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Resumen

Este  trabajo  propone  una  metodología  para obtener  el  precio de una  opción  asiática  con  subyacente

promedio  mediante  simulación  Monte  Carlo.  Se  supone  que  la  tasa  de interés  es conducida  por un proceso

de  reversión  a la  media  de tipo  Vasicek  y CIR  con  parámetros  calibrados  por  máxima  verosimilitud.  La

simulación  incluye  el  remuestreo  cuadrático,  el  cual reduce  el  uso  de recursos  computacionales;  en  particular,

el  método  mejora  la generación  de  la  matriz  de varianza-covarianza.  La  metodología  propuesta  se aplica  en

la  valuación  de  opciones  sobre  el  precio  de AMXL.  Los  resultados  muestran  que  al  comparar  los  precios  de

opciones  europeas  —tanto  simulados  como  con  los  publicados  por  MexDer—  con  sus  contrapartes  asiáticas,

los  precios  de  opciones  asiáticas  son  menores  en  el  caso  de opciones  de  compra  y de  venta  dentro  del  dinero.

Para  opciones  de venta,  los  precios  simulados  fueron  menores  en todos  los  casos.  Asimismo  se encontró  que

la  diferencia  se incrementa  conforme  el  plazo  al  vencimiento  de la  opción  aumenta.
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Abstract

This  paper  proposes  a methodology  to  obtain the  price  of  an Asian  option  with  underlying  average

through  Monte  Carlo  simulation.  It  is assumed  that  the  interest  rate  is  driven  by  a  mean  reversion  process

of  Vasicek  and CIR type  with  parameters  calibrated  by  maximum  likelihood.  The  simulation  includes  the

quadratic  resampling  which  reduces  the  use  of computational  resources,  in  particular  the  method  improves

the  generation  of variance  covariance  matrix.  The  proposed  methodology  is applied  in  the  valuation  of

options  on  the  price  of AMXL.  The  results  show  that  by  comparing  prices  of European  options,  with  both

simulated  and  published  by  MexDer  with  their  Asian  counterparts,  Asian  options  prices  are lower  in  the  case

of  call  and  put  options in  the  money.  For  put options  simulated  prices  were  lower  in  all cases.  Moreover,  it

was  also  found  that  the  difference  increases  as  the  time  to  maturity  of the  option  increases.

All  Rights  Reserved  ©  2016  Universidad  Nacional  Autónoma  de  México,  Facultad  de  Contaduría  y

Administración.  This  is an  open  access  item distributed  under  the  Creative  Commons  CC  License

BY-NC-ND  4.0.

JEL classification: C15; C46; C65; G13
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Introducción

Las  opciones  asiáticas,  también  conocidas  como  opciones promedio,  están  clasificadas  dentro

de los derivados  exóticos;  en  particular,  pertenecen  a  las  opciones  dependientes  de  su  trayectoria,

es decir,  el valor  de  la opción  al vencimiento  no solo  depende del valor que alcance  el activo

subyacente al  vencimiento,  sino  también  de  la evolución  que tenga  este  durante  toda  la vida

del contrato.  Se  denominan  asiáticas  puesto que  fueron operadas  en  algunos  mercados  asiáticos

para desmotivar  el sobreejercicio  al vencimiento1. Asimismo,  las  opciones asiáticas  pueden  ser

europeas o americanas.  Los  promedios  comúnmente  utilizados  en  los contratos  de  opción  de

esta clase  son  los promedios  aritmético  o geométrico  del  subyacente,  y la mayoría  de  estos

contratos se  negocian  con muestreo  discreto.  Existe  una extensa  variedad  de  subyacentes  en  este

tipo de contratos:  divisas,  acciones,  tasa  de interés,  commodities, seguros  y  energía  (eléctrica).

Son diversas  las  razones  por  las  que son populares,  y algunas  de  ellas se  mencionan  en el  desarrollo

de esta  investigación.

Las opciones  asiáticas  son  útiles  cuando  se realizan  frecuentes  transacciones  sobre  un  mismo

activo en un  tiempo  determinado,  es  decir, resulta  más  barato  comprar  una opción  asiática  que

considere n diferentes  precios  de  un  mismo activo  (a  través  de  un  promedio)  al vencimiento,

que comprar  n opciones del  mismo  activo a  diferentes  vencimientos,  lo  cual  considera  n

diferentes  primas,  siendo  muy  costoso,  pero  en  ambas  alternativas  la cobertura  de  ries-

gos es muy  similar,  por lo  cual  ofrecen  una  manera  menos  costosa  de  cubrir  el riesgo de

mercado.

Una manera  de  clasificar las opciones  asiáticas  respecto  al precio  de  ejercicio  es  como  sigue:

si el  precio  de ejercicio  depende  de  una cantidad  fija,  la opción  se  conoce como  una opción

asiática con  precio  de ejercicio  fijo u  opción  con  precio  promedio.  Si  el precio  de  ejercicio  es

proporcional al precio  del  activo, entonces  es  una opción asiática  con  precio de  ejercicio  flotante  u

opción con precio  de  ejercicio  promedio.  Otra  distinción  depende  del tipo  de promedio  utilizado,

1 Se comercializaron por primera vez en 1987, cuando la  oficina de  Bankers Trust en Tokio las utilizó para valuar

opciones con precio promedio sobre contratos del barril de petróleo (Venezia, 2010).
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ya sea  aritmético  o geométrico,  ambos con diferentes  pesos  en las  observaciones  previas.  El

promedio se  puede  calcular  con muestreo  discreto, es  decir,  con un  número  finito de realizaciones

previas, o con  muestreo  continuo.  En la práctica,  todos  los contratos  se suscriben  sobre la media

aritmética con  muestreo  discreto, aunque  en la literatura la mayoría  de  los  trabajos  consideran  el

caso continuo.

Algunas  de  las  razones  que justifican  la negociación  de  opciones  asiáticas  son las siguientes;

debido a  que  los contratos  que solo  dependen  del  precio final  del  subyacente  son más  vulnerables

a cambios  repentinos  de  gran  tamaño  o manipulación  de  precios,  las  opciones  asiáticas  son  menos

sensibles a  dichos  fenómenos.  Algunos agentes  prefieren opciones  asiáticas  como  instrumentos

de cobertura,  ya que pueden  estar  expuestos  a  la evolución  del  subyacente  en  un  intervalo  de

tiempo. Además,  las  opciones  asiáticas  son más  baratas  que sus  contrapartes  plain vanilla  y  son

relativamente más  fáciles  de  cubrir. Este  último resulta  de  que si toma  en  cuenta  que  la  volatilidad

del promedio  por lo  general  será  menor que  la del subyacente;  además,  conforme  más  cercana

sea la  fecha de  vencimiento,  menor  será  la variación del  promedio.  Esto  implica  una  menor

sensibilidad de  la opción  ante  cambios  en el  subyacente  que para  una opción plain  vanilla con el

mismo vencimiento.

