conocido sistema dinámico de Lorenz. El proceso de cifrado se lleva a cabo mediante la combinación del mensaje 
a ser cifrado y los estados del sistema de Lorenz, el cual actúa como llave de cifrado. El proceso de descifrado se 
realiza mediante la reconstrucción de la llave, que es generada usando un observador de estado del sistema de 
Lorenz. La llave observada es usada en el proceso de descifrado con el objeto de recuperar el mensaje cifrado 
Palabras Clave: Cifrador/Decifrador, Sistema Caótico, Observador de Estado, Sistema de Lorenz 

 
Introduction 
 
Oscillatory chaotic systems have been of great impact in Physics, Biology, Communications Engineering, Control 
Theory and Atmospheric Sciences. As examples, we can mention some of the books published on the subject over 
the last few decades ([Holden and Muhamad, 1984], [Acheson, 1997], [Holden, 1986], [Alligood et al., 1996], 
[Devaney, 1989] and [Devaney, 1990]), and some books and magazine that focus their attention on the study of 
chaotic systems and their applications, such as chaotic circuits synchronization, used in Communication Engineering 
and Control ([System and Control Letters, 1997], [Chaos Synchronization and Control, 1993] and [Chaos 
Synchronization and Control, 1997]), the study of the behavior of planets, the prediction of population growth and 
the predictive study of ecosystem adaptability ([Conrad, 1981] and [Conrad, 1983]). 

The main issue in this article is the application of the Lorenz system (in its discrete approximation form), to 
cipher and decipher any kind of information represented digitally. The ciphering process is performed by generating 
                                                           
1 A first version of this work was presented at the 3° Congreso Internacional en Control, Instrumentación Virtual y Sistemas Digitales, 
August, 2001, pp. 20-29. 
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a cipher key which is the same length as the information that will be ciphered; the deciphering process consists of the 
reconstruction of the cipher key and then use it in the inverse process which was performed to cipher the 
information. This system creates a set of chaotic states, (x1k, x2k, x3k) where k = {1, 2, …, n} is the iteration index. 
The states {x2k, x3k } are mixed with { s1k, s2k }, which are the messages or the signals to be ciphered, by means of a 
simple arithmetic operation Mk = ( x1k, x2kλ1 + s1k, x3kλ2 + s2k ), where Mk is the transmitted vector to the receiver 
system and, λ1 and λ2 are scaling factors, not equal to zero, selected in a way that the chaotic signals { x1k, x2k } will 
be large enough compared to the messages or signals { s1k, s2k }. 

The receiver system or decipher is able to reconstruct the ciphered messages { s1k, s2k } almost exactly from the 

received chaotic signals: Mk = (m1k, m2k, m3k), i.e., and , where 

, are the chaotic signals that the decipher system reconstructs, such that 

)( 1221 λkkk xms
∧∧

−= )( 2332 λkkk xms
∧∧

−=

},{ 32 kk xx
∧∧

ε≤−
∧

ikik xx ,  i = 1, 2, for 

every k > k* > 0; where ε  is a positive constant near to zero and k*  is a constant selected in a way that the previous 
inequity is true. 

This ciphering/deciphering mechanism is based on chaotic circuits synchronization (see [Nijmeijer and Mareels, 
1997], [Sira-Ramírez and Cruz-Hernández, 2001], [Carroll and Pecora, 1991], [Cuomo et al., 1993], [Fradkov and 
Markov, 1997], [Huijberts et al., 1998] and [Pecora and Carroll, 1991]). We say that two chaotic systems, the sender 
and the receiver, are synchronized if,  no matter what the initial conditions were, the difference between both systems 
is equal to zero, as time goes to infinity. On the other hand, synchronizing two systems is a difficult task, because, 
among other problems, even very small differences between the values of the initial conditions of the sender and the 
receiver may generate exponential error amplification [Ogozalek, 1993]. 

Almost every proposed synchronization scheme was made in a theoretical and academic setting. Some of them 
were done in real time experiments, and the achieved efficiency in the transmitted signal recovery was between 85% 
and 95% [Cuomo et al., 1993] because it is impossible to build two identical circuits, i.e., there will always be some 
variation in the parameters, like resistance and inductance. Such performance is good enough for some applications, 
like voice transmission; however, it is not reliable for use in the ciphering/deciphering information process (see 
[Gerald and Wheatley, 1994], [Pfleeger, 1996], [Schneier, 1996] and [DeMillo et al., 1983]). It is worth mentioning 
that in [Lopez-Mancilla and Cruz-Hernandez, 2005] the authors present an interesting work which exploits the 
model-matching approach to synchronize chaotic system, even when these systems are different, with an application 
to secure communication of audio and binary information signals. 

