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Abstract

The Institut Geologic de Catalunya (IGC) and the Institut Cartografic de Catalunya (ICC) have begun a joint project to model
snowpack depth distribution in the Nuria valley (a 38 km? basin located in the Eastern Pyrenees) in order to evaluate water reserves in
mountain watersheds . The evaluation was based on a remote sensing airborne LIDAR survey and validated with field-work calculations.
Previous studies have applied geostatistical techniques to extrapolate sparse point data obtained from costly field-work campaigns.
Despite being a recently developed technique, LIDAR has become a useful method in snow sciences as it produces dense point data and
covers wide areas. The new methodology presented here combines LIDAR data with field-work, the use of geographical information
systems (GIS) and the stepwise regression tree (SRT), as an extrapolation technique. These methods have allowed us to map snowpack
depth distribution in high spatial resolution. Extrapolation was necessary because raw LIDAR data was only obtained from part of the
study area in order to minimise costs. Promising results show high correlation between LIDAR data and field data, validating the use
of airborne laser altimetry to estimate snow depth. Moreover, differences of total snow volume calculated from modeled snowpack
distribution and total volume from LIDAR data differ by only 1 %.
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Resumen

El Institut Geologic de Catalunya (IGC) junto con el Institut Cartografic de Catalunya (ICC) han iniciado un proyecto para modelizar
el manto nival en un drea piloto situada en el valle de Nuria (cuenca de 38 km’ situada en el Pirineo Oriental) con el fin de evaluar
reservas hidricas en dreas de montaiia. Para ello se realizé un vuelo LIDAR validado mediante una camparia de campo de toma de datos
puntuales. Estudios previos han consistido en la aplicacion de técnicas geoestadisticas a fin de extrapolar datos puntuales dispersos
adquiridos mediante camparias de campo costosas. El uso de LIDAR aerotransportado, a pesar de ser una técnica novedosa en el
campo de la nivologia, tiene la ventaja de proporcionar un gran numero de datos puntuales de dreas extensas. La nueva metodologia
aqui presentada combina el uso de la técnica LIDAR con trabajo de campo, el uso de los sistemas de informacion geografica (SIG)
y arboles de regresion (SRT, stepwise regression tree) como método de extrapolacion. Estos métodos nos han permitido obtener un
mapa de resolucion elevada del espesor de nieve. La extrapolacion fue necesaria ya que los datos LIDAR solo fueron obtenidos para
una porcion del area de estudio a fin de reducir los costes. Se obtuvieron resultados alentadores en virtud de la alta correlacion de los
datos LIDAR y las muestras de campo, lo cual valida el uso de la altimetria laser aerotransportada para la estimacion del espesor del
manto nival. Asi mismo, los resultados muestran un ajuste elevado entre el volumen de nieve calculado mediante LIDAR y el volumen
de nieve modelizado con una diferencia de tan solo 1 %.

Palabras clave: Profundidad de manto nivoso, arbol de regresion, LIDAR, SIG, Pirineos
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1. Introduction

The Mediterranean climate is characterized by high
precipitation variability (Capel Molina, 2000). As a result,
the Iberian Peninsula, including Catalonia, is affected
by frequent and serious droughts, such as those of 1973,
1985 and 1988 (ACA, 2005). The most recent significant
dry period took place during 2007-2008 (SMC, 2008).
The correct management of hydric resources is of great
importance in order to administrate and limit the effect of
natural climatic variability.

Hydric resources are not only affected by natural
fluctuations, but also social pressure. Catalonia’s internal
fluvial basins (oversight responsibility of the local
government) occupy 52 % of Catalonia’s territory and
host 92 % of the total population (Sangra, 2008), which
increases hydric stress. Furthermore, Ulied (2003) points
out that by 2020 Catalonia’s population will have reached
7.3 million, which implies an increase in hydric stress of
water usage of 88-150 hm?/year (depending on different
scenarios). As a consequence, it is necessary to quantify
hydric resources stored artificially in water reservoirs or
naturally in snow.