En lo que  concierne  a la  valuación  de  opciones  con media  aritmética,  no hay  soluciones en

forma cerrada  mediante  el enfoque  probabilista.  En  este  enfoque  se  supone  que el subyacente

sigue un movimiento  geométrico  browniano,  lo que  equivale  a suponer  que el subyacente  sigue

una distribución  lognormal.  A diferencia  de  que la media geométrica  modelada  como  el producto

de variables  aleatorias  lognormales  se  distribuye  lognormal,  la media  aritmética  es  la  suma de

variables aleatorias  lognormales correlacionadas,  y  es  por  esto  que no existe  una expresión  en

forma cerrada  para  la función  de  distribución  de  dicha suma;  véase,  por ejemplo,  Linetsky  (2004).

El mismo  problema  resulta  en  la valuación  de  una  opción  canasta,  cuyo  precio depende  de  la  media

aritmética de  varios  activos.

El precio  de  una  opción asiática  con media  aritmética  se puede  aproximar  por  su  contraparte

geométrica de  varias  maneras.  Por  ejemplo, Turnbull  y  Wakeman  (1991)  aproximan  el precio  de

una opción  con media  aritmética  al coincidir los  momentos  con  sus contrapartes  geométricas.

Incluso se pueden  utilizar  métodos  de Monte  Carlo  con reducción  de  varianza,  con el precio  de

la opción  geométrica  como  la variable  de  control para  calcular  el precio  de  las  aritméticas;  véase,

por ejemplo,  Glasserman  (2003).  Una  fórmula  de aproximación  de  opciones  asiáticas  se  muestra

en Levy  (1992a,  b).

Existen  en  la literatura soluciones  en  forma  cerrada  para opciones  asiáticas  con  media  geomé-

trica con  muestreo  continuo;  véanse,  por ejemplo, Angus (1999), Vorst  (1992) y Kwok  y Wong

(2000).  Asimismo,  Dai  (2003) propone  un  modelo  binomial  para  valuar  opciones  de  tipo  europeo

y americano  con media  geométrica.  Estos  modelos tienen  la ventaja  de que la  media  geométrica

de variables  aleatorias  lognormales  resulta  tener una distribución  lognormal.  Una vez  que se  tiene

la función  de densidad  conjunta  del precio  del subyacente  y  la media,  el  precio  de  la  opción  se

obtiene mediante  la esperanza  de la función  de  pago  de la opción  bajo una  medida  neutral  al

riesgo.

Fouque  y  Han  (2003)  combinan  los enfoques de  Fouque, Papanicolaou  y Sircar  (2000) y

Vecer  (2002)  para  valuar  opciones  asiáticas  bajo la hipótesis  de  reversión  a la volatilidad  prome-

dio. Su  trabajo propone  calibrar  los  parámetros  con  precios de  mercado  de  opciones  europeas y

calcular el  precio  de  la opción  con  un  algoritmo  numérico,  que  consiste  en  resolver  2  ecuacio-

nes diferenciales  parciales con coeficientes  dependientes  del tiempo.  Sin  embargo,  la precisión

de este método  no  se  muestra,  pues  no proporciona  solución  analítica  para  el  precio de la

opción.
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Por  otro  lado,  hay varios  artículos  que  suponen  que  la  tasa  de  interés  para valuar  una  opción  es

conducida por un  proceso  estocástico.  El  primer  trabajo  que incorpora  tasa  de  interés  estocástica

en la valuación  de  opciones  se  debe  a  Merton  (1973).  En Goldstein  y Zapatero (1996)  obtienen

una fórmula  para  valuar  una opción  sobre una  acción  con el supuesto de que la tasa  de  interés

es conducida  por un  proceso  endógeno  de  tipo  Vasicek  en  un  enfoque  de  equilibrio  de  tasas de

interés. Kim  y Kunitomo (1999)  extienden  el modelo  de  Black  y  Scholes  (1973)  al modificar  la

fórmula con  tasas de interés  determinista  y  un  término  de  ajuste  conducido  por la volatilidad  de

la tasa  de interés.  Recientemente,  Kim,  Yoon y Yu  (2013) han desarrollado  un modelo  de  valuación

de opciones  en el que la tasa  de  interés es  conducida  por un  proceso  de  tipo  Hull  y  White  bajo

un enfoque  de  volatilidad  estocástica  con el objetivo  de  evaluar  la sensibilidad  del  precio  de  la

opción ante cambios  en  la  volatilidad  de  la tasa  de  interés.

De esta  manera  en  la literatura hay una amplia variedad  de  métodos  para  determinar el precio

de una opción  sobre la media  aritmética. En  términos generales  existen  métodos basados  en  la

solución a una ecuación  diferencial  parcial,  aproximaciones  analíticas,  cotas  inferiores  y superio-

res, árboles  binomiales,  métodos  de  transformación  y métodos  de  Monte  Carlo.  Este  trabajo no

pretende dar  una visión  completa  de  los métodos  anteriores;  en  particular  se  pretende  contribuir

con una  metodología  basada en  la simulación  Monte  Carlo.

En la presente  investigación se  obtiene  mediante  simulación  Monte  Carlo  el  precio  de  una

opción asiática  con subyacente  promedio  con  media  aritmética.  Los  supuestos  de  la metodología

propuesta son:  la tasa  de interés es  estocástica  y conducida  por un  proceso  de  reversión  a  la

media, específicamente,  se  supone  que  la dinámica  de  la tasa  de  interés es  modelada  por un

proceso de tipo  Vasicek  y por un  proceso  de  tipo  CIR.  Para obtener  el precio  de la opción  bajo

los supuestos  anteriores  se  hace  uso de  la simulación  de  Monte  Carlo  y  la metodología  del

remuestreo cuadrático  de Barraquand  (1995),  que  mejora la precisión  de los cálculos  y reduce  el

uso de recursos  computacionales.

Este  trabajo  está  organizado como  sigue:  en  la siguiente  sección  se  plantean  las  funciones

de pago  de una opción  asiática  considerando  los  promedios  aritmético  y geométrico;  asi-

mismo se comparan  precios  de  opciones  obtenidos  con el modelo  de  Kemna  y  Vorst  (1990)

y Black  y Scholes  (1973);  en  el transcurso  de  la tercera sección  se  expone  el método  de

remuestreo cuadrático  de  Barraquand  (1995); en la cuarta  sección  se  plantea la metodo-

logía para  determinar  el precio  de  una  opción  asiática  con  subyacente  promedio  con tasa

de interés  estocástica  conducida  por  un  proceso  de  reversión  a  la media;  en  la quinta sec-

ción se  realiza  un análisis  comparativo  entre precios  de  opciones  europeas  y asiáticas  con

subyacente promedio  obtenidos  con la metodología  propuesta;  por último,  se  presentan  las

conclusiones.

