Germination and establishment of Teramnus labialis (L.f.) Spreng plants ARE AFFECTED BY SCARIFICATION TREATMENT USED

[©]Yanier Acosta^{1,2}*, [©]Sershen³, [©]Jorge A. Sánchez⁴, [©]Inaudis Cejas², [©]Dayamí Fontes², AND MARCOS E. MARTÍNEZ-MONTERO²

Abstract

Background: Some of the species that make up the legume family are used as animal feed and to improve soil fertility. However, their use is limited due to low seed availability and low germination rates.

Questions: Which scarification treatment is most effective in increasing germination? What is the response of plants to growth under field conditions?

Studied specie: Teramnus labialis (L.f.) Spreng. Study site and date: Ciego de Avila, Cuba, 2019 year.

Methods: Four scarification treatments (sanding, sulfuric acid, hot water, and liquid nitrogen (LN)) were evaluated under controlled laboratory and field conditions. Seed coat structures, imbibition capacity, electrolyte loss, and germination were studied under controlled laboratory conditions. Under field conditions, plant morphological traits were evaluated during the vegetative and reproductive phases.

Results: Scarification with LN caused multiple cracks in the seed coat, while sulfuric acid caused wear and detachment of the seed coat. With the use of LN, seed imbibition and germination were improved. In addition, 78 % of plants emerged with this treatment and crop establishment was achieved 120 days after sowing.

Conclusions: Scarification with LN of T. labialis seeds was the most effective treatment to improve germination and reduce the time to establishment of the species.

Keywords: Break dormancy, legumes, plant growth, seed coat, seed germination.

Resumen

Antecedentes: Algunas de las especies que componen la familia de las leguminosas se utilizan como alimento animal y para mejorar la fertilidad del suelo. Sin embargo, su uso es limitado debido a la baja disponibilidad de semillas y los bajos porcentajes de germinación.

Preguntas: ¿Qué tratamiento de escarificación es más eficaz para aumentar la germinación? ¿Cuál es la respuesta de las plantas al crecimiento en condiciones de campo?

Especie estudiada: Teramnus labialis (L.f.) Spreng.

Lugar y fecha del estudio: Ciego de Ávila, Cuba, año 2019.

Métodos: Se evaluaron cuatro tratamientos de escarificación (lijado, ácido sulfúrico, agua caliente y Nitrógeno líquido (NL)) en condiciones controladas de laboratorio y de campo. Se estudiaron las estructuras de la testa de la semilla, la capacidad de imbibición, la pérdida de electrolitos y la germinación en condiciones controladas de laboratorio. En condiciones de campo, se evaluaron los caracteres morfológicos de las plantas durante la fase vegetativa y reproductiva.

Resultados: La escarificación con NL provocó múltiples grietas en la testa de la semilla, mientras que el ácido sulfúrico provocó desgaste y desprendimiento de la testa. Con el uso del NL se mejoró la imbibición y germinación de las semillas. Además, con este tratamiento se alcanzó el 78 % de plantas emergidas y se logró el establecimiento del cultivo en 120 días después de la siembra.

Conclusiones: La escarificación con NL de las semillas de T. labialis fue el tratamiento más efectivo para mejorar la germinación y reducir el tiempo para el establecimiento de la especie.

Palabras clave: Crecimiento de plantas, germinación de semillas, legumbres, ruptura de dormancia, testa de la semilla.

¹ Bioplantas Centre, University of Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba.

² Faculty of Agricultural Sciences, University of Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila, Cuba.

³ Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa.

⁴Institute of Ecology and Systematics, Havana, Cuba.

^{*}Corresponding author: yacfdez@gmail.com

he family of legumes (Leguminosae) economically represents the second most important of the cultivated plants after the Poaceae (Llamas & Acedo 2016, Jimenez-Lopez *et al.* 2020) and is made up of approximately 770 genera and about 19,500 species (Azani *et al.* 2017). Legumes are important in animal nutrition, both for the nutritional value of fruits and seeds, and for the rest of the plant that is used as forage or grazing (Fontes *et al.* 2008a, Mazorra *et al.* 2016). In this sense, the biomass of trees, shrubs and especially forage legumes have a leading role due to their considerable protein content and acceptable nutritional value (Mazorra *et al.* 2016). In addition, legumes have a general characteristic that is to harbor atmospheric nitrogen-fixing bacteria in their roots to provide it to the plant when necessary (Llamas & Acedo 2016).