The present study was carried out by the Institut
Geologic de Catalunya (IGC) jointly with the Institut
Cartografic de Catalunya (ICC). The project was composed
of several stages: firstly, to evaluate LIDAR technology as
a method of obtaining snow depth and, secondly, to model
snow depth in order to calculate water availability from
snow density data.

Despite spatial variability in snow depth, numerous
studies have dealt with modeling snowpack. Elder et al.
(1995) studied snow water equivalent, first on a small
basin (120 ha) through a decision tree model, and later
extending the study area to 9600 ha, and including data
from Landsat-5-TM. Erxleben et al. (2002) applied
geostatistical methods to 550 data points from three
experimental areas, each of 1 km?. The techniques applied
include inverse distance weighting (IDW), modified
residual kriging and cokriging, and decision tree models.
Interpolation techniques such as IDW showed low
adjustment (R? between 0.10 and 0.20) while the tree
classification was the best method of modeling snow depth
variability (R?= 0.298; Erxleben et al., 2002). Molotch
et al. (2005) suggest interpolating residuals and adding
them to a tree model as new variables, slightly improving
adjustment (R? of 0.31). More recently, Lépez-Moreno
and Nogués-Bravo (2006) and Lopez-Moreno et al. (2007)
compared several statistical methods to map snow depth
distribution in the Pyrenees, using 106 data points. In that
investigation, geostatistical methods (IDW, kriging and
cokriging) also gave poor results (R? between 0.04 and
0.14) compared to the tree models (R*=0.71). Despite this
model fit, the authors consider that prediction accuracy
made by tree models is insufficient because snow depth
values are limited to the number of final nodes calculated

by the model. They conclude that a general additive
model (GAM) is the best approach to model non-lineal
relationships between topography and snow depth.

The main limitation of most studies is the low
availability of manual measurements of snow depth. As
a consequence, derived models over large areas have a
low prediction ability, demonstrating the need for remote
sensing techniques. Marchand and Killingtveit (2005)
made more than 100 000 measurements using geo-radar to
obtain snow depth point data. As geo-radar was mounted
on a snow mobile, the survey area was limited in extension
and accessibility to flat areas not exceeding a few square
kilometers (preferably with no forest). The use of remote
sensing techniques includes satellite data for quantifying
the area covered by snow (Rosenthal and Dozier, 1996;
Salomonson and Appel, 2004) but not its depth.

The technique used in this research, airborne light
detection and ranging (LIDAR), is a new technology
in snow science. LIDAR makes it possible to calculate
snow depth over large areas with high resolution and at
relatively low cost compared to manual surveys. That is
why numerous studies have applied LIDAR to snowpack
modeling with satisfactory results (Hopkinson et al., 2001;
Hopkinson y Demuth, 2007; Fassnacht and Deems, 2005;
Kaneta and Hatake, 2007).

This research focuses on the use of airborne LIDAR
to calculate snow depth across a pilot area situated in the
Eastern Pyrenees and the methodology used for modeling
snow depth over large areas using LIDAR data obtained on
a recent campaign in spring 2009.

2. Study area

A pilot area was established in Nuria valley to assess
LIDAR techniques and establish a methodology applicable
to a wider area of the Eastern Pyrenees (42°23°50” N
and 2°9°13” E, Figure 1). Avalanche forecasts have been
carried out by IGC in Nuria valley and its high climatic
representativeness of the whole Eastern Pyrenees make
it the ideal site to establish a pilot area. The valley itself
covers an area of 38 km? with an altitude ranging from
1950 m at Nuria Sanctuary to 2910 m at the summit of
Puigmal peak.

Much of the study area consists of meadows and
rocky soil above the timberline. Forested areas formed by
mountain pine (Pinus mugo ssp. uncinata) with alpenrose
(Rhododendron ferrugineum) undergrowth are located in
the region surrounding the Sanctuary (DMAH, 1993).