This article is organized in four sections. The first presents a brief introduction on chaos and their multiple 
applications. In Section 2 a state observer system for the Lorenz chaotic system is covered. Section 3 is devoted to 
developing a ciphering/deciphering mechanism, based on the chaotic properties of the Lorenz system and its 
respective state observer. In Section 4 a numerical application to cipher and decipher information is introduced. In 
the same section the numerical application performance is illustrated by ciphering and deciphering a digital image. 
The conclusions can be found in the last section. 
 
2 A Simple Lorenz System-Based Observer 
 
Inspired in the previous works of [Sira-Ramírez and Cruz-Hernández, 2001] and [Carroll and Pecora, 1991] we 
present the theoretical framework of our work. 
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First of all, we present the well-known three dimensional chaotic Lorenz dynamic system: 
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where: denotes the state vector; [ Txxx )(),(),( 321 ⋅⋅⋅ ] )(⋅y  denotes the output and { }br,,σ  denotes the real 

parameters set of the system. We assume that 0>σ . 
 

We introduce now our Lorenz dynamic state observer: 
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where: [   denotes the observed states and k is a positive gain constant . ]Txxx )(ˆ),(ˆ),(ˆ 321 ⋅⋅⋅
 

Subtracting the previously defined Lorenz dynamic system (1) and its corresponding state observer (2), we 
obtain the dynamic error equations: 
 

)()()()( 1121 tketetete −−= σσ&   

),()()()( 3122 tetxtete −−=&   
(3)

),()()()( 3213 tbetetxte −=&   

 
where , for i ∈ { 1, 2, 3 }, denotes the i-th state observation error. iii xxe ˆ)(:)( −⋅=⋅
 
 As established by the following result, the observation error  { })(),(),( 321 ⋅⋅⋅ eee  converges asymptotically to 
the origin. 

 Theorem 1 Let [ ]  and Txxx )(),(),( 321 ⋅⋅⋅ [ ]Txxx )(ˆ),(ˆ),(ˆ 321 ⋅⋅⋅   be the states of the Lorenz system (1) and the 

states of the Lorenz observer system (2), respectively. For any constant ,0≥k [ ]Txxx )(ˆ),(ˆ),(ˆ 321 ⋅⋅⋅  converges 

asymptotically to [ , i.e., the vector error state ]Txxx )(),(),( 321 ⋅⋅⋅ [ ])(),(),( 321 ⋅⋅⋅ eee   converges to [ ] . T0,0,0
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 Proof. Consider the Lyapunov function 
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 That is to say, given the output y=x1 of system (1), the remaining states can be exactly recovered when t is 
sufficiently large.  
Remark 1 Since the error converges asymptotically and exponentially to zero, the proposed observer is then robust 
with respect to some small external perturbation characterized by functions which vanish at the origin and which are 
locally Lipschitz in the state of the observer. Indeed, for this class of perturbation the origin is an exponentially 
stable equilibrium point of the perturbed system (for the detail see for instance [Khalil, 2002]).  
 As is established in Theorem 1, the observer (2) always recovers the motion of the Lorenz system (1) 
(assuming 0≥γ and 0>σ ). This property of the observer will be applied in the sequel to implement a 

cipher/decipher information mechanism: the set of parameters { }br,,σ  plays the role of the key involved in both 
the cipher and decipher processes. 
 
3 Information Cipher and Decipher Mechanism 
 
Taking into account the result introduced by Theorem 1, in this section we propose a cipher and decipher 
mechanism. As was pointed out in the last paragraph, the set of parameters of the Lorenz chaotic system will play the 
role of the key involved in the cryptography process. The methodology we present here requires a discrete 
approximation of both the chaotic system (1) and the state observer (2). In this section we apply the previous 
theorem to cipher and decipher digital signals. A numerical algorithm is then implemented to hide confidential 
information through its combination with the output of the chaotic system (ciphering process). The combination 
exploits the finite representation of numerical computations in order to avoid non-allowed recovery of confidential 
information. The deciphering is implemented through the state observer, i.e., confidential information is recovered 
by merely separating the observer state-based information from the chaotic signal. 
 
