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Abstract

Self-compatibility is common on endemic plant species, but pollen limitation and self-pollination could be risk factors.
The endemic Cienfuegosia yucatanensis (Malvaceae), whose distribution is mainly restricted to the north coast of the

peninsula of Yucatán, México.
a) Are flowers of C. yucatanensis autonomous for pollination? b) Are C. yucatanensis fruit or seed-set limited by pollen

deposition? and, c) Is there evidence of early inbreeding depression in C. yucatanensis?
Two sites in the north of the peninsula of Yucatán in a seasonally dry scrubland, in the rainy season of 2013 and 2014.

Number of flowers and fruits were weekly recorded. Flowers were collected to count the number of conspecific pollen load and the
number of pollen tubes. Autonomous pollination and pollen limitation were evaluated with a hand-pollination experiment. Inbreeding
depression on fruit and seed production, and seed weight was evaluated.

Flower and fruit production occur simultaneously and last from August to October. Conspecific pollen deposition on stigmas
occurred through the whole flowering season and a maximum of pollen tubes was observed in August. Autonomous pollination treatment lead
to similar fruit and seed production than cross-pollination, but open pollination produced significantly more seeds. No significant differences
among self- and cross-pollination treatments on fruit and seed production or seed weight, were found.

Our results suggest that self-compatibility combined with a relatively efficient autonomous pollination, are suitable mechanisms
for the reproductive assurance in C. yucatanensis, with no apparent effects of early inbreeding depression.

Endemism, mixed mating systems, self-compatibility, Yucatán.
  
Resumen

La autocompatibilidad es común en especies endémicas, pero la limitación por polen y la autopolinización son factores de
riesgo.

Cienfuegosia yucatanensis (Malvaceae), especie endémica cuya distribución principal se restringe a la costa norte de
Yucatán, México.

a) ¿C. yucatanensis presenta autopolinización autónoma? b) ¿Existe limitación por polen en C. yucatanensis? y c) ¿Existe
depresión por endogamia temprana en C. yucatanensis?

Dos sitios ubicados en el norte de la península de Yucatán, en la temporada de lluvias de los años 2013 y 2014.
Se contabilizó la producción de flores y frutos, y el número de granos de polen conespecífico y de tubos polínicos. La polinización

autónoma y la limitación por polen fueron evaluadas con experimentos de polinización manual. La depresión por endogamia se estimó en la
producción de frutos y semillas, y en el peso de las semillas.

La producción de flores y frutos abarcó de agosto a octubre. La deposición de polen y el número de tubos polínicos máximo se
observó durante agosto. La polinización autónoma produjo frutos y semillas, pero la polinización abierta produjo significativamente más
semillas por fruto. No hubo diferencias significativas en la producción de frutos y semillas, ni en el peso de las semillas, entre los tratamientos
de autopolinización y polinización cruzada.

La autocompatibilidad, combinada con una eficiente polinización autónoma, son buenos mecanismos para el aseguramiento
reproductivo de C. yucatanensis sin efectos de depresión por endogamia temprana.

auto-compatibilidad, endemismo, sistemas de cruza mixto, Yucatán.
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In plants, a decrease in population size or an increased
isolation across fragmented populations can lead to
significant declines on individual sexual reproductive
success and limited population growth (Leimu et al. 2006,
Angeloni et al. 2011). This phenomenon is especially
important in endemic species because they are usually
characterized not only by their restricted geographical
distribution but also by dispersed and small populations,
thus, this puts them at a higher risk of extinction
(Rabinowitz 1981, Kruckeberg & Rabinowitz 1985, Menges
1990, Lavergne et al. 2004, Marrero-Gómez et al. 2007).
The decrease in sexual reproductive success of endemic
plant species may be partially explained by a limited ability
to attract pollinators or the low availability of pairs to mate
(Paschke et al. 2002, Busch & Schoen 2008, Albarrán et al.
2017). These conditions result in a strong pollen limitation,
resulting in low fruit and seed production (Aguilar et al.
2006). While pollen limitation is a frequent phenomenon in
many plant species (Ashman et al. 2004, Knight et al.
2005), there is evidence that endemic species are more
limited by pollen than non-endemic (Alonso et al. 2010).