The climate is characterized by an annual precipitation
of 1150 mm, mainly concentrated in summer months, and
a mean annual temperature of 6 °C (ICC, 1996). During
winter, snow precipitations are more common and yearly
snowfall is about 200 cm. Another climatic variable to take
into account is wind. Nuria valley has a very high wind
exposure due to its eastern location within the Pyrenees,
with wind-speeds reaching up to 200 km/h.
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Figure 1. Nuria valley location map.

3. Data and methods

Snow depth calculation was based on subtracting two
digital elevation models (DEM) generated from LIDAR
data, with and without snow cover. LIDAR data was
acquired across the whole Nuria valley pilot area, making
extrapolation unnecessary. Nevertheless, to increase
project efficiency for larger areas, LIDAR flights were
limited to a small part of the area of interest (e. g. a LIDAR
strip covering 15 % of the total surface, Figure 2). Thus an
extrapolation methodology was developed to obtain snow
depth data for the whole research area.

Detailed methods and data used to obtain LIDAR data,
snow depth and its modeling are explained in more detail
in the following sections.

3.1. DEM generation from LIDAR survey

As mentioned above, two DEMs were generated to
calculate snow depth. The first flight was carried out
without snow on August 9", 2006, and the second with
snow cover on March 27%, 2009.
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Airborne LIDAR was incorporated into a light aircraft,
which covered the flight lines shown in Figure 3. Measuring
equipment was composed of a Leica ALS50-1I airborne
laser scanner, a GPS system and an inertial navigation
system (INS). Elevation was calculated by determining the
return time of emitted laser pulses together with the known
trajectory and velocity of the aircraft. An oscillating mirror
diverted the laser pulse scanning the surface in a zigzag
shape. According to this procedure and the established
parameters (Table 1), two 1 m resolution DEMs were
calculated.

Table 1. Flight characteristics for DEM generation.

Modeled surface 4610 ha
Point density 0.5 point/m?
DEM control areas 2

Fligth time 4h

Strips 9

Swath 540 m (40°)

Data density on each flight strip was 0.5 point/m?, but
due to flight line overlap of 50 %, a final point data density
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Figure 2. Arrows show snow depth data extrapolation from one strip of LIDAR data covering 15 % of total surface area (shown in grey).

of 1 point/m? was attained. The overlapping of flight lines
provides higher productivity because point data in the
overlapping areas are not redundant, resulting in a better
distribution of point data over the target surface with higher
homogeneity. Overlapping flight lines also guarantees that
no gaps will be present between strips, due to summits or
navigation errors. The highest point density is obtained in
valleys where it is possible to have up to 3 overlapping
strips due to broader flight swath with altitude. To take
advantage of these benefits it is necessary to remove
systematic errors in the strip elevation. Point data is always
affected by systematic errors from GPS and INS (Kornus
and Ruiz, 2003). In such a case, automatic classification
will consider points from the more elevated strip so they
will be classified as vegetation, thus eliminating data. The
processing software used was TerraMaatch® and control
point data was measured with GPS-RTK on areas without
snow with an estimated precision of 2-3cm to ensure
correct match up between the two DEMs calculated.
Each laser point has information about different
obstacles found between the airplane and ground echoes.
If the terrain is snow-covered and vegetation free, the
last laser echo corresponds to bare earth, but if obstacles
are encountered then different laser echoes correspond to
those obstacles. In this way when the first laser echoes are
processed, a digital surface model (DSM) is obtained with

all elements, such as vegetation and buildings, present on
the surface, or the surface itself if there isn’t an obstacle. A
digital elevation model is calculated from the last echoes
but must be validated to remove the possible presence of
vegetation. This validation was completed using a GIS
layer containing areas of vegetation and applying a 1m
threshold between areas with and without vegetation.
Once validated, a triangulated irregular network (TIN)
was created using TerraModeler® and converted to a 1 m
regular grid.