 We now proceed to the discretization of both the chaotic system (1) and the state observer (2). We use a well-
known Runge-Kutta method (see for instance [Gerald and Wheatley, 1994]). 
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3.1 Discrete Approximations 

Let us define  and [ ]TxxxX )(),(),()( 321 ⋅⋅⋅=⋅ [ ]TxxxX )(ˆ),(ˆ),(ˆ)(ˆ
321 ⋅⋅⋅=⋅ . Thus, (1) and (2) can be rewritten as 

follows: 
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with: 
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 Then, (7) and (8) describe a Runge-Kutta discrete approximation of (1) (see for instance [Acheson, 1997]). In 
fact, this discrete approximation is called the Lorenz system approximation. In the same way: 
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describe the observer system approximation. 
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Remark 2 To maintain a convenient discrete system behavior, i.e., near to the continuous system behavior, we take h 

(the integration step) in the order of 10-4. As a result of this choice, we can guarantee that k
kk ceXX α−≤− ˆ   

where 0>α and c is a positive constant greater than zero. This final constant depends on both the initial conditions 
of the Lorenz system approximation and the initial conditions of the observer system approximation. In fact, if both 

initial conditions coincide (which is obviously difficult to achieve) c = 0. If possible, it is suitable to have   near 

to . 
0X̂

0X
 
3.2 Ciphering and Deciphering Numerical Algorithm 
We present our main result: a ciphering and deciphering numerical algorithm based on the discrete approximations 
presented above. 
 
Algorithm 1: 

1. The sender ciphers the messages {s1k, s2k} using state variables {x2k, x3k} of the approximated Lorenz system, 
respectively, as follows: 

*

2232

1121 , kkfor
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sxm
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+=
+=

λ
λ

, 

where {mik, m2k} are the ciphered messages and the scale factors, λ1 and λ2, are constrained to satisfy: 

.maxmaxmaxmax 232121 λλ kkkk xsandxs <<<<  

Note that in order to minimize the level of misinformation, ciphering must start after a time t*=kh, such that, 

the approximation error kh
kk ceXX λ−≤−

2
ˆ   is close to zero2. 

 
2.  The sender sends the authorized recipient the approximated Lorenz system output (see (7) and (8)), i.e., 

yk=x1k  and the ciphered messages {m1k,m2k}. The authorized recipient is the person who has the secrete key, 
that is, the state observer (see (9) and (10)) and some previously agreed information (see Note 1). 

3. Once the receiver has the approximated Lorenz system output yk=x1k  and the ciphered messages {m1k,m2k}, 
he uses the state observer system (9) and (10) to compute { }kk xx 32 ˆ,ˆ  and decipher messages{m1k,m2k}, as 
follows: 

⎭
⎬
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 Figure 1 represents the proposed ciphering/deciphering system scheme: 
 

                                                           
2 The time t*=kh  basically depends on the initial conditions of both the Lorenz system approximation and the state observer 
approximation. If both initial conditions coincide, t*=0. If an acceptable approximation error level is previously especified, say 10-3, it is 
compulsory to perform numerical analysis in order to compute the upper time bound of unacceptable misinformation risk. 
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Fig. 1. Ciphering/deciphering scheme 

 
4 Numerical Implementation 
 
In this section we test the ciphering/deciphering algorithm proposed in the previous section. We first designed two 
numerical experiments: firstly we made some numerical simulations to cipher and decipher two periodical signals. 
We then implemented the ciphering/deciphering mechanism in programming language C in order to cipher and 
decipher two digital images; these files were sent via internet to a remote recipient, who recovered the images almost 
exactly. 
 
4.1 Numerical simulation 
We show, by means of a numerical simulation, the ciphering/deciphering algorithm proposed in the last section. We 
implemented the Lorenz system and its state observer in a discrete manner (see Equations (7), (8), (9) and (10)), with 
initial conditions: 
 

1.0ˆ,5.0ˆ,0.1ˆ,0.0,3.0,1 302010302010 ==−==== xxxxxx , 
and parameters: 

001.0,0,20,28,10 ===== hkcrσ . 
 

Let  and ; )(sin 2
1 ts k = )cos(2 ts k = 7515 ≤≤ t  be the messages to be ciphered. 