Moreover, the degree of pollen limitation depends largely
on the plant mating system being usually higher in self-
incompatible species (Fenster & Martén-Rodríguez 2007,
Knight et al. 2005, Alonso et al. 2010). Thus, if endemic
species face a greater pollen limitation due to small and
fragmented populations, self-compatibility could be
expected to be a recurrent evolutionary path followed by
those species (Kruckeberg & Rabinowitz 1985, Lavergne et
al. 2004, Fenster & Martén-Rodríguez 2007, Busch &
Schoen 2008). In fact, in a meta-analysis that included 287
plant species, Alonso et al. (2010) found that transitions to
endemism were associated with transitions to self-
compatibility, which would allow self-compatible endemic
species to "scape" from pollen limitation. However, fruit
and seed production not only obeys to how much pollen is
deposited in the floral stigmas (a quantity limitation), but
also of its origin (a quality limitation), i.e., if it comes from
genetically related or unrelated individuals (Aizen & Harder
2007, Busch et al. 2010, Alonso et al. 2012).

It is well-stablished also that self-compatibility may incur
associated costs derived from inbreeding depression effects
(Baker 1955, Charlesworth & Charlesworth 1987, Husband
& Schemske 1996, Byers 1998, Dudash & Fenster 2000,
Munguía-Rosas et al. 2013). Inbreeding depression, the
reduced survival and fertility of offspring of related
individuals, is one of the most important factors limiting
population growth, since it can occur from early stages of
sexual reproduction, such as fruit and seed production
(Charlesworth & Charlesworth 1987, Collin et al. 2009,
Alonso & García-Sevilla 2013) to later stages of the life
cycle (Medrano et al. 2005), thus limiting recruitment in
natural populations (Angeloni et al. 2011). In particular, in

endemic species, inbreeding depression effects are
frequently related to decreased population size, where
mating between genetically related individuals increases
(e.g., Raijmann et al. 1994, Fischer & Matthies 1998,
Paschke et al. 2002).

However, theory also predicts it can be expected that in
self-compatible plant species, in which endogamous mating
occurs frequently, either by self-pollination or by
interbreeding between genetically related individuals, there
should be strong selective pressures that would lead to a
purge of deleterious alleles, such that eventually these
species would not show inbreeding depression (Stebbins
1957, Lande & Schemske 1985, Charlesworth &
Charlesworth 1987, Fenster & Martén-Rodríguez 2007,
Busch & Schoen 2008). Thus, it is possible that the
evolutionary transition to self-compatibility observed in
endemic species (Alonso et al. 2010), has been
accompanied by a significant decrease of the effects of
inbreeding depression (Lande & Schemske 1985, Barrett
2003).

Thus, self-compatible endemic species can be expected to
have no or low levels of inbreeding depression. However,
some evidences have shown that endemic species
experience strong inbreeding depression even in early life-
cycle stages (e.g., Alonso & García-Sevilla 2013).
Similarly, it is feasible that self-compatible endemic species
show pollen limitation, if they are not able to produce fruits
and seeds in the absence of pollinators (i.e., inefficient
autonomous pollination; Kalisz & Vogler 2003, Becker et
al. 2011). Studying the factors that limit the population
viability of endemic species is essential to strengthen
strategies that contribute to their conservation (Ellstrand &
Elam 1993).

The aim of this work was to study some aspects of the
reproductive biology of Cienfuegosia yucatanensis Millsp.
(Malvaceae), a self-compatible endemic species of the
Caribbean region. Populations of this species are distributed
mainly in seasonally dry scrublands of the north coast of the
peninsula of Yucatán, México (Alonso et al. 2013, Parra-
Tabla et al. 2017, GBIF 2020, Tropicos 2020). Specifically,
in this work we describe under field conditions the
flowering phenology and the pollination success (i.e., pollen
loads deposited on stigmas and pollen tubes in the styles)
and the post-pollination success (i.e., fruit and seed
production), and then we try to answer the following
questions, a) Is C. yucatanensis able to autonomous
pollination?, b) Are fruit or seed production limited by
pollen in C. yucatanensis? and, c) Is there evidence of early
inbreeding depression in C. yucatanensis?