The root mean square error (RMSE) of this process
was approximately 0.15 m but the combination of the
two DTMs (with and without snow) increased the error
slightly to 0.21 m. The sources of error are mainly steeper
slopes and areas with dense vegetation, as pointed out by
Hopkinson et al. (2004) and Deems and Painter (2006).

3.2. LIDAR snow depth validation.

Snow depth validation involved: 1) field work to obtain
manual snow depths; 2) the capture of aerial photography
during LIDAR surveying, to determine areas with
presence/absence of snow and 3) topographical profiles in
areas with large snow accumulations (greater than 6 m). In
the following sections these methods will be explained in
more detail.
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Figure 3. Situation of flight strips and aerial photography surveyed.

3.2.1. Field work

Manual snow depth was measured on the same day as
the flight. Three groups were formed for this purpose, and
distributed throughout valleys with different topographical
characteristics (Figure 4). Each team accessed the highest
point of each valley by helicopter and then skied down. In
this way we ensured rapid access to the respective valleys
and obtained the maximum number of data points.

Manual snow depth was measured with 4 m long snow
probes positioned by GPS. Taking into consideration that
the DEM resolution was 1 m, the differential submetric
GPS system (model Trimble GEO XH®) was ideal. Once
captured, point GPS data were post-processed through
public reference stations from the Cartographic Institute of
Catalonia (ICC, 2010). As a result of field work, 74 manual
measurements of snow data were obtained.

3.2.2. Aerial photography

During the LIDAR flight, high resolution aerial
photographs were also acquired. These photographs were
used, after orthorectification, to digitalize control areas
where snow depth was equal to 0. These control areas

AR8A4000

*  Aerial photography
= Flight strips

432000 434000

with a known snow depth of 0 m were then compared to
the LIDAR snow depth map. Within these control areas
(with real snow depth equal to 0), any value obtained from
the LIDAR other than 0 was considered an error. Through
aerial photography, the validation process was ensured due
to the high number of point data used (680 000 in total,
Figure 5) compared to 74 manual measurements (Figure
4).

3.2.3. Topographical profiles

The LIDAR data analysis shows areas with large
snow accumulation of more than 6 m depth in specific
topographic conditions. As manual data acquisition was
not possible in these areas, snow profiles were made to
confirm the large snow accumulations.

Through GIS software (ArcGIS 9.3.1), a total of 17
profiles were made in wind sheltered areas, such as streams
or downwind surfaces, which are prone to snow deposition.
Each profile shows terrain with and without snow. In this
manner it was easy to verify if snow accumulation values
obtained from LIDAR data were feasible or simply errors
linked to the technique.
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Figure 4. Location of snow sampling point data by field work and topographical profiles together with snow depth map.
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Figure 5. Digitalized areas with known snow depth equal to 0.
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3.3. Snow depth modelization

In the following sections the methods used for snow
depth modeling and calculating the topographical variables
are presented. The original DEM resolution was 1m but
the working resolution was 5 m due to computational
optimization.

3.3.1. Calculation of topographical variables

Previous studies (Marchand and Killingtveit, 2005;
Lopez-Moreno and Nogués-Bravo, 2006; and Elder et
al., 1998) suggest different independent variables that
have a major influence in snow distribution. The variables
adopted in this investigation were slope, aspect, altitude,
curvature, distance to main range and solar radiation.

Elevation, slope, curvature and distance to main range
(Lopez-Moreno and Nogués-Bravo, 2006) were directly
calculated from the DEM with algorithms available in
ArcGIS 9.3.1.

Aspecthad ahigher complexity because of its circularity
(Burrough ef al., 2000; Marchand and Killingtveit,
2005). For this reason this parameter was divided two
components: a north-south component and an east-west
component. Resulting values were standardized with
values ranging between 0 and 1.