In Cuba, the most important genera are *Centrosema*, *Desmodium*, *Neonotonia*, *Stylosanthes* and *Teramnus* (Ruiz *et al.* 2015). Within the genus *Teramnus*, one of the most important species is the perennial herbaceous *Teramnus labialis* (L.f.) Spreng (Menéndez 1982, Olivera 2011, Toral *et al.* 2015). The greatest use of this species is as a protein source in the diet of bovine cattle (Toral *et al.* 2015), which is due to its acceptable biomass production and nutritional quality (Machado & Olivera 2008). However, other authors also refer to this legume as a cover crop on fruit trees such as bananas (Gutiérrez *et al.* 2002), the citrus (Fontes *et al.* 2008b) and the guava (Fontes *et al.* 2018).

Despite the potential of legumes, currently it has not been possible to extend their use in different agricultural systems due to the low availability of existing seeds. Additionally, the low percentage of germination limits the establishment in the field of these species (González 2011, Fontes *et al.* 2018) and in particular of *T. labialis* (Acosta *et al.* 2020c, 2021). In the case of this species, the low germination percentage is associated with the presence of an impermeable seed coat (Acosta *et al.* 2020b, 2020c, 2023b).

Of the five classes of seed dormancy recognized (Baskin & Baskin 2014, 2021), the impermeability of the seed coat is a characteristic feature of physical or combined dormancy (physical + physiological) (Wang *et al.* 2019, Rodrigues-Junior *et al.* 2020). The first step to overcome physical or combined dormancy is to eliminate the impermeability of the seed through a scarification treatment (Baskin & Baskin 2014). These treatments are grouped into three different methods: mechanical, chemical and physical (de Morais *et al.* 2014, Schnadelbach *et al.* 2016, Apodaca-Martínez *et al.* 2019).

The treatment of *T. labialis* seeds with sulfuric acid (chemical method) was described by Muñoz *et al.* (2009) and Acosta *et al.* (2023b); although the use of hot water (physical method) is the most studied procedure in this species (González & Mendoza 1991, Fontes *et al.* 2008a, Mazorra *et al.* 2016). Among the physical methods, the literature refers to the use of liquid nitrogen (LN) as a scarifying agent in seeds of many legume species (Acharya *et al.* 1999, Voronkova & Kholina 2010, Wu *et al.* 2017) and particularly in *T. labialis* (Acosta *et al.* 2019, 2020b). However, for *T. labialis* there are no references to the influence of these scarification treatments during germination and establishment under field conditions, so this study is aimed to compare the effect of four different scarification treatments during germination and establishment of *T. labialis*.

Material and methods

Seeds material. Seeds were collected in March 2019 from fifty adult plants of *Teramnus labialis* (L.f.) Spreng, cultivated in Ciego de Ávila, Cuba. (21° 89` 14.07" N; 78° 69` 67.53" W). The seeds had a moisture content of 7.56 % and were stored for three months as described by Acosta *et al.* (2020a).

Scarification treatments. Two thousand seeds were taken for each scarification treatment and the same amount for the control treatment (without scarification). All scarification treatments were performed as described by Acosta *et al.* (2023b) for this species:

Abrasion.- The seed coat was degraded by abrasion between two sheets of fine-grain sandpaper (number 180 for 5 s), sanding was done manually taking care not to press the seeds excessively so as not to damage the embryo.

Sulphuric acid (95 %).- Seeds were dipped in concentrated sulphuric acid for 5 min. At the end of this time, seeds were washed severally in distilled water and dried.

Hot water (80 °C).- Seeds were dipped in hot water for 5 min. At the end of this time, seeds were dried.

Liquid nitrogen (-196 °C).- Seeds were put in polypropylene cryo-vials (two thousand seeds per crio-vial) and immerse directly in LN for 30 min. After extracting the seeds, they were placed on a plastic tray for 2 h until they reached room temperature (± 25 °C).

After scarification, seeds from all treatments, including the control treatment, were used to develop each of the experiments described below.