Since C. yucatanensis flowers are scarcely visited by
pollinators (Téllez 2012, Arceo-Gómez 20016a), and
previous observations have shown a low and a highly
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variable number of pollen tubes on wild populations
(Alonso et al. 2013), we predicted that this species will
show pollen limitation. Because in the wild populations of
this species produce fruits (Téllez 2012), we predicted that
C. yucatanensis would autonomous pollinate. Altogether,
we expected that C. yucatanensis would show negligible
levels of early inbreeding depression.

Materials and methods

Study species. Cienfuegosia yucatanensis Millps.
(Malvaceae) is a small perennial herb (10 to 50 cm tall),
which is distributed in the Caribbean region, including
southern Florida, Cuba and the Bahamas archipelago.
However, most known populations are mainly located in the
north coast of the Yucatán peninsula (GBIF 2020, Tropicos
2020). In the north coast of Yucatán, C. yucatanensis is
distributed in a patchy way, and generally at low densities,
in seasonally dry scrublands (Flores & Espejel 1994,
Espadas-Manrique et al. 2003, Téllez 2012), which have
been extensively disturbed and fragmented mainly by
livestock activities (Orellana et al. 2009). C. yucatanensis
grows on thin soil atop limestone floodable, with higher
rock cover. Plant species richness in these scrublands is low
but includes a relatively high level of plant endemism
(Espadas-Manrique et al. 2003). The species usually shows
solitary open actinomorphic flowers and, although it can be
found individuals with 2 to 5 simultaneously open flowers,
the total number of flowers produced per individual is low
(< 10; Téllez 2012). The flowers are hermaphroditic with
yellow corollas and last one day (Figure 1).
 

Figure 1. Flower of Cienfuegosia yucatanensis visited by the
honey bee Apis mellifera in the north coast of the peninsula of
Yucatán, México (Photo credit: Luis Salinas-Peba).

The flowers have a solitary style divided apically, in 3-5
stigmas, which are above the anthers (Fryxell 1992). Each
flower contains 14-18 ovules (16.4 ± 0.4, Mean ± S.E.,
Alonso et al. 2013), the fruits are dry and dehiscent, and the
seeds pubescent (Fryxell 1992). The flowers produced
nectar and are visited by different species of Hymenoptera
and Lepidoptera, but at a very low rate (< 0.02 visits/min/
flower; Téllez 2012, Arceo-Gómez et al. 2016a).
C. yucatanensis is self-compatible (Alonso et al. 2013), but
it is not known if it is capable of autonomous pollination.
Even though pollen deposition in the stigmas is relatively
high (between 100 and 300 grains per stigma), the mean
number of pollen tubes per ovule that grow in the styles is
usually low but highly variable (0.56 ± 0.75; Mean ± SD; 0-
1.5; Alonso et al. 2013).
 
Study sites. This study was carried out in two populations of
C. yucatanensis located in the north of the state of Yucatán
in the rainy season of 2013 and 2014 (from August to
October). The first population was located within the
municipality of Dzemul (21°18' N; 89°1' W) and the second
within the municipality of Chicxulub (21° 08’ N; 89°
30 W). Both sites are separated by ca. 20 km. The climate is
warm sub-humid with rains in the summer, an average
annual temperature of 26.3 °C and an average annual
rainfall of 469 millimeters (Orellana et al. 2009). In the
seasonally scrublands in both sites, dominant tree and shrub
species such as Bursera simaruba (L.), Acacia collinsii
(Saff.) and Gymnopodium floribundum (Rolfe), as well as
herbaceous species such as Angelonia angustifolia (Benth.),
Tamonea curassavica (L.) and Sida cordifolia (L.), can be
found (Flores & Espejel 1994). This scrubland is also
characterized by endemic species of Cactaceae such as
Nopalea gaumeri (Britton & Rose) and Pilosocereus
gaumeri (Britton & Rose) (Espadas-Manrique et al. 2003),
and endemic herbaceous such as C. yucatanensis (Millsp.)
and Cuphea gaumeri (Koehne) (Alonso et al. 2013).
 