Opciones  asiáticas  con  promedio  aritmético  y geométrico

Una opción  con precio  de  ejercicio  promedio  es  una  opción asiática  en  la que su  pago  depende

de un  precio  de  ejercicio  igual al promedio  aritmético  del  precio  del subyacente  durante  la  vida  de

la opción.  Hay varias maneras  de  generar  valores  promedio  del  precio  de un subyacente  St.

Si se  observa  el comportamiento  de  St en  intervalos  de  tiempo  discretos  ti de manera  equidis-

tante durante  un  intervalo  de  tiempo h :=  T/n, de  esta  manera  se  obtiene  una serie  de  precios

St1 ,  St2 , . .  .,  Stn .  Por ejemplo,  para  el  promedio  aritmético:

1

n

n∑

i=1

Sti =
1

T
h

n∑

i=1

Sti .
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Tabla 1

Cuadro resumen de funciones de  pago de una opción asiática

Función de pago Nombre de la opción

max
(
Ŝ − K, 0

)
Opción de compra con  subyacente promedio

max
(
K  − Ŝ, 0

)
Opción de venta con subyacente promedio

max
(
ST − Ŝ, 0

)
Opción de compra con  precio de ejercicio promedio

max
(
Ŝ − ST , 0

)
Opción de venta con precio de ejercicio promedio

Fuente: elaboración propia.

Si  las  observaciones  se  realizan  continuamente  durante  un  intervalo de  tiempo  0 ≤ t  ≤  T,  la  media

anterior corresponde  a  la  integral:

Ŝa:=
1

T

∫ T

0

Stdt, (1)

La mayoría  de  los  contratos  de  opciones  asiáticas  son sobre la media  aritmética.  En  otros casos

se utiliza  la  media  geométrica,  que  se  puede  expresar  como:

(
n∏

i=n

Sti

)1/n

= exp

(
1

n
ln

n∏

i=n

Sti

)

= exp

(
1

n

n∑

i=1

ln  Sti

)
.

Por  lo  tanto,  la  media  geométrica  con muestreo  continuo  del  precio  St es  la integral:

Ŝg:=  exp

(
1

T

∫ T

0

ln Stdt

)
. (2)

Si los  promedios Ŝa y Ŝg se construyen  en  el periodo  de  tiempo 0  ≤  t  ≤  T,  entonces  corresponde

a una  opción europea.  Si  se  permite  el ejercicio  anticipado  en  t  <  T,  se  reescribe  a Ŝa y Ŝg,  por

ejemplo:

Ŝ:=
1

t

∫ t

0

Sθdθ.

Con  un  valor  promedio Ŝ dado como  la media  aritmética  en  (1)  o la media geométrica  en  (2), las

funciones de  pago  de opciones  asiáticas  se  resumen  como  se  muestra  en  la tabla 1.

Al comparar  las  funciones  de  pago  anteriores  con las  de  una opción  plain  vanilla,  para

una opción asiática  con subyacente  promedio  se  tiene  que Ŝ sustituye  a S,  mientras  que

para una  opción asiática  con precio  de  ejercicio  promedio Ŝ sustituye  a K.  Una  característica

notable de  las  opciones  asiáticas  es  aprovechar  el hecho  de  que el  promedio  del  subyacente  tiene

menor volatilidad  justo  antes de  la fecha de  vencimiento2.

2 Una descripción más detallada de  las ventajas del uso de  promedios está en Wilmott (2006).
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Tabla 2

Parámetros empleados para calcular precios de opciones asiáticas de compra y de venta con el  modelo de  Kemna y Vorst

(1990) y el de Black y Scholes (1973)

St K t T  τ = T − t  r σ

50 50 0 1 1 0.1 0.4

Fórmula  de Kemma  y  Vorst  para  aproximar  el precio  de  una  opción asiática  con media

geométrica continua

Kemna  y Vorst (1990)  muestran  que  las  opciones  asiáticas con media  geométrica  continua  se

pueden valuar  con el mismo enfoque  de  las  opciones  plain  vanilla;  solo  se  deben  cambiar  los

parámetros de volatilidad  σ por σa, y  el costo de  acarreo  b  por  bA.

De acuerdo con Kemna  y Vorst,  las  fórmulas  para  valuar  una opción  de  compra  y una  opción

de venta  son:

c ≈  Ste
(bA−r)(T  −t)Φ (d1) − Ke−r(T −t)Φ (d2) ,

p ≈  Ke−r(T −t)Φ (−d2) −  Ste
(bA−r)(T −t)Φ (−d1) .

(3)

con d1 y d2 dados  por:

d1 =
ln (St/K) +

(
bA + 1/2σ2

a

)
(T −  t)

σ
√

T  −  t
,

d2 = d1 − σa

√
T  −  t.

(4)

La  función  Φ(d)  es  la función  de  distribución  acumulada  de E∼N(0,  1).  La  volatilidad  ajustada

es igual  a:

σa =
σ

√
3
,

mientras  que  el costo  de acarreo ajustado  es:

bA =
1

2

(
v −

σ2

6

)
.

Como se  mencionó  en la introducción,  el precio  de  una  opción  asiática  es  menor  que el de  una

opción europea  con  los  mismos  parámetros,  por  lo  que se  procedió a  investigar empíricamente

tal afirmación.  Para lograr  tal objetivo,  considere  los  parámetros  de  la tabla 2.

Se calculan  los precios  de  las  opciones  de  compra  y de  venta  de acuerdo  con los  parámetros

de la  tabla  2.  Los  resultados  para  opciones de  compra  se  muestran  en  la  figura  1,  el precio del

subyacente se consideró  desde  St =  20  hasta  St =  100  con incrementos  de  5. Se  observa  que para

opciones fuera del dinero  el  precio  de  una opción  europea  de  compra  es  mayor  que el de  una

opción de asiática,  y para  opciones  dentro  del dinero el  precio de  una  opción europea  de  compra

es mayor  que el de  una asiática  con  los mismos  parámetros,  y lo  mismo  se  observa  para opciones

en el  dinero.  Análogamente con las opciones  de  venta  se  calculan  los  precios.  Los  resultados  se

muestran en la  figura  2.