Experiment under laboratory conditions. Seeds coat structure.- Twenty seeds, for each scarification treatment and control, were randomly selected for histological studies were performed according to Johansen (1940). Samples were fixed in FAA, dehydrated in an ethanol series, and included in Paraffin. Cross sections (5 μm thick) were cut with a hand rotary microtome (KD-202A) and collected on microscopic slides covered with gelatin solution. Sections were stained with solutions of 1 % safranin for 24 hours to dye cell walls red or deep pink. Observations were carried out using a microscope (Carl Zeiss Microlmaging GmbH 37081) at 200X, and photography by Cannon digital camera (EOS 600D).

Seeds imbibition.- To determine the imbibition capacity, three replicates of 50 seeds were used for each treatment. The seeds of each replicate were weighed in their entirety (50 seeds) and separately (each individual seed) on an analytical balance (Sartorius) and placed in Petri dishes (90 mm diameter) on filter paper moistened with 5 ml of distilled water (the seeds of each replicate in a Petri dish). After 24 h, the seeds were removed, dried and weighed again (in the same way as before placing them to be imbibed). With the mass of each individual seed (50 seeds of each replicate) the percentage of imbibed seeds (PES) was calculated according to Baskin *et al.* (2007), and with the total mass of the seeds of each replicate (50 seeds), the percentage of seed absorption (PSA) was calculated according to Baskin *et al.* (2004).

Seeds electrolyte leakage.- Three replicates of 9 g of seeds (approximately 1,320 seeds) were used in each scarification treatment, to measure electrolyte leakage (Moreno Casasola 1996). Seeds were surface sterilized with 1 % sodium hypochlorite for 2 min. They were then rinsed with distilled water and placed in a beaker with 10 mL of distilled water for 24 h at a temperature of 25 °C. Leachates were collected after 24 h of imbibition and conductivity was measured with a conductivity meter (Sartorius, pp-20).

Seeds germination trials.- Four replicates of 25 seeds, for each treatment, were tested for germination at constant temperature 30 ± 2 °C under dark at 80 % relative humidity, for 28 days in a programmable growth chamber (TOP Cloud-agri, RTOP-1000 B/D). Seeds from each replicate (25 seeds) were placed on filter paper in a 90 mm diameter Petri-dish (unsealed). The filter paper was moistened with 5 mL distilled water every 7 days. Daily germination counts, based on the length radicle (≥ 2 mm). Using the germination test data, the following numerical variables associated with seed vigor were calculated to estimate the effect of the different scarification treatments on seed viability and vigor during germination: (G) germination percentage, (T_{50}) time necessary for 50 % of the seeds to germinate, (GI) germination index, (MGT) mean germination time and (UG) uniformity of germination (Ranal & Santana 2006).

Experiment under field conditions. Seedling growth trials.- Seeds were sown in a site representative of Typical Fersialitic soil farmland in Ciego de Avila, Cuba (21.99° 06' 85" N; 78.76° 73' 00" W). This type of soil, as described by Hernández *et al.* (2019) in the classification of Cuban soils, is moderately deep, little eroded, stony, with an effective

depth of 30 cm and almost flat. For each treatment (plus the control) a plot of 4×3 m (12 m^2) was used. Four rows were made in each plot and the sowing was done at a distance of 0.30×0.70 m, three seeds were placed in each sowing niche for a total of 170 seeds per plot. Plots were irrigated via sprinklers every 7 d until fruit formation. Border plants were not evaluated to exclude potential edge effects. The sowing was carried out in the month of June and the procedures were based on Mazorra *et al.* (2020).

Vegetative stage.- The following traits were measured according to Machado & Roche (2004) between 42 and 120 days after sowing (DAS): seedling emergence (%, 42 DAS), plant height (cm, 42 DAS), leaf per plant (42 DAS), leaf coverage (m²; 120 DAS).

Reproductive stage.- The following traits were measured according to González (1995) at moments of harvest (250 DAS): Total pod per m², grams of seeds per m² (g m ²⁻¹).

Statistical analysis. All data were statistically analyzed using SPSS (Version 8.0 for Windows, SPSS Inc., New York, NY). Data were tested for normality using a Shapiro-Wilk test and means were compared using parametric tests (One-way ANOVA, $P \le 0.05$). Germination percentage data was transformed for analysis according to $y' = 2 \arccos ((y / 100)^{0.5})$.