Flowering phenology, pollination and post-pollination
success on field conditions. In 2013, four 20 m transects
were established at each site and seven equidistant 2 × 2 m
plots were placed in each transect (parallel to each other).
The location of the transects was established after a visual
inspection through which the presence of C. yucatanensis
was detected. Since flowering of most of the herbaceous in
the region occur during the rainy season (June to October;
Parra-Tabla et al. 2017), weekly censuses were carried out
during that period to record the number of open flowers and
fruits in a total of 200 individuals (87 at the Dzemul site and
103 at the Chicxulub site). Pollination success was
estimated by analyzing the number conspecific pollen
grains deposited on the stigmas and the number of pollen
tubes growing in the styles. The identification of
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conspecific pollen was done comparing the samples with a
pollen library previously elaborated for endemic species
from the study sites (Alonso et al. 2013). Although we were
not able to visualize the pollen tubes that penetrated the
ovules, the number pollen tubes (and the deposited
conspecific pollen grains) are effective variables to
describing natural variation in the pollination success at the
individual, population, and community levels (Alonso et al.
2012, Arceo-Gómez et al. 2016a, Ashman et al. 2020). To
do this, we collected 2 to 3 withered and closed flowers
from 20 individuals per site randomly selected during the
flowering period. The flowers were placed in 70 % alcohol
in individual containers. In the laboratory stigmas and styles
were dissected to count the number of pollen grains in the
stigma and the growth of pollen tubes with the fluorescence
technique (Kearns & Inouye 1993). Styles were softened in
1 N KOH, rinsed with distilled water and stained for 60 min
at 68 °C in decolorized aniline blue. Under a fluorescence
microscope (Nikon e200©), pollen grains were counted on
the stigma and pollen tubes at the base of the style.

Fruit and seed-set (post-pollination success), were
evaluated from a subsample of 30 individuals per site,
which were marked and followed during all the
reproductive season. Fruit-set was estimated as the
proportion of the total number of mature fruits respect to the
total number of flowers. During each census, we collected
2-3 mature fruits from each individual plant to count the
number of seeds (N = 75 and 81 in Dzemul and Chicxulub
sites, respectively). Seed-set was calculated as the
proportion of the number of seeds respect to the total
number of ovules, estimated as the sum of the number of
mature seeds and the number of unfertilized ovules (Parra-
Tabla et al. 1998).
 
Pollen limitation and autonomous pollination. To test for
pollen limitation, and if C. yucatanensis is capable of
autonomous pollination, in the year of 2014 a hand-
pollination experiments was carried out under field
conditions in 30 individuals at the Chicxulub site. The
selected individuals had very similar size (i.e., height and
plant cover), and similar floral display size. Given the low
number of flowers produced by each individual plant of
C. yucatanensis, we were only able to apply the following
treatments: (1) Autonomous pollination: individual flowers
were bagged before the anthesis to avoid access to
pollinators and foreign pollen, (2) Cross-pollination:
individual flower buds were emasculated one day before
anthesis to avoid self-pollen deposition. At the anthesis we
added a pollen mixture of 2 to 3 flowers collected from
different and distant individuals (> 10 m); after that the
flowers were bagged; and (3) Open pollination: individual
flowers with free access to pollinators; when the flowers
close these were bagged. All the flowers were individually

marked, identifying in each case the treatment to which they
were subjected. Because the low number of simultaneously
open flowers available, the treatments could not always be
applied the same day, and the replication of each treatment
was unbalanced. The hand pollinations of the cross-
pollination treatment were performed early in the morning
(ca. 7-8 AM). We had ca. 90 experimental flowers per
treatment (N = 270 total manipulated flowers). The fruits
from the experimental flowers were monitored and the
mature fruits were collected. Fruit and seed-set were
estimated in the same way described above.
 