Según los  resultados  obtenidos  para  opciones de venta  en la figura  2,  se  observa  que  para

opciones fuera  del  dinero, en  el dinero  y dentro  del  dinero  el precio  de una opción  asiática  de
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Figura 1. Comparación entre precios de opciones asiáticas de  compra obtenidos con el modelo de Kemna y Vorst (1990)

y con el modelo de Black y Scholes (1973).

Fuente: elaboración propia.

30

25

20

15

10

5

20
0

–5

30 40 50 60

S

P_AsianKV Put_BS

70 80 90 100

Figura 2. Comparación entre precios de opciones asiáticas de venta con el modelo de Kemna y Vorst (1990) y con el

modelo de Black y Scholes (1973).

Fuente: elaboración propia.

venta  es  menor  que el de  una opción de  venta  europea  en  todos  los casos.  Sin embargo,  para

opciones muy  dentro del  dinero  el precio de  la asiática  es  mayor  que el de  la europea.

Remuestreo  cuadrático

Uno  de  los temas  más  representativos  de  las  finanzas  computacionales  es  la determina-

ción  del  precio  de  un  activo  que no  tiene una  fórmula  cerrada.  Esta  metodología  generalmente
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consiste  en calcular  la esperanza  matemática  de una función  de pago;  por  ejemplo, la función  de

pago de  una  opción.  La simulación  Monte  Carlo3 es  una herramienta  ampliamente  utilizada  en  la

práctica: la  idea  básica  consiste  en  estimar  la esperanza  de  funciones  de variables  aleatorias  por

medio del promedio  de  un número  considerable  de  muestras obtenidas  de  dichas  simulaciones,

aunque para  obtener  una precisión  adecuada  se  requiere  incrementar  el  número  de simulaciones,

y con  los  recursos  de cómputo actuales  ese punto  no  es  problema.  Sin embargo,  en  situaciones

complejas en  las  que se  requiere  simular  un  proceso  con varias  variables,  los  cálculos  computa-

cionales se convierten  en  un  tema  que merecen especial  atención.En  este  contexto,  Barraquand

(1995) señala  que cuando  se generan  variables aleatorias,  se  obtienen  estadísticas  de  la muestra

que en  general  no  coinciden  con las  estadísticas  teóricas.  Para aprovechar  las  propiedades  de

las fórmulas  teóricas  que contienen  tales  estadísticas  es  necesario  transformar  los  datos  con el

propósito de establecer  una igualdad  entre  los  parámetros  de  la muestra  y los parámetros  teóricos.

Sin duda  el parámetro  clave  es  la  matriz de varianza-covarianza  de  un  vector aleatorio.  A conti-

nuación se muestra  dicha  técnica.  Sea X- = (X1,  .  .  ., Xn)⊤ un vector  aleatorio  de  dimensión  n  con

media:

mX =  E [X] = (E[X1],  .  .  ., E[Xn])⊤, (5)

y matriz  de varianza-covarianza:

ΣX =  E

[(
X- −  m- X

) (
X  −  mX

)⊤
]

= E[XX⊤] −  mXm⊤
X.

(6)

Para estimar  m- X-
y  ΣX-

, se  ejecutan  M  simulaciones  y  luego  calcular  las estadísticas  de  la muestra

como son:

m̂X =
1

M

M∑

k=1

Xk (7)

y

Σ̂X =
1

M

M∑

k=1

(
Xk −  m̂X

)  (
Xk −  m̂X

)⊤
,  (8)

donde  X-
k es el vector  de  la  k-ésima  simulación.  Al  desarrollar la expresión de  la varianza  muestral

resulta:

Σ̂X =
1

M

M∑

k=1

Xk(Xk)
⊤ −  m̂Xm̂⊤

X (9)

De  acuerdo  con  la ley de  los grandes  números,  cuando M  es  muy  grande,  m̂- X-
y Σ̂X-

están  muy

cercanas a  m- X-
y  ΣX-

con  buena precisión.

Si M  es  pequeña,  la precisión  no  es  significativa.  Sin  embargo,  es  posible  modificar  los datos

en X- de tal  manera  que la media  muestral y la matriz  de  varianza-covarianza  coincidan  con  la

media y la matriz  de  varianza-covarianza  teóricas.  Al  hacer las estimaciones  con datos Σ̂X-
es  una

3 Véase Boyle, Broadie y Glasserman (1997) respecto al uso de  la simulación Monte Carlo en  finanzas computacionales.
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matriz  cuadrada  definida  positiva y  simétrica,  por lo  cual  la raíz  cuadrada  de la matriz Σ̂X-
existe

y es  regular.

Considere  la matriz:

H  =
√

ΣX

(√
Σ̂X

)−1

(10)

y  el  vector:

Y  =  H
(
X −  m̂X

)
+ mX. (11)

Si se ejecutan  M simulaciones  el nuevo  vector  es:

Y k =  H
(
Xk −  m̂X

)
+ mX (12)

y  la  media  muestral  de  Y-
k se  convierte  en:

m̂Y =
1

M

M∑

k=1

Y k. (13)

Al  desarrollar  la suma obtenemos  una igualdad  entre la media  muestral de  Y- y la media  teórica

de X- :

m̂Y =
1

M

M∑

k=1

Y k =  mX.  (14)

Análogamente,  la matriz  de  varianza-covarianza  de  Y- es:

Σ̂Y =
1

M

M∑

k=1

(
Y k −  m̂Y

)  (
Y k −  m̂Y

)⊤

=
1

M

M∑

k=1

(
H

(
Xk −  m̂X

)
+  mX −  m̂Y

)
×

(
H

(
Xk − m̂X

)
+  mX −  m̂Y

)⊤

=
1

M

M∑

k=1

H
(
Xk −  m̂X

)
×  H

(
Xk − m̂X

)⊤
H⊤

=  HΣ̂XH⊤

=
√

ΣX

(√
Σ̂X

)−1 (√
Σ̂X

√
Σ̂X

)  (√
Σ̂X

)−1√
ΣX

=  ΣX.

(15)

Esta  transformación  implica  que la media de  la muestra  Y-
k es  idéntica  a la media  teórica de  X- y la

matriz de  varianza-covarianza  de  Y-
k es  idéntica  a la matriz  de  varianza-covarianza  teórica de  X- .