Results

Seeds from the control treatment showed a completely intact seed coat (<u>Figure 1A</u>), where the cuticle, the macrosclereid cell layer and the osteosclereid cell layer could be seen. In contrast, exposure of the seeds to LN (<u>Figure 1E</u>) produced multiple cracks in the cuticle (Cu) and the macrosclereid cell layer, while exposure to hot water only caused small cracks (<u>Figure 1D</u>). Exposure of the seeds to sanding caused wear of the cuticle and part of the macrosclereid cell layer (<u>Figure 1B</u>), however, sulfuric acid degraded both cell layers and created corrosion and loss of the seed coat (<u>Figure 1C</u>).

The percentage of seed absorption (PSA) increased with all the scarification treatments used (<u>Figure 2A</u>), however, the percentage of embedded seeds (PSE) was higher with the use of sulfuric acid (100 %) and LN (100 %) compared to the use of sanding (76 %) and hot water (51 %) (<u>Figure 2B</u>). Additionally, the loss of electrolytes during imbibition (<u>Figure 2C</u>) was significantly higher with the use of sulfuric acid compared to the rest of the scarification treatments, while a decrease in the loss of solutes to the medium was observed in the control treatment.

The use of LN as a scarifying agent exhibited the highest percentage of germination (91 %), followed by sanding 79 %, sulfuric acid 68 % and hot water 62 % (Figure 3A). The use of hot water was the scarification treatment that showed the highest percentage of hard seeds (21 %) (Figure 3B), while the scarification with sulfuric acid showed the highest percentage of dead seeds (32 %) (Figure 3C).

As expected, the use of scarification not only improved germination, but also the numerical variables associated with seed vigor (T_{50} , GI, MGT and UG) (<u>Table 1</u>).

The percentage of plants emerged during the first 42 days after sowing was higher when LN was used as a scarification treatment (Figure 4A), as well as the height of the plants and the number of leaves per plant (Figure 4B, C). With the use of LN as a scarification treatment, 92 % of the covered area was reached 120 days after sowing (Figure 4C).

During the reproductive phase, the number of legumes per m² (Figure 5A) and the total number of seeds per m² (Figure 5B) were higher in the treatment of seeds scarified with LN. Additionally, the use of sanding was another treatment that showed superior results to the control, while the treatment with sulfuric acid produced the lowest number of legumes and seeds (Figure 5A, B).

Discussion

The anatomical characteristics observed in the seed coat of *T. labialis* seeds correspond to those described for species of the subfamily Papilionoideae by Rolston (1978), Okonwu & Ariaga (2017), da Silva *et al.* (2018), Shehata &

Aqlan (2020) and Zemouri *et al.* (2020); and with the descriptions made for this species previously by Acosta *et al.* (2020a,b). The anatomical changes observed in the seed coat by the use of the LN are consistent with those observed in this species by Acosta *et al.* (2020b) and for other legume species by Luan *et al.* (2017), Jaganathan *et al.* (2018), Sun *et al.* (2018), Magalhães & Oliveira (2020) and Yousif *et al.* (2020).

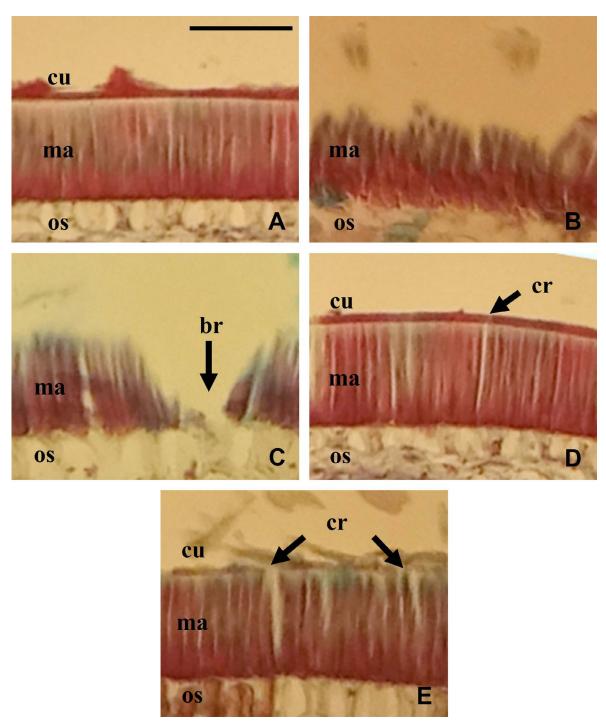


Figure 1. Terannus labialis seeds coat morphology. (A) seeds without scarifying (control), (B) seeds scarified with sandpaper, (C) seeds scarified with sulfuric acid, (D) seeds scarified with hot water and (E) seeds scarified with LN. br = breaks, cr = cracks, cu = cuticle, ma = macrosclereid cell layer, os = osteosclereid cell layer. Bar represent 100 μ m in all photos.