Solar radiation calculation is a complex task which
involves several factors (Cline et al., 1998), and a dense
network of weather stations is necessary in order to model
solar radiation correctly. However, in high mountain areas
such as the Pyrenees, this is generally not possible. For
this reason the solar radiation calculation was simplified
to a global input radiation calculation using the function
available on ArcGIS, named area solar radiation, which
only takes in consideration topographical variables such
as elevation, slope or aspect (for more information about
calculations see software documentation). Radiation was
modeled for the winter season lasting from November, 1%
to March, 27" (the day of the flight).

In addition to these independent variables other
important factors such as wind must be taken into
account when modeling snow depth (Molotch et al.,
2005). Therefore upwind index (Winstral and Marks,
2002; Winstral et al., 2002) was added to the independent
variables. Upwind index measures the exposure of a cell
in a DEM depending on the prevailing wind direction and
quantifies how wind affects snow distribution. Calculation
of upwind index is theoretically expressed in equation
(1) and was applied through an algorithm supplied by the
author A. Winstral (Winstral and Marks, 2002; Winstral et
al., 2002),

SxA.dmax (%, yi) = max

)

an ( ELEV(x.,y,) — ELEV(x;, y,-))
[(x0 — % + (3 — v’

Where ELEV is the altitude of interest cell; 4 the

azimuth of the search direction; (x, y,) coordinates of the
cell of interest; (x , y ) the coordinates of the cells found
in the same direction of prevailing wind and dmax is the
maximum search distance.

The application of the upwind index for the Eastern
Pyrenees was best correlated with snow depth at a
prevailing wind direction of 220°. Empirically, the
maximum distance of search vector was established at
300 m.

Finally, Pearson’s correlation between each variable
and snow depth was calculated to evaluate the relation
between them with SPSS 16.0 statistical software.

3.3.2. Snow depth modeling

As previously mentioned, modeling of snow depth
was achieved through the extrapolation of strip flight data.
Existence of data for the whole area permitted validation
of the final model.

A stepwise regression tree (SRT, Huang and
Townshend, 2003) was used to model snow depth because
it considers the non-linearity of dependent variables.
This is the most important characteristic for modeling
snow depth calculations (De’Ath and Fabricius, 2000;
Huang and Townshend, 2003). The SRT method has been
implemented by Loh (2002) and Loh et al. (2008) in the
GUIDE algorithm (Loh, 2011) as an evolution of the
classical tree classification proposed by Breiman et al.
(1984).

The GUIDE algorithm was used for a stepwise
regression tree. The independent topographical variables
were used to explain snow depth (dependent variable).
In a classical tree classification the assigned value for
prediction is the mean of each node. Consequently, the
range of predicted values is limited to the number of final
nodes of the tree. Loh (2002) and Huang and Townshend
(2003) propose a stepwise regression at each final node.
The regression at each final node ensures a small and
homogeneous sample size which implies a better accuracy
of prediction and cartography. In this way, the prediction
value is not limited to a mean on the final nodes (because
a regression is made) and a range of values is permitted,
making prediction more accurate. Pruning was made
through 10 cross-validation iterations and the minimum
sample size for each node was 7500 data points.

4. Results and discussion
4.1. LIDAR snow depth model validation

The aim of snow depth validation was to establish the
RMSE of the snowpack and a feasible maximum value of
snow depth. With these values the model was validated
by removing negative and extreme positive snow depths.
Validation was carried out on the snow depth map obtained
from the subtraction of the LIDAR-generated DEMs.
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4.1.1. Validation through field data

Despite the use of LIDAR for snow depth calculations
(Fassnacht and Deems, 2005; Deems and Painter, 2006),
few validations have been achieved with field data.
Hopkinson et al. (2004) estimated that differences between
LIDAR data and field measurements were around 19 %.

In this study there are many factors that affect the
quality of results:

1. Despite efforts to increase efficiency in field work
the validation data was limited to 74 points, which is
probably insufficient to ensure data representativeness.

2. The field surface surveyed was uneven and rocky,
resulting in biased field data. The variability of snow
depth within 1 m? was high and the exact place where
the snow probe was inserted is of great importance
(even though the nested method for snow sampling was
adopted during field work).