 
 Under a numerical simulation environment (Matlab™), we simulated the Lorenz system described in Equations 
(7) and (8), and the cipher mechanism, described as follows: 
 

)cos(100);(sin100 32
2

21 hkxmhkxm kkkk δδ +=+=  
 
where { }caseotheranytohkif 0;75151 ≤≤=δ . 
 
 Likewise, we simulate observer system (9) and (10) and estimate the original signals using the decipher 
mechanism, as follows: 

)ˆ100(ˆ);ˆ100(ˆ 322211 kkkkkk xmsxms −=−=  

 Figures 2 and 3 show the errors (  (see Equations (7), (8), (9), and (10)). )32 ,ee
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Fig. 2. Error e2

 
Fig. 3. Error e3

 
 Note that from t=3.8 seconds, the observation errors are in the order of 10-3. 
 In Figures 4 and 5 the behavior of the first ciphered signal mik (cipher system), with its respective recovered 
signal (decipher system), can be seen. 
 

 
 

Fig. 4. Ciphered signal m1k. Fig. 5. Deciphered signal  ks1

∧

 
 Figures 6 and 7 show the behavior of the second ciphered signal m2k, with its respective recovered signal. 
 

  
 

Fig. 6. Ciphered signal m2k

 
Fig. 7. Deciphered signal  ks2ˆ
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4.2 Ciphering and Deciphering Information 
To perform the ciphering and deciphering algorithm, we implemented, using the C programming language, 
prototypes of the discretized Lorenz system and the corresponding state observer to test the proposed ciphering and 
deciphering mechanism. To carry out the tests we ciphered and deciphered a 24 bits BMP image file using 
simultaneously the second and the third states of the Lorenz system. Having completed the ciphering, we obtained 
two different ciphered files of the original image. These two files were then deciphered using the second and third 
estimated states, retrieving in both cases the original image. 
 
 We obtain the two ciphered files from the original image, using the operations: 
 

{ }kkkkkk xsmxsm 3221 200,100 +=+=  (11) 

 
where  is the k-th byte of the .bmp imageks 3, x2k and x3k are the second and third Lorenz system states [see 
Equations (7) and (8)]. The deciphering process was implemented using the operation: 
 

)ˆ200();ˆ100( 322211 kkkkkk xmsxms −=−=  (12) 
               

where the states  and  are the estimated states in the state observer proposed [see Equations (9) and (10)]. kx2ˆ kx3ˆ
Note 1: To be able to use this ciphering/deciphering scheme, the sender and the receiver must agree on the following 
information: the parameter values assigned to the cipher and the decipher systems ( )21,,,,,, λλσ hkbr . We 
recommend using time t=kh=4 seconds to start the cipher mechanism. 
 
 Let us consider the image in Figure 8: 
 

 
 

Fig. 8. Image used to cipher and decipher 
 
 First, we used the state x2k with a scale factor of 100 to cipher the original image m1k (see (11). Simultaneously, 
we ciphered the same image using state x3k, with a scale factor of 200; in Figures 9 and 10 we show the ciphered 
images m1k and m2k, respectively [see (11)]. 
                                                           
3 Recall that a .bmp file uses the first sixty bytes (more or less) to store some data structures containing information about the file itself 
and the bitmap, such as image size and color. For illustrative purposes we copy these bytes from the original file to the ciphered file. The 
remaining bytes of the original file are read one by one, ciphered and written, also one by one, in the file that will contain the ciphered 
image.  
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Fig. 9. The ciphered image using x2k. Fig. 10. The ciphered image using x3k. 
 
 Next, we recovered the original information; Figure 11 shows the deciphered message s1k using the estimated 
state (see (12)). Simultaneously, we deciphered the ciphered image mkx2ˆ 2k, getting  using the estimated state 

 (see (12)), as be seen in Figure 12. 
ks2ˆ

kx3ˆ

  

Fig. 11. The deciphered image using  kx2ˆ Fig. 12. The deciphered image using  kx3ˆ
 
 Figure 13 shows two amplified fragments of each ciphered image, m1k and m2k, respectively, which enable us to 
observe that they are completely different. This is because the states used in the ciphering process represent, in the 
original model, different things. Indeed, the Lorenz system gives an approximated description of the convection 
phenomena when a fluid in a container is heated from below and the states x2k and x3k are proportional to the 
horizontal and vertical temperature variations, respectively (see for instance [Tsonis, 1992]). 