Early inbreeding depression. To estimate if C. yucatanensis
showed early inbreeding depression, we used as response
variables the fruit and seed-set, and the seed weight from
the treatments of autonomous pollination (i.e., self-
pollination) and cross-pollination of the pollination
experiment described above. Mature seeds were
individually weighted with an analytical balance (Ohaus®

± 0.001 mg). The magnitude of early inbreeding depression
on fruit and seed production and on seed weight, was
calculated as δ = 1- (Ws / Wo), where δ is the inbreeding
depression index, and Ws and Wo are the mean fitness
values of the autonomous self-pollination (Ws) and cross-
pollination (Wo) estimated from the pollination experiment
described above (Johnston 1992, Ågren & Schemske 1993).
These variables are considered good proxies of plant fitness
(Endler 1986). In particular, seed weight is closely
associated with seedling establishment and future plant
survival and reproduction (e.g., Kalisz 1989, Paz et al.
2005).
 
Statistical analyses. Among sites differences in the average
of number of flowers, fruits, conspecific pollen on the
stigmas, number of pollen tubes on the styles, and fruit and
seed production, were evaluated with t-Student tests (Zar
1986). To test differences between the pollination
treatments, a mixed generalized linear model was
performed, with the pollination treatment as a fixed effect
and the individual plants as a random effect. The response
variables were fruit and seed-set, in both cases we used a
binomial error with log link function (Littel et al. 2006).
These analyses were performed with the software SAS ver.
9.1 (SAS 2002). Multiple paired tests among treatments
were performed with the pdiff/test procedure (SAS 2002).
To assess the effect of early inbreeding depression, the
Hedges’ effect size was calculated following Hedges &
Olkin (1985), as Hedges’ g = Wo-Ws /SD pooled where Ws
and Wo are the mean values of the autonomous self- and
cross-pollination, respectively, and SD is the pooled
weighted standard deviation. An effect size value of 0
reflects no difference in reproductive success between
flowers from the open pollination treatment, and flowers
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from the autonomous pollination (i.e., no significant
inbreeding depression effect). In addition, the mean value of
δ for the autonomous pollination and the cross-pollination
treatment were calculated (see above). To test if the δ was
significantly different from 0, we calculated the mean and
the δ ‘s confidence interval (CI) at 95 % (Zar 1986).

Results

Flowering phenology, pollination and post-pollination
success under field conditions. The flowering period of
C. yucatanensis was short since it only lasted from August
to September. The average of total open flowers at the sites
was relatively constant throughout flowering, although a
higher number of open flowers was observed towards the
middle of August. In contrast, a higher number of fruits was
observed towards the middle of September (Figure 2). We
did not find significant differences between sites for the
total number of flowers and fruits per plant (t ≤ 0.8, P > 0.4,
in both cases). On the other hand, we did not find
significant differences between sites in the fruit-set
(Table 1), but we found significant differences between sites
for seed-set, in Chicxulub almost twice as many seeds were
produced compared to Dzemul (Table 1).
 

Pollen deposition on floral stigmas was high in both sites
(Figure 3A) and the average number of grains per stigma at
the Chicxulub site was almost twice as high as the observed
at Dzemul (Mean ± S.D. 84.8 ± 56.0 and 43.8 ± 31.5 pollen
grains, respectively), this difference was statistically
significant (t28 = 7.1, P < 0.01). Regarding the number of

pollen tubes, these were much lower compared to the
number of pollen grains deposited on the stigmas
(Figure 3B), but much higher than the number of pollen
tubes per flower in most of the flowering period. The
average number of pollen tubes per ovule was three times
higher in Chicxulub compared to Dzemul (Mean ± S.D.
2.01 ± 3.9 and 0.56 ± 0.75 pollen tubes, respectively), this
difference was statistically significant (t28 = 4.02, P < 0.01).

 
Table 1. Fruit-set and seed-set (Mean ± SD) of the endemic plant
Cienfuegosia yucatanensis in two sites of the north of the peninsula
of Yucatán. Significance for the comparison among sites (P-values)
are shown.