Para ejecutar  esta  transformación  es  necesario  conocer  la matriz  de  varianza-covarianza  teórica

de X- .  En  estas  condiciones  esta  transformación  mejora la precisión  de los cálculos  obtenidos  de

la simulación  Monte Carlo.
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Opción  asiática  con  subyacente  promedio  y tasa  de  interés estocástica

Una  manera  de  considerar la naturaleza  estocástica de  la tasa  de  interés  es  modelarla  por  medio

de procesos  de  reversión  a  la media,  como  por ejemplo  con  modelos  de  tasa  corta  ampliamente

citados en la  literatura  como  son el modelo  de  Vasicek  (1977) y Cox,  Ingersoll  y  Ross (1985),  entre

otros. En  lo  que  respecta  a la calibración  de  estos  modelos  se  encuentran  el método  generalizado  de

momentos y series  de  tiempo.  Un método  alternativo  para  calibrar  los parámetros  de  los modelos

de tasa  de interés  es  el propuesto  por Overbeck  y Rydn  (1997).  En términos prácticos  este  método

consiste en la estimación  de  un  conjunto  de parámetros  dentro  de  la  esperanza  condicional  de

un proceso  estocástico:  E[Xt|Xt−1].  Posteriormente  los  valores  estimados  se  usan  como  valores

iniciales en un enfoque  de máxima  verosimilitud  que  acelera la convergencia  a  un  óptimo global.

Por otra  parte,  una de  las  metodologías  para determinar  el precio  de  una opción es  por medio

de simulación  Monte Carlo.  La  flexibilidad  de  la metodología  aquí  propuesta  radica  en  que,  con el

supuesto de  que  el precio  del subyacente  es  conducido  por un  movimiento  geométrico  browniano,

se plantea  la función  de pago de  la opción,  se  genera  un  número  particular  de  trayectorias  del

subyacente y se  trae  a  valor  presente  con la tasa  libre  de riesgo  el promedio  de  las trayectorias;  es

así como  se  puede  determinar  el precio  de  una opción  europea,  de  opciones exóticas,  entre  otras,

y además  es muy  útil cuando  no  se  tiene  una fórmula  cerrada.  Para  fines de  este  trabajo,  se  supone

que la tasa  de  interés con la cual  se  calcula la esperanza  de  la función  de  pago para  una opción

europea de compra  y venta,  y  de  una opción asiática  con  subyacente  promedio,  es  estocástica  y

se modela  con  un  proceso  de  reversión  a  la media.  A continuación  se  desarrolla  la metodología

para determinar  el precio  de  una opción  asiática  con  subyacente  promedio  sin pago  de  dividendos

mediante simulación  Monte  Carlo.

Suponga que  el precio  del  subyacente  St es  conducido por un movimiento  geométrico  brow-

niano con  tasa  de interés  estocástica rt conducida  por  proceso  de  reversión  a  la media,  y  que

ambos procesos  están correlacionados  como  sigue:

dSt

St

=  rtdt  +  σdWS,t,

drt =  κ (θ −  rt) dt +  σrr
α
t dWr,t

(16)

donde  Wr,t es  un  proceso  de  Wiener  correlacionado  con WS,t,  i.e., Cov(dWr,t, dWS,t)  =  ρdt.  Si

α =  0,  entonces  la dinámica  de  la tasa  corta de  interés  es  conducida  por un  modelo  Vasicek  y se

considera α = 0.5 para  un proceso  de  tipo  CIR.

Al hacer  la  analogía  con  los  modelos  de volatilidad  estocástica,  los parámetros  θ, κ  y σr se

interpretan como  la tasa  de  largo  plazo,  la velocidad  de  reversión  a  la tasa  de  largo  plazo  y

la volatilidad  de la varianza  de  la  tasa  de interés  (a  menudo  denominada  como  la volatilidad

de la volatilidad),  respectivamente.

Para  ejecutar  la simulación  de  ambos  procesos  es necesario  generar  trayectorias  con  una

estructura dada  por:

dW̃  =

(
dWS,t

dWr,t

)
∼N(0,  Σ), (17)

con:

Σ  =

(
∆t  ρr,S∆t

ρr,S∆t ∆t

)
.  (18)
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Para hacer  lo  anterior,  se  calcula  L,  dado que Σ =  LL⊤, y  simular  dZ ∼  N(0,  I2) para obtener

dW̃ = LdZ,  se elige  un número  para  la partición  del  plazo al vencimiento  de  la opción,  por

ejemplo N  = 100  y  mediante  el método  de  remuestreo  cuadrático  generar  dZ,  que  involucra  a  dW̃

por construcción.  Sean µZ y  ΣZ la  media  teórica y  la matriz  de  covarianza  de  dZ,  respectivamente:

µZ =
(

0

0

)
,  (19)

y

ΣZ =
(

1  0

0  1

)
. (20)

Con  las  ecuaciones  anteriores  se  generan  las  trayectorias  del sistema  de  ecuaciones  diferencial

estocásticas planteado  en (16).

El precio  de una opción de  compra  con  subyacente  promedio  está  dado  por  la función  de  pago:

C(ST ) =  max

(
1

T

∫ T

0

Sτdτ  −  K,  0

)
(21)

y el  precio  de  una opción  de  venta con subyacente  promedio  está  dado por:

P(ST ) = max

(
K −

1

T

∫ T

0

Sτdτ, 0

)
.  (22)

Si  el subyacente  es  conducido  por el sistema  dado  en  (16), entonces  el algoritmo  para  determinar

los precios  de las opciones  de  compra  y de  venta  es:

1) Generar  dWS,t y dWr,t como:

dW
(k)
S,t = Z

(k)
S,t

√
∆t,

dW
(k)
r,t = ρZ

(k)
r,t

√
∆t +

√
1 −  ρ2Z

(k)
r,t

√
∆t,

2) Discretizar  el  sistema  de  ecuaciones  diferenciales  estocásticas  como:

r
(k)
i+1 =  r

(k)
i + κ

(
θ −  r

(k)
i

)
∆t  +  σrr

(k)
i dW

(k)
r,t

S
(k)
i+1 = S

(k)
i

(
1  +  r(ti)∆t +  σ

(k)
i dW

(k)
S,t

)

i =  1,  .  .  ., N  −  1.

3) Definir  la media  aritmética  de  las  trayectorias  generadas:

S̄(k) =
1

N

N∑

i=1

S
(k)
i ,
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Tabla 3

Cuadro resumen de estimación de  parámetros de modelos de Vasicek y CIR por el

método de máxima verosimilitud

Parámetros Vasicek CIR

κ 0.749896 0.809136

θ  0.033233 0.034069

σ 0.004879 0.023153

No. Obs. n 251 251

Likelihood Ratio 6.643470 6.641966

4) Calcular  el precio  de la opción como:

C =  exp

(
−

∫ T

0

rtdt

)
1

M

M∑

k=1

max
(
S̄(k) −  K,  0

)

y

P = exp

(
−

∫ T

0

rtdt

)
1

M

M∑

k=1

max
(
K  − S̄(k),  0

)

donde M  denota  el número  de  trayectorias  simuladas  y  N  el número  de  precios  generados.