  
Fig. 13. Amplified corner fragments from the top left hand corner of each ciphered image 

  
 The prototype developed to illustrate performance of Algorithm 1 can be used to cipher and decipher any kind 
of text. In fact, in order to verify it, we ciphered the source code of a small C program free of syntax errors. Then, we 
proceeded to decipher and compile it, obtaining the corresponding executable program. 
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 We conclude this section with the observation that the variable state of the Lorenz system used to cipher 
depends on the user’s decision and it makes no difference to the security level provided by the Algorithm 1.  
 
5 Conclusions 
 
This article presents a very simple methodology to cipher and decipher any kind of information, taking advantage of 
the chaotic nature of the Lorenz system. 
 Basically, this algorithm can be summarized as follows: 
 The signal to be ciphered is mixed with a chaotic system variable. This variable is chosen in a way that it can be 
reconstructed by means of one or more outputs of the sender chaotic system. The mechanism to recover the signal 
can be used almost immediately, depending on how different the initial conditions between the sender system and the 
receiver or observer system are. We recommend that the difference between the initial conditions of the sender and 
the receiver be very small, and we recommend starting the cipher process after time t 4 seconds. ≥
 The deciphering system is based on the use of a state observer, which can be considered as a pseudo-copy of the 
original system (see Equations (1) and (2)). The convergence to zero of the observation errors is guaranteed via the 
second Lyapunov method. To do this, first, we chose a Lyapunov function, (see (4)), which is an energy function of 
the Lorenz system; then we showed that the derivative respect to time of V along the trajectories generated by the 
observation errors is defined negative, therefore the observation errors exponentially converge to zero. 
 Finally, we developed an algorithm to cipher and decipher any kind of digital information applying the Lorenz 
system and its state observer, both expressed in their approximated discrete form, using the Runge-Kutta method (see 
the discrete equations). 
 
References 
 
1. Acheson D., “From Calculus to Chaos: An introduction to dynamics”, Oxford University Press, 280 pages, 

1997. 
2. Alligood K. T., Sauer T. and Yorke J.A., “Chaos: An Introduction to Dynamical System”, Springer, 603 pages, 

1997. 
3. Tsonis, A. A., “Chaos. From Theory to Applications”, Plenun Press, New York, 1992. 
4. Carroll T. L. and Pecora L., “Synchronizing chaotic circuits”, IEEE Transactions on Circuits and Systems, vol. 

38, (4) (1991), pp. 453-456. 
5. Conrad M., “Algorithmic specification as a technique for computing with informal biological models”, 

Biosystems vol. 13 (1981) , pp. 303-320. 
6. Conrad M., “Adaptability”,. Plenun Press, New York, 1983. 
7. Cuomo. K. M., Oppenheim A. V. and Strogatz S. H., “Synchronization of Lorenz-Based Chaotic Circuits with 

Applications to Communications”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal 
Processing, vol. 40(10), October 1993, pp. 626-633. 

8. DeMillo R. A., Lynch N. A. and Merritt M. J., “Applied Cryptology, cryptographic protocols, and computer 
security models”, American Mathematical Society, Proceedings of Symposia in Applied Mathematics, vol. 29, 
1983. 

9. Devaney R. L., “An Introduction to Chaotic Dynamical System”, Addison-Wesley, 1989. 
10. Devaney R. L, “Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics”, Addison-Wesley, 

1990. 
11. Fradkov A. L. and Markov A. Yu., “Adaptive Synchronization of Chaotic Systems Based on Speed Gradient 

Method and Passification”, IEEE Transactions on Circuits and Systems-I:  Fundamental Theory and 
Applications, vol. 44(10), 1997, pp. 905-912. 

12. Gerald C. F.  and Wheatley P. O., “Applied Numerical Analysis”, Addison-Wesley, Fifth edition, 1994. 

Computación y Sistemas Vol. 11 No. 1, 2007, pp 26-38 
ISSN 1405-5546 
 



A Simple Deterministic Lorenz Chaotic-Based Methodology to Cipher and Decipher Information   37 

13. Holden A. V.  and Muhamad M. A., “Chaotic activity in neuronal systems”,  Cybernetics and Systems 
Research 2, Ed. R. Trappl,  Elsevier, Amsterdam, 1984, pp. 245-50. 