Dependent variable Site Mean ( ± SD) P

Fruit-set Chicxulub 0.61 (0.40) 0.07

Dzemul 0.48 (0.41)

Seed-set Chicxulub 8.4 (3.7) < 0.001

Dzemul 4.9 (3.4)

 
Pollen limitation and autonomous pollination. The
pollination experiment conducted at Chicxulub site showed
that the average fruit-set was relatively high for all
treatments (ca. 65 %; Table 2). Despite a difference of about
5 % observed in the open pollination treatment, respect to
the average of the other two treatments (Table 2), no
significant differences were found between treatments due
to large variance recorded in all of them (Table 2). On
average, seed-set was high in all pollination treatments

Figure 2. Mean number (± SD) of flowers and fruits of Cienfuegosia yucatanensis in two sites of the north coast of the peninsula of Yucatán,
México in the flowering season of 2013 (data from the two study sites combined).
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(> 80 %; Table 2), and the statistical analysis showed
significant differences between the cross- and the
autonomous pollination treatments compared to the open
pollination treatment (P < 0.03 in both cases; Table 2).
Open pollination produced almost 10 % more seeds than
autonomous and cross-pollination treatments (Table 2,
P < 0.05 in both cases), which did not differ from each other
(Table 2, P > 0.3). Finally, the seed weight was very similar
in all treatments, and no significant differences were found
between them (Table 2).

Figure 3. Mean number (± SD) of (A) conspecific pollen deposited
on the stigma and (B) pollen tubes growing on the styles of
individual flowers of Cienfuegosia yucatanensis along the
flowering season of 2013 in two sites of the north coast of the
peninsula of Yucatán, México
 
Early inbreeding depression. Size effects revealed a
minimal and non-significant difference between the cross-
pollination (Wo) and autonomous pollination (Ws), for any
of the response variables (Figure 4; P > 0.5 in all cases).
The average of each variable from both pollination
treatments, were very similar to each other (Table 2).
Furthermore, the δ ’s confidence interval always overlap
zero (Table 2), suggesting also non-significant inbreeding
depression effects in this population.

Discussion

The results found in this work were partially consistent
with our predictions, since we found that C. yucatanensis is
capable of autonomous pollination. In addition, seed but not
fruit production, was affected by pollination treatments
although in an unexpected way, and we did not find
evidence of early inbreeding depression.
 
Pollen limitation and autonomous pollination. The
importance of pollen limitation by both, quantity and
quality, depends largely on the plant mating system
(Ashman et al. 2004, Knight et al. 2005, Alonso et al.
2010). Since C. yucatanensis is self-compatible, and its
flowers are scarcely visited by pollinators (Téllez 2012,
Arceo-Gómez 20016a), we predicted that pollen limitation
would depend mostly on the autonomy for effective self-
pollination and the quality of pollen deposited on the
stigma. The results of the pollination experiment done in the
Chicxulub site, revealed that C. yucatanensis is capable of
effective autonomous pollination in absence of pollen
vectors. Furthermore, the flowers of the autonomous
pollination treatment showed the same probability to
produce fruits as the flowers of hand cross-pollination and
those with open pollination, suggesting that fruit production
is not limited by pollen in C. yucatanensis. Moreover, the
non-significant differences among autonomous and cross-
pollination, also suggest that in C. yucatanensis there is not
quality pollen limitation of fruit production.

However, the hand-pollination experiment also showed
that the open pollination treatment produced ca. 10 % more
seeds than both, the autonomous and hand cross-pollination
treatments, which would suggest that seed production can
be to some extent pollen limited. Unfortunately, our study
did not allow us to distinguish if this increase of seed
production was due to pollen quantity or pollen quality. On
one hand, we did not quantify pollen loads on the stigma of
treated flowers so it is possible that, although we used a
generous amount of pollen in the cross-pollination
treatment, this quantity was less than that received by the
open pollinated flowers. Alternatively, it is possible that the
supplementary pollen produced a “crowding effect”,
inhibiting the ovule fertilization (Young & Young 1992). On
the other hand, it is also possible that the pollen they
received naturally was of higher quality. In plants with
mixed mating systems, differences in the quality of self- vs.
cross-pollen have been extensively demonstrated, showing
that self-pollen or pollen from individuals genetically
related are less effective to ovule fecundation than cross-
pollen (e.g., Kalisz 1989, Dudash 1990, Johnston 1992,
Alonso et al. 2012, Abdala-Roberts et al. 2014). Therefore,
an experiment that controls both, the pollen source and the
amount of pollen deposited by emasculation and hand-
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pollination with self- and outcross-pollen, is necessary in
order to clarify if pollen quantity or pollen quality are more
relevant to explain seed production in C. yucatanensis. In
addition, emasculation before and after anthesis could
further clarify when autonomous pollination occurs (Fenster
& Martén-Rodríguez 2007).