3. Snowpack conditions induce measurement errors. Pre-
sence of ice layers within the snowpack impeded the
correct penetration of the snow probe.

4. Mountainous terrain induces GPS precision errors.
Moreover, data acquisition in steep slopes coincided
with areas where LIDAR techniques presented more
deficiencies.

These factors resulted in unsatisfactory results which
were therefore not considered when performing validation.
Validation was therefore achieved with aerial photographs
and profile making in accumulation areas.

4.1.2. Validation with aerial photographs.

Although only 74 point data were obtained through
manual surveying, with the digitalization of snow-free
control areas, a total of 680 000 data points were obtained,
representing an area of 0.7 km? (2 % of the total study
area).

Since slope is the major source of error in LIDAR
surveys, slope distribution at the control areas should be
very similar and representative of the entire study area.
The presence of higher slopes in control areas would mean
an increment in the calculation error of snow depth. Table
2 shows all slope classes (every 10°) for the whole area
and for the control areas. All ranges were well represented
during digitalization so deviations in the error source were
avoided.

For comparison, Table 3 shows RMSE obtained for
snow depth calculations in control areas (0 cm) from
LIDAR data depending on different slope ranges. The
results show that error increases with slope and that
low snow accumulation in slopes of more than 60° also
increases error. Thus we excluded these slopes in the final
RMSE calculation. The final RMSE calculated value for
control areas was 0.428 m.

Table 2. Percentage of slope distribution in original DEM and
digitalized control areas. Calculated differences are low so deviation in
error calculation is minimal.

Presence in Presence in control

Slope rank (°) Difference (%)

DEM (%) areas (%)
<10 3.55 3.55 -0.005
10-20 14.98 10.79 -4.194
20-30 38.00 35.01 -2.990
30-40 36.63 41.88 5.245
40-50 5.40 6.41 1.009
50-60 1.19 1.90 0.711
60-70 0.21 0.41 0.197
>70 0.03 0.05 0.025

Table 3. RMSE calculation of difference found among control areas
and LIDAR data for different slope classes

Slope rank (°) RMSE (m)

<10 0.170

10-20 0.185
20-30 0.314
30-40 0.440
40-50 0.702
50-60 1.298
60-70 2.631

>70 4.937
RMSE slope < 60 0.428

4.1.3. Validation in snow accumulation areas

After subtraction of the DEM, the resulting snow depth
presented extreme values that should be investigated. A
total of 17 topographic profiles were made for this purpose,
two of which are shown in Figures 6 and 7.

Both figures demonstrate how bare-earth and snowpack
follow the same topographical trend, which implies that
the snow depth values are correct measurements. The same
analysis made on 17 profiles showed evidence that snow
depth accumulations of up to 11 meters were valid in very
specific topographical conditions, namely deep streams
and wind-sheltered areas. During validation all values
higher than 11 m were therefore considered erroneous and
subsequently eliminated.

4.1.4. Validated snow map.

After the validation process a range of valid values
was established and applied to the LIDAR snow model.
This range lies between -0.428 m, corresponding to the
RMSE calculated, and 11 m, from the profile analysis. A
value of 0 m depth was assigned to measurements between
-0.428 m and 0 m. The resulting snow model therefore
ranges from 0 m to 11 m of snow depth (Figure 5).
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Figure 6. Coma del Clot stream profiles showing snow accumulations up to 11 m.
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4.2. Snowpack modeling
4.2.1. Snow and terrain parameters correlation

To select variables that best explained the distribution of
snow over the pilot area, the Pearson correlation coefficient
was calculated between topographical variables and snow
depth. Figure 8 shows these correlation coefficients.

Major correlation was found with the upwind index (r=
0.447), and with curvature (» = -0.328). Surprisingly, there
was no important correlation with altitude (» = 0.116),
mainly due to specific distribution of snowpack over the
study area. Greater snow accumulations were situated in
wind sheltered areas and north facing slopes. In contrast,
the wind produced snow-free surfaces at higher altitudes.