14. Holden A., “Chaos”, Princeton University Press, 1986. 
15. Huijberts H. J. C., Nijmeijer H. and Willems R. M. A., “A control perspective on communications using 

chaotic systems”, Proceedings 37th IEEE Conference on Decision and Control, Tampa, Florida December 16-
18, 1998, pp. 1957-1962, vol. 2. 

16. Khalil H. K. “Non-linear Systems”, Prentice Hall, 3rd. edition, 2002. 
17. Nijmeijer H., and  Mareels M. Y., “An Observer Looks at Synchronization”, IEEE Transactions on Circuits 

and Systems-I: Fundamental Theory and Applications, vol. 44(10), 1997, pp. 882-890. 
18. Ogorzalek M.J., “Taming Chaos Part I: Synchronization”, IEEE T.C.S. Vol. 40, 1993, pp. 693-699. 
19. Pecora L. M. and Carroll T. L., “Driving systems with chaotic signals”, Physical Review A. vol. 44, no.4, 

1991, pp. 2374-2383. 
20. Pfleeger  C., “Security in computing”, Prentice-Hall, 1996. 
21. Schneier B., “Applied Cryptography”, John Wiley & Sons, 1996. 
22. Sira-Ramírez H. And Cruz-Hernández C., “Synchronization of Chaotic System:  A Hamiltonian System 

Approach”, International Journal of Bifurcations and Chaos, vol. 11(5), 2001, pp. 1381-1395. 
23. Special Issue, Systems and Control Letters, Vol. 31, 1997. 
24. Special Issue, Chaos Synchronization and Control: Theory and Applications, IEEE Transactions on Circuits and 

Systems-I:  Fundamental Theory and Applications, vol. 40, (1993). 
25. Special Issue, “Chaos Synchronization and Control: Theory and Applications”, IEEE Transactions on Circuits 

and Systems-I; Fundamental Theory and Applications, vol. 44, (1997). 
 
 
 
 
 
 

 
 

Miguel Santiago Suárez was born in Mexico City, Mexico. He received a B.S. degree in Cybernetics and Computer 
Science from the School of Engineering of the Lasalle University in 1989. From the Research Institute of Applied 
Mathematics and Systems he received the M.S. degree in Computer Sciences in 2001. In 2005 he received a Ph.D. in 
Computer Sciences from the CIC-IPN. Since 2007 he is a member of the SNI of México. 

Computación y Sistemas Vol. 11 No. 1, 2007, pp 26-38 
ISSN 1405-5546 

 



38   Miguel S. Suárez Castañón, Carlos Aguilar Ibáñez and Juan C. Martínez García  

 

 
 
Carlos F. Aguilar Ibáñez was born in Tuxpan, Veracruz, Mexico. He graduated in Physics at the Higher School of 
Physics and Mathematics of the National Polytechnic Institute (IPN), Mexico City 1990. From the Research Center 
and Advanced Studies of the IPN (Cinvestav-IPN) he received the M.S. degree in Electrical Engineering in 1994, 
and a Ph.D. in Automatic Control in 1999. Ever since he has been a researcher at the Center of Computing Research 
of the IPN (CIC-IPN). As of 2000 he belongs to the National System of Researchers (SNI) of Mexico. His research 
focuses in non-linear systems, mechanical vibrations and chaos theory. 

 
 

 
 

Juan Carlos Martínez García was born in Tlalnepantla, Mexico, in 1964. He is Mechanical and Electrical Engineer 
from the National Autonomous University of Mexico (1989), and Master of Science in Electrical Engineering from 
Cinvestav-IPN (1991). He received a Ph.D. in Automatic Control Theory from Ecole Centrale de Nantes, Francia, in 
1994. He is with the Department of Automatic Control, Cinvestav-IPN, Mexico City, Mexico. His fields of research 
include: linear control systems, robotics, failure detection in dynamical systems, evolutionary computing, and robust 
control. He belongs to the SNI of México. 

Computación y Sistemas Vol. 11 No. 1, 2007, pp 26-38 
ISSN 1405-5546 
 


	 
	Abstract 
	Keywords: Cipher/Decipher, Chaotic System, State Observer, Discrete Lorenz System  
	 
	Resumen 
	 
	2 A Simple Lorenz System-Based Observer 
	3 Information Cipher and Decipher Mechanism 
	4 Numerical Implementation 
	5 Conclusions 
	References 