Nevertheless, it is important to point out that the
pollination experiment of this study was carried out at the
Chicxulub site, where the pollen loads on the stigmas was
almost twice as high, and the number of pollen tubes was
almost three times higher than the Dzemul site. Thus, this
result suggests that the extent of pollen limitation, must be
variable between populations of C. yucatanensis (e.g., Dart
& Eckert 2013).

Unlike other self-compatible endemic species, fruit and
seed production in C. yucatanensis was high (ca. 60 and
85 %, respectively) in the absence of pollinators. For
instance, Erodium cazorlanum does not produce fruits and
seeds autonomously (Alonso & García-Sevilla 2013), and
although autonomous fruit production in Echium wildpretii
was similar to C. yucatanensis (ca. 55 %), the seed
production in this species was 50 % less in autonomous
pollinated flowers than in open-pollinated flowers
(Sedlacek et al. 2012). These results suggest that self-
compatible endemic plants would show different levels of
pollen limitation, depending on how efficient autonomous
pollination is (see Kalisz & Vogler 2003). Interestingly, the
efficiency of autonomous pollination has not been
considered in the global analyses of pollen limitation in
which self-compatible plants are considered a homogeneous
group (Ashman et al. 2004, Knight et al. 2005), and it has
been listed among the open relevant questions for
pollination studies of XXI century (Mayer et al. 2011).
Whether its effect is similar in endemic and non-endemic

plants is largely unknown and we suggest that strong
selection for reproductive assurance, must drive to an
efficient autonomous pollination in self-compatible endemic
species (see Fenster & Martén-Rodríguez 2007),
particularly when they face great uncertainty in the
pollinator’s availability.

Overall, our results suggest that self-compatibility and
autonomous pollination are suitable mechanisms of
reproductive assurance in C. yucatanensis, but also that the
action of natural pollinators contributes to increase seed
production. Additionally, for conservation purposes, it is
important to consider the spatial variation on pollen
limitation effects in endemic species (Arceo-Gómez et al.
2016b), because accumulating evidence supports that
ecological disturbances such as habitat fragmentation,
decline of pollinators, alien species (Knight et al. 2005,
Memmott et al. 2007, Parra-Tabla et al. 2019) or even
among-regional differences on plant richness (Alonso et al.
2010), may increase pollen limitation.
 
Early inbreeding depression. In agreement with our
prediction, the results showed no significant differences
among autonomous-selfing and experimental hand cross-
pollination treatments on fruit and seed production or seed
weight, suggesting that in these early stages of the life-cycle
of C. yucatanensis, there are no effects of inbreeding
depression at least in the Chicxulub site. The effects of
inbreeding depression in plants have been widely
documented (e.g., Dudash 1990, Holsinger 1991, Byers &
Waller 1999). However, theoretical and experimental
evidence suggests that species that are subject to repeated
events of inbred mating, unmask deleterious alleles, thus
decreasing the effects of inbreeding depression (Lande &
Schemske 1985). Thus, in addition to the benefit of

Table 2. Fruit-set, seed-set and seed weight (Mean ± SD) of the endemic plant Cienfuegosia yucatanensis for the pollination treatments. F-
values (df = 2, 267) and P-values for comparison among pollination treatments are shown. Different letters denote significant differences
between pollination treatments for each dependent variable (P < 0.05). Inbreeding depression index δ (confidence interval at 95 %) for fitness
values from cross-pollination offspring and from autonomous self-pollination offspring is shown.