Aplicación  y  análisis  de  resultados

En esta  sección  se  calculan  por  medio  de  simulación  Monte  Carlo  precios  de  opciones  asiáticas

con subyacente  promedio.  El  subyacente  es  el precio  de  la acción  de  AMX-L, y se  compara  con

los precios  de  opciones que se  publicaron en  el boletín de  MexDer del  día  25  de  octubre  de  2013.

Se supone  que  la tasa  de  interés  es  conducida  por procesos  de reversión  a  la media  de  tipo  Vasicek

y de  tipo  CIR,  y para la estimación  de  los parámetros  iniciales  se  considera  el método  de  máxima

verosimilitud propuesto  por Overbeck  y  Rydn  (1997).

La muestra  de  la tasa  de  interés  TIIE28 para  calibrar  los  modelos comprende  del 25  de octubre

de 2012  al 25  de  octubre  de 2013.  Con  datos  obtenidos  de  la página  web de Banxico,  los  parámetros

estimados con  el modelo  de Vasicek  y CIR  son los que figuran en  la  tabla  3.

De los  resultados  del  cuadro  anterior  se  puede  verificar que  se  cumple  la condición  de Feller,

es decir:  2κθ >  σ2 en los 2  casos,  lo  cual  es  importante,  ya  que  implica  que las  trayectorias  del

proceso que  conduce  la tasa  de  interés son siempre  positivas.

La figura  3 muestra  la serie original  de  la tasa  libre  de  riesgo  y 30 trayectorias  simuladas  con

los parámetros  dados  por el modelo  de  Vasicek, y  la figura  4 con parámetros  dados  por el modelo

CIR. En  ambos  casos se  observa  la tendencia  de  la tasa  hacia la baja;  además,  la serie original

muestra 2 cambios  significativos:  el primero  de  4.7550 a  4.3450%  el día 11  de  marzo  de  2013  y

el segundo  de  4.3075 a 4.0570%  el 9 de  septiembre  de  2013.

Los resultados  de  la aplicación  se  muestran  en  el Anexo. La  figura  5  muestra  precios de  opciones

obtenidos con  el modelo  de Vasicek  y la figura  6  precios  de  opciones  obtenidos  con el modelo  CIR;

en ambos  casos los  plazos  son desde  T  =  56,  147,  238  y  329  días, y los  precios de  ejercicio  varían

desde $10.50  hasta $18.00,  con incrementos  de  $0.50,  asimismo  el precio  de  AMX-L  =  $13.66

para el día  25 de  octubre  de  2013.  El  número  de  trayectorias  que  se  simularon  para  determinar  los

precios de las opciones fue de  100,000. Un resultado  relevante  es que,  al comparar  los precios de
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Figura 3. Serie original y 30 trayectorias simuladas con parámetros calibrados con el modelo de Vasicek.

Fuente: elaboración propia.
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Figura 6. Comparación entre precios de  opciones europeas y con subyacente promedio, con parámetros calibrados con

el modelo de CIR.

Fuente: elaboración propia.
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opciones  europeas  —tanto  simulados  como  con  los publicados  por MexDer—  con sus contrapartes

asiáticas, los  precios de opciones  asiáticas son menores  en  el caso de  opciones de  compra  y  de

venta dentro  del  dinero, en  el dinero  y fuera  del dinero.

En la  figura  5  se  muestran  los precios  de opciones de compra  y de  venta  europeas,  y precios

de opciones  con  subyacente  promedio,  ambas  con  tasa  de  interés  estocástica  con  parámetros

calibrados con  el modelo  de  Vasicek.  Tales precios se  comparan  con precios de  opciones  de

compra y  de  venta  sobre  AMXL  publicados  por MexDer.  Se  tienen  16  precios  de  ejercicio,

de los  cuales  7  están  dentro  del  dinero  para  opciones  de  compra  y 9 están  dentro  del  dinero

para opciones  de venta. Se  observa  que para  opciones al plazo  de  T  =  56  días  en  los  primeros

4 precios  de  ejercicio,  los precios  de  opciones  de  compra  con subyacente  promedio  resultaron

mayores que  los  precios publicados  por MexDer.  Para  los demás  plazos,  los precios  de  opciones

de compra  y de  venta  simulados  son menores  en  comparación  con los  precios de  las  publicadas  por

MexDer.

En la  figura  6  se  muestran  los resultados  con parámetros  calibrados  con el modelo  de CIR,  y

los resultados  son similares  a los  obtenidos  con el modelo  de  Vasicek. Un análisis  de  las  tablas

A.1 y  A.2  (Anexo)  y  las figuras anteriores  revela que no  se  observan  diferencias  significativas

en precios  para  ambos  modelos.  Además,  se  observa  que  los  precios  de opciones  de  venta  y  de

compra con  subyacente  promedio  son menores  conforme  el plazo  al vencimiento  de  la opción se

incrementa en ambos  casos.

Conclusiones

Una clase  particular  de  las opciones  asiáticas son  aquellas  en  las  que el subyacente  es  el precio

promedio durante  un  período  de  tiempo.  Con  esta  característica,  las  opciones asiáticas  tienen  una

menor volatilidad  y, por lo  tanto,  son más  baratas  en  comparación  con las  opciones  europeas.  Se

negocian principalmente  sobre  divisas  y commodities  que tengan bajos  volúmenes  de  negociación.

Fueron utilizados  originalmente en  1987,  cuando  la oficina  del  Banco  Trust  en  Tokio  las  utilizó

para determinar  el precio  de  opciones  sobre  el  precio  promedio  del barril  de  petróleo, y por ello

la opción  se conoce  como  «asiática».

Las opciones  asiáticas  se  pueden clasificar  en  3  categorías,  según sea el promedio  que se  tome:

promedio aritmético,  promedio  geométrico  y ambos  se  pueden  ponderar  de  varias  formas,  en

el que un  peso  determinado  se  aplica  a  cada  subyacente  del cual  se  calcule  el promedio.  Esto

puede ser útil  para determinar  el promedio  de  una muestra  con una distribución muy  sesgada.

Una característica  adicional  de  las  opciones asiáticas  es que  el subyacente  puede  ser el precio

promedio, o  bien  el precio  de  ejercicio  sea el  promedio  del subyacente  que tome  durante  la

vigencia del  contrato.

En  esta  investigación por medio  de  simulación  Monte  Carlo  y  con el  método  de  remuestreo

cuadrático de  Barraquand  (1995)  se  determinaron  precios de  opciones  europeas  de  compra  y de

venta, y  precios de  opciones  de  compra  y  de  venta  con  subyacente  promedio,  también  conocidas

como average  price (call  and  put);  además,  se  supone  que la tasa  de  interés  es  estocástica  y

conducida por  un  proceso  de  reversión  a la  media  de  tipo  Vasicek  y CIR. En la  estimación  de  los

parámetros iniciales  se  consideró  el método  de  máxima  verosimilitud  propuesto  por  Overbeck

y Rydn  (1997), y en  ambos casos resultó  que  se  cumple  la  condición  de  Feller,  es  decir,  las

trayectorias del  proceso  que conduce  la tasa de  interés son positivas.