Another important factor which must be considered to
fully understand correlation coefficients is that the LIDAR
flight was carried out on March 27" when melting had
already begun.

Based on the Pearson correlation, slope and altitude
were excluded from the SRT analysis due to their low
correlation with snow depth.

4.2.2. Extrapolation of snow depth

The GUIDE algorithm (Loh ef al., 2008) permitted a
prediction of snow depth from one flight strip as pointed
out in the methodology. The result of the modeling process
was a classification tree composed of 19 final nodes
(Figure 9).

The model was runrecursively with different parameters
(regression type, number of cross-validation iterations
etc.) until reaching the optimum model presented. The
best tree model is the one with the smallest number of
final nodes. An excessive number of nodes results in the
overestimation of the model. An example of the influence
of the final number of nodes over the model adjustment is
shown in Figure 10. The figure shows how an increasing

number of final nodes implies an overestimation and
erroneous adjustment of the model.

The final model, R>=0.44, is very significant due to
the fact that we used a relatively high spatial resolution
(5 m) and a great number of data was modeled (more
than 1 million data points). Despite this, the RMSE
was significant (0.69 m), and the model fit was very
satisfactory for the study purpose (snow volume). The
ultimate aim of the project was to evaluate water supplies
stored as snow. In this sense, the difference in total snow
volume is more important than snow depth accuracy. So if
snow volume calculated from the validated LIDAR model
(33.7 hm® of snow) is compared to snow volume calculated
from the extrapolated final model (33.9 hm?) the difference
is only -1 %.

Authors such as Elder et al. (1998) have presented an
R? of 0.68 with computations made on a 30 m resolution
DEM. Afterwards, in parcels of 1 km?, Erxleben et al.
(2002) showed an adjusted R? of 0.298. Lopez-Moreno
and Nogués-Bravo (2006), with 106 data points for the
entire Pyrenees, obtained an adjusted R? of 0.71 and,
finally, Molotch et al. (2005) present values between
0.31 and 0.39 (after performing a residual interpolation
procedure).

Figure 11 shows the final map result of extrapolation.
The map reflects high spatial variability of snow depth,
which is one of its most well known characteristics (Elder
etal., 1995).

Other aspects to consider in the map analysis are:
a) large accumulations in streams are only visible over
1900 m so the influence of curvature is restricted to high
altitudes; b) the map shows south-facing slopes situated
at lower heights without snow, which matches field
observations; and finally c¢) north-facing areas which are
topographically sheltered from wind show great snow
accumulations and are also well represented in the final
model.

In summary, the snow volume difference between the
LIDAR model and extrapolated model was only -0.69
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Figure 8. Pearson correlation coefficient between snow depth and topographical variables considered in analysis.
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Figure 10. Increment of model adjustment with increasing number of
final nodes. Greater final nodes cause the model to be overestimated.

%. That result seems to validate the methodology and
technique used in a wide area (38 km?) with a large number
of data.

5. Conclusions

By using both LIDAR technology and the SRT
extrapolation modeling technique, a precise cartography
of snow depth distribution was obtained. Regression
application at each final node together with a considerable
amount of data obtained with LIDAR permitted good
prediction values for snow depth and, more importantly,
total amount of accumulated snow.

Several data validation methods were applied because
field work results were less useful than expected. On the
other hand, despite being a new solution, the use of aerial
photographs during validation was demonstrated to be

useful. At the same time, aerial photographs ensure a high
data representativeness. Comparing topographic profiles,
with snow and without snow, it was possible to establish a
maximum limit in snow depth measurements. Application
of more sophisticated techniques, such as geo-radar, to get
data from snow depth accumulation areas and validation
with more field data are challenges for research in the near
future.

Finally, we point out that the next investigation
efforts in Nuria valley will be focused on studying snow
water equivalent within the valley (this includes snow
water equivalent sampling) and modeling basin with
the installation of gauging stations and a comparison of
modeled snow volume calculations with measured runoff.
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