Dependent variable Pollination treatments Mean (± SD) F P δ (CI 95%)

Fruit-set Autonomous pollination

Cross pollination

Open pollination

0.63 ± 0.35a

0.65 ± 0.29a

0.57 ± 0.37a

0.57 0.56 +0.04 (-0.312 to + 0.252)

Seed-set Autonomous pollination

Cross pollination

Open pollination

0.85 ± 0.15a

0.82 ± 0.21a

0.94 ± 0.09b

4.08 0.02 -0.03 (-0.560 to + 0.200)

Seed weight (mg) Autonomous pollination

Cross pollination

Open pollination

2.1 ± 0.8a

2.2 ± 0.5a

2.3 ± 0.8a

0.17 0.84 +0.045 (-0.371 to + 0.205)
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avoiding pollen limitation, self-compatibility has the
associated benefit of purging deleterious alleles (Lande &
Schemske 1985, Barrett 2003).

In C. yucatanensis there are two lines of evidence that
suggest a highly frequent inbred mating. First, previous
observations have shown that the flowers of C. yucatanensis
are consistently visited at a very low rate by its insect-
pollinators (Téllez 2012, Arceo-Gómez et al. 2016a), which
suggest that cross-pollination is not frequent. Second, our
results of the pollination experiment revealed that even in
the absence of pollinators, C. yucatanensis is capable to
produce fruits and seeds via autonomous pollination as
efficiently than hand cross-pollination. Interestingly, in
other self-compatible endemic species in which autonomous
pollination is not efficient, strong effects of inbreeding
depression has been observed. For instance, in the endemic
self-compatible Erodium cazorlanum, which is not capable
of autonomous pollination, it was observed that the number
of seeds per fruit and seeds weight, was significantly higher
after cross than self-pollinations (Alonso & García-Sevilla
2013). In contrast, in Echium wildpretii, in which the
efficiency of autonomous pollination to produced fruits was
similar to the observed in C. yucatanensis, weak effects of
inbreeding depression were found (Sedlacek et al. 2012).
Together, these results suggest that the frequency and
efficiency of autonomous pollination is associated with the
extent of the inbreeding depression effects (see Fenster &
Martén-Rodríguez 2007).

Nevertheless, we cannot rule out the existence of
inbreeding depression effects in later stages of the life-cycle
of C. yucatanensis, as is common in many self-compatible
plant species (e.g., Husband & Schemske 1996, Munguía-
Rosas et al. 2013). Furthermore, it is well known that
inbreeding depression’s effects occur more frequently when
plants are subjected to stressful environments (Armbruster
& Reed 2005, Cheptou & Donohue 2011). For instance, in
the endemic self-compatible Echium wildpretii, Sedlacek et
al. (2012), found that inbreeding depression increased
significantly only under hydric stress, reducing the
offspring’ survival produced by self-pollination by up to
50 %, respect to offspring produced by cross-pollination.
Thus, in order to corroborate that C. yucatanensis does not
suffer from inbreeding depression, it is necessary to
evaluate differences between self and cross-pollinated
progeny in later stages of the life-cycle (e.g., age at first
reproduction, survival), as well as evaluating its overall
performance under stress conditions.

This latter is reasonable to study in C. yucatanensis for
two reasons. First, under wild conditions, C. yucatanensis
faces different natural stressful conditions (e.g., recurrent
tropical storms, long periods of low water availability and
high micro-environmental heterogeneity, such as light
exposure and nutrient soil availability). Thus, it is possible
that in these temporal and spatial environmental gradients,
inbreeding depression may act. Second, the scrublands of
the north of Yucatán are being subjected to strong
anthropogenic effects, particularly to a high habitat

Figure 4. Size effects and confidence interval (CI, 95 %) for the comparisons between autonomous-selfing and experimental cross-pollination
treatments in fruit and seed-set, and seed weight, in Cienfuegosia yucatanensis estimated as Hedges’ g (see text for details).
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fragmentation, which, in addition to isolating and reducing
populations size, could add other important environmental
disturbances in the wild populations of C. yucatanensis (see
Haddad et al. 2015). For instance, it is well-established that
habitat fragmentation can reduce pollinator diversity and
abundance, and plant genetic variation (Leimu et al. 2006).

In summary, our results suggest that self-compatibility
combined with an efficient autonomous pollination, are
suitable mechanisms for the reproductive assurance in
C. yucatanensis, with no apparent effects of early
inbreeding depression.
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