Al analizar los  resultados  obtenidos  se  encontró  que  al comparar  los  precios  de  opciones

europeas con  diferentes  precios de  ejercicio,  tanto simulados  como  con los  de  publicados  por

MexDer, con  sus  contrapartes  asiáticas, los  precios  de  las asiáticas son  menores  en  el caso  de
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opciones  de  compra  y de  venta  tanto  para  tasa  de  interés  estocástica  de  tipo  Vasicek  y  CIR. Sin

embargo, al  plazo de  T =  56  días  en  los primeros 4 precios de  ejercicio los  precios  de  opciones

de compra  con  subyacente  promedio  resultaron  mayores  que  los precios  publicados  por MexDer.

Para los  demás  plazos,  los  precios de  opciones  de  compra  y de venta con subyacente  promedio

simulados son  menores  en comparación  con los  precios  de  las publicadas  por  MexDer.  Asimismo,

para opciones  con tasa  de interés  estocástica  de  tipo  Vasicek  y  CIR  se  encontró  que los precios

de opciones  de  compra  y de  venta con subyacente  promedio  son menores  conforme  el  plazo al

vencimiento de  la opción  se  incrementa.

Por  último,  de la  aplicación  de  la metodología  propuesta  resultó  que  todas las  primas  calculadas

por simulación  son menores  que las publicadas  por  MexDer,  lo  cual implica  que  es  deseable  que

se listaran  instrumentos  de  esta  clase  como  alternativa  de cobertura,  como  en  otros mercados  de

derivados.

Anexo.

Tabla A1

Precios de opciones europeas de  compra y de  venta sobre AMXL, obtenidos con parámetros calibrados para la tasa de

interés con el modelo de  Vasicek

Días por vencer K AMXL

CallEur

AMXL

PutEur

Average Price

CallAMXL

Average Price

PutAMXL

AMXLCall

MexDer

AMXLPut

MexDer

T = 56

10.50 3.2413 0.0019 3.2393 0.0000 3.22 0.06

11.00 2.7500 0.0068 2.7431 0.0000 2.72 0.09

11.50 2.2689 0.0219 2.2469 0.0000 2.23 0.13

12.00 1.8091 0.0584 1.7507 0.0000 1.75 0.20

12.50 1.3840 0.1295 1.2544 0.0000 1.29 0.29

13.00 1.0103 0.2520 0.7582 0.0000 0.90 0.42

13.50 0.7010 0.4389 0.2620 0.0000 0.58 0.59

14.00 0.4608 0.6949 0.0000 0.2342 0.37 0.83

14.50 0.2872 1.0175 0.0000 0.7304 0.23 1.12

15.00 0.1695 1.3960 0.0000 1.2267 0.15 1.47

15.50 0.0947 1.8174 0.0000 1.7229 0.10 1.88

16.00 0.0499 2.2689 0.0000 2.2191 0.07 2.34

16.50 0.0250 2.7402 0.0000 2.7153 0.05 2.84

17.00 0.0117 3.2231 0.0000 3.2115 0.04 3.34

17.50 0.0052 3.7129 0.0000 3.7078 0.04 3.84

18.00 0.0024 4.2062 0.0000 4.2040 0.03 4.34

T  = 147

10.50 3.3938 0.0366 3.3565 0.0000 3.35 0.24

11.00 2.9391 0.0725 2.8659 0.0000 2.87 0.27

11.50 2.5056 0.1297 2.3753 0.0000 2.41 0.31

12.00 2.1006 0.2152 1.8847 0.0000 1.96 0.38

12.50 1.7308 0.3360 1.3941 0.0000 1.56 0.48

13.00 1.4010 0.4969 0.9034 0.0000 1.20 0.63

13.50 1.1140 0.7005 0.4128 0.0000 0.91 0.84

14.00 0.8699 0.9471 0.0000 0.0778 0.69 1.11

14.50 0.6675 1.2353 0.0000 0.5684 0.53 1.44

15.00 0.5043 1.5627 0.0000 1.0591 0.43 1.83

15.50 0.3749 1.9240 0.0000 1.5497 0.36 2.26

16.00 0.2742 2.3138 0.0000 2.0403 0.32 2.72

16.50 0.1975 2.7278 0.0000 2.5309 0.31 3.22

17.00 0.1401 3.1610 0.0000 3.0215 0.31 3.74

17.50 0.0979 3.6094 0.0000 3.5122 0.32 4.28

18.00 0.0675 4.0696 0.0000 4.0028 0.35 4.85

T  = 238 10.50 3.5631 0.0947 3.4668 0.0000 3.47 0.24
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Tabla A1 (continuación)