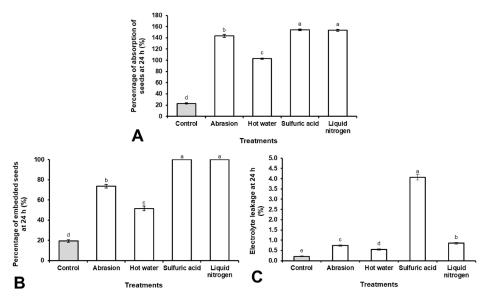


Figure 2. Teramnus labialis seeds physiological changes after scarification. (A) Imbibition capacity, (B) total seeds embedded and (C) electrolyte leakage. Results with the different letter, for each figure, are statistically different (One-way ANOVA, $P \le 0.05$, n = 3. Vertical bars represent mean \pm SE.

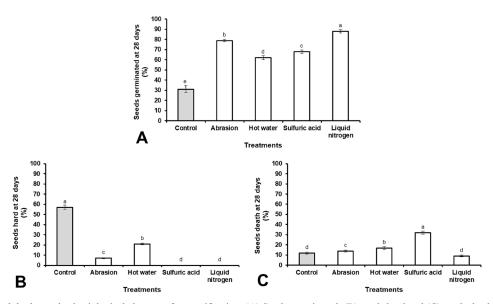


Figure 3. Teramnus labialis seeds physiological changes after scarification. (A) Seeds germinated, (B) seeds hard and (C) seeds death. Results with the different letter, for each figure, are statistically different (One-way ANOVA, $P \le 0.05$, n = 4. Vertical bars represent mean \pm SE.

The use of sulfuric acid and LN as scarification treatments allows to eliminate the impermeability of the seed coat and the imbibition of 100 % of the seeds. The depth of the corrosion and the loss of the seed coat with the use of sulfuric acid in the seeds of *T. labialis* agrees with what was observed in *Erythrina speciosa* (Andrew.) by Molizane *et al.* (2018). Our results coincide with the research work carried out by Müller *et al.* (2017), Zapata *et al.* (2017) and Kildisheva *et al.* (2018) to eliminate the impermeability of the seed coat of other leguminous species.

During imbibition, many reserve substances (sugars, fatty acids, ions, amino acids, enzymes, proteins, and inorganic ions) escape to the external medium through the membrane (Bewley *et al.* 2013, Marcos-Filho 2015). The increase in the leaching of solutes after scarifying the seeds corroborates the loss of integrity of the seed coat, which

agrees with the studies carried out by Müller *et al.* (2017) and Sethi *et al.* (2020). However, an excessive leaching of solutes, as happened in those scarified with sulfuric acid, can lead to a decrease in germination and vigor of the seeds (Thant *et al.* 2017, Roach *et al.* 2018).

The results of imbibition, loss of electrolytes and germination that were achieved with the use of hot water as a scarification treatment were the most discreet. This is due to the fact that the treatment did not eliminate the impermeability of the seed coat in all the seeds, as reported by the studies carried out by Sánchez-Gómez *et al.* (2018) in *Leucaena leucocephala* (L.), Yousif *et al.* (2019) in *Acacia nilotica* (L.) and Singh *et al.* (2020) in *Vigna membranacea* (A.Rich.).

Previously, Muñoz *et al.* (2009) used scarification with sulfuric acid (95 % for 5 min.) on aged seeds of *T. labialis* and the results showed a high percentage of damaged seeds and, therefore, a low percentage of germination. Recently, Acosta *et al.* (2023b) used this treatment (95 % for 5 min.) on freshly harvested seeds of *T. labialis* and observed an increase in germination under controlled laboratory conditions up to 68 %. In the present investigation, scarification with sulfuric acid (95 % for 5 min.) increased the percentage of germination in seeds stored for 3 months (<u>Table 1</u>). The increase in germination was preceded by an increase in imbibition and the electrolyte loss, which shows that the treatment was effective in eliminating the impermeability of the seed coat. However, during field experiments, the percentage of seedling emergence decreased considerably demonstrating that the use of this treatment causes damage to the seeds as suggested by Muñoz *et al.* (2009) and Acosta *et al.* (2023b). Previous studies in other species highlight that the use of this treatment can increase the permeability of the seed coat, but also cause damage, mainly to the embryo (Galíndez *et al.* 2015, Zapata *et al.* 2017, Kildisheva *et al.* 2018), what affects seed viability (Okonwu & Ariaga 2017, Kheloufi *et al.* 2019, Yousif *et al.* 2019).

Table 1. Numerical variables associated with the vigor of unscarified (control) and scarified *Teramnus labialis* seeds using different treatments

Scarification treatment	Time required for germination of 50 % of the seeds (days)	Mean germi- nated time (days)	Germination index (seeds days ⁻¹)	Germination uniformity (days)
Control	$7.94 \pm 0.69 \text{ c}$	1.06 ± 0.06 c	9.12 ± 0.85 c	11.78 ± 0.24 c
Abrasion	1.99 ± 0.04 a	7.26 ± 0.36 a	$2.81 \pm 0.11 a$	2.69 ± 0.25 a
Hot water	$4.83 \pm 0.25 \ b$	$3.38 \pm 0.17 \ b$	$5.86 \pm 0.31 \ b$	$7.13 \pm 0.44 \ b$
Liquid nitrogen	2.14 ± 0.15 a	$6.95 \pm 0.28 \text{ a}$	2.98 ± 0.21 a	$2.86 \pm 0.23 \ a$
Sulfuric acid	1.93 ± 0.07 a	6.93 ± 0.31 a	2.61 ± 0.17 a	$2.47 \pm 0.2 a$

Results with different letters, for each indicator, are statistically different (one-way ANOVA, $P \le 0.05$, n = 4). Only for statistical processing the data were transformed according to y' = y0.5. Intervals indicate mean \pm standard error of the mean.

In relation to sanding and LN, the low percentages of dead seeds show that these treatments did not cause damage that could affect germination. The increases in water absorption, the high percentages of germination and the values obtained in all the numerical variables associated with the vigor of the seeds, demonstrate the effectiveness of these treatments for use in the seeds of *T. labialis*.

The speed and uniformity of the emergence after sowing is an advantage for the establishment of any species (Navarro *et al.* 2016, Sánchez-Gómez *et al.* 2018) and is related to the germination power and vigor of the seeds (Rajjou *et al.* 2012, Santorum *et al.* 2013). Ruiz & Febles (2005) reported that the establishment of a forage legume is not a simple event, but is a system integrated by planting, emergence and growth of the plant. In this sense, the emergence percentage, the size of the plants and the area covered at 120 days with the use of LN demonstrate the rapid establishment of the species. According to Fontes *et al.* (2008a) when the foliar cover of *T. labialis* reaches, at least, 70 % of the covered area, it can be classified as established.

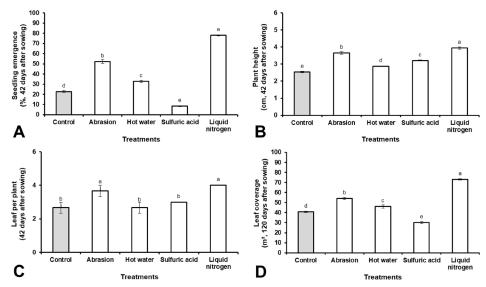
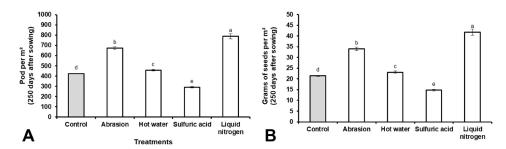



Figure 4. Teramnuslabialis plants growth during vegetative stage. (A) Seedling emergence, (B) plant height, (C) leaf per plant and (D) leaf coverage. Results with the different letter, for each figure, are statistically different (One-way ANOVA, $P \le 0.05$, n = 3). Vertical bars represent mean \pm SE.

Figure 5. *Teramnus labialis* plants growth during reproductive stage. (A) pods per m^2 (B) grams of seeds per m^2 . Results with the different letter, for each figure, are statistically different (One-way ANOVA, $P \le 0.05$, n = 3). Vertical bars represent mean \pm SE.

The higher number of legumes per m² and seeds per hectare observed in the plants that come from seeds scarified with LN, is