Días por vencer K AMXL

CallEur

AMXL

PutEur

Average Price

CallAMXL

Average Price

PutAMXL

AMXLCall

MexDer

AMXLPut

MexDer

11.00 3.1366 0.1536 2.9814 0.0000 3.02 0.31

11.50 2.7333 0.2356 2.4961 0.0000 2.59 0.40

12.00 2.3578 0.3455 2.0107 0.0000 2.19 0.52

12.50 2.0130 0.4860 1.5254 0.0000 1.82 0.67

13.00 1.7015 0.6598 1.0400 0.0000 1.50 0.85

13.50 1.4239 0.8676 0.5547 0.0000 1.22 1.07

14.00 1.1799 1.1089 0.0694 0.0000 0.99 1.33

14.50 0.9683 1.3827 0.0000 0.4160 0.80 1.63

15.00 0.7881 1.6878 0.0000 0.9013 0.65 1.96

15.50 0.6365 2.0215 0.0000 1.3867 0.53 2.32

16.00 0.5098 2.3802 0.0000 1.8720 0.43 2.71

16.50 0.4049 2.7606 0.0000 2.3574 0.36 3.12

17.00 0.3194 3.1604 0.0000 2.8427 0.31 3.56

17.50 0.2500 3.5765 0.0000 3.3280 0.27 4.00

18.00 0.1943 4.0061 0.0000 3.8134 0.24 4.46

T = 329

10.50 3.7298 0.1558 3.5711 0.0000 3.63 0.23

11.00 3.3247 0.2310 3.0908 0.0000 3.20 0.30

11.50 2.9427 0.3294 2.6104 0.0000 2.79 0.39

12.00 2.5864 0.4533 2.1301 0.0000 2.40 0.51

12.50 2.2574 0.6047 1.6498 0.0000 2.05 0.66

13.00 1.9573 0.7849 1.1695 0.0000 1.73 0.85

13.50 1.6860 0.9940 0.6891 0.0000 1.44 1.07

14.00 1.4430 1.2313 0.2088 0.0000 1.19 1.33

14.50 1.2274 1.4960 0.0000 0.2715 0.98 1.62

15.00 1.0384 1.7873 0.0000 0.7519 0.80 1.95

15.50 0.8743 2.1036 0.0000 1.2322 0.65 2.30

16.00 0.7327 2.4423 0.0000 1.7125 0.53 2.69

16.50 0.6110 2.8009 0.0000 2.1929 0.44 3.10

17.00 0.5068 3.1771 0.0000 2.6732 0.36 3.53

17.50 0.4189 3.5695 0.0000 3.1535 0.30 3.97

18.00 0.3446 3.9756 0.0000 3.6339 0.25 4.43

Tabla A2

Precios de opciones europeas de compra y de venta sobre AMXL, obtenidos con  parámetros calibrados para la tasa de

interés con el modelo de CIR

Días por vencer K AMXL

CallEur

AMXL

PutEur

Average

Price

CallAMXL

Average

Price

PutAMXL

AMXLCall

MexDer

AMXLPut

MexDer

T = 56

10.50 3.2413 0.0019 3.2393 0.0000 3.22 0.06

11.00 2.7500 0.0068 2.7431 0.0000 2.72 0.09

11.50 2.2689 0.0219 2.2469 0.0000 2.23 0.13

12.00 1.8091 0.0584 1.7506 0.0000 1.75 0.20

12.50 1.3840 0.1295 1.2544 0.0000 1.29 0.29

13.00 1.0103 0.2520 0.7582 0.0000 0.90 0.42

13.50 0.7010 0.4389 0.2620 0.0000 0.58 0.59

14.00 0.4608 0.6949 0.0000 0.2343 0.37 0.83

14.50 0.2872 1.0175 0.0000 0.7305 0.23 1.12

15.00 0.1695 1.3960 0.0000 1.2267 0.15 1.47

15.50 0.0947 1.8175 0.0000 1.7229 0.10 1.88

16.00 0.0499 2.2690 0.0000 2.2191 0.07 2.34

16.50 0.0250 2.7402 0.0000 2.7154 0.05 2.84
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Tabla A2 (continuación)

Días por vencer K AMXL

CallEur

AMXL

PutEur

Average

Price

CallAMXL

Average

Price

PutAMXL

AMXLCall

MexDer

AMXLPut

MexDer

17.00 0.0117 3.2231 0.0000 3.2116 0.04 3.34

17.50 0.0052 3.7129 0.0000 3.7078 0.04 3.84

18.00 0.0024 4.2063 0.0000 4.2040 0.03 4.34

T  = 147

10.50 3.3937 0.0366 3.3564 0.0000 3.35 0.24

11.00 2.9390 0.0725 2.8658 0.0000 2.87 0.27

11.50 2.5055 0.1297 2.3752 0.0000 2.41 0.31

12.00 2.1005 0.2152 1.8846 0.0000 1.96 0.38

12.50 1.7306 0.3360 1.3939 0.0000 1.56 0.48

13.00 1.4009 0.4969 0.9033 0.0000 1.20 0.63

13.50 1.1139 0.7005 0.4127 0.0000 0.91 0.84

14.00 0.8698 0.9471 0.0000 0.0780 0.69 1.11

14.50 0.6674 1.2353 0.0000 0.5686 0.53 1.44

15.00 0.5043 1.5628 0.0000 1.0592 0.43 1.83

15.50 0.3749 1.9241 0.0000 1.5498 0.36 2.26

16.00 0.2742 2.3139 0.0000 2.0405 0.32 2.72

16.50 0.1975 2.7279 0.0000 2.5311 0.31 3.22

17.00 0.1401 3.1611 0.0000 3.0217 0.31 3.74

17.50 0.0979 3.6095 0.0000 3.5123 0.32 4.28

18.00 0.0675 4.0698 0.0000 4.0030 0.35 4.85

T  = 238

10.50 3.5629 0.0947 3.4666 0.0000 3.47 0.24

11.00 3.1365 0.1536 2.9813 0.0000 3.02 0.31

11.50 2.7332 0.2357 2.4959 0.0000 2.59 0.40

12.00 2.3577 0.3455 2.0106 0.0000 2.19 0.52

12.50 2.0129 0.4860 1.5252 0.0000 1.82 0.67

13.00 1.7014 0.6599 1.0399 0.0000 1.50 0.85

13.50 1.4238 0.8677 0.5545 0.0000 1.22 1.07

14.00 1.1798 1.1090 0.0692 0.0000 0.99 1.33

14.50 0.9682 1.3828 0.0000 0.4162 0.80 1.63

15.00 0.7880 1.6879 0.0000 0.9015 0.65 1.96

15.50 0.6364 2.0217 0.0000 1.3869 0.53 2.32

16.00 0.5098 2.3804 0.0000 1.8722 0.43 2.71

16.50 0.4049 2.7608 0.0000 2.3576 0.36 3.12

17.00 0.3193 3.1606 0.0000 2.8429 0.31 3.56

17.50 0.2500 3.5767 0.0000 3.3283 0.27 4.00

18.00 0.1943 4.0063 0.0000 3.8136 0.24 4.46

T  = 329

10.50 3.7297 0.1558 3.5710 0.0000 3.63 0.23

11.00 3.3246 0.2310 3.0907 0.0000 3.20 0.30

11.50 2.9426 0.3294 2.6103 0.0000 2.79 0.39

12.00 2.5863 0.4534 2.1300 0.0000 2.40 0.51

12.50 2.2573 0.6048 1.6497 0.0000 2.05 0.66

13.00 1.9572 0.7850 1.1693 0.0000 1.73 0.85

13.50 1.6860 0.9941 0.6890 0.0000 1.44 1.07

14.00 1.4430 1.2314 0.2087 0.0000 1.19 1.33

14.50 1.2274 1.4962 0.0000 0.2717 0.98 1.62

15.00 1.0384 1.7875 0.0000 0.7520 0.80 1.95

15.50 0.8743 2.1037 0.0000 1.2323 0.65 2.30

16.00 0.7327 2.4425 0.0000 1.7127 0.53 2.69

16.50 0.6110 2.8011 0.0000 2.1930 0.44 3.10

17.00 0.5069 3.1773 0.0000 2.6734 0.36 3.53

17.50 0.4189 3.5697 0.0000 3.1537 0.30 3.97

18.00 0.3447 3.9758 0.0000 3.6340 0.25 4.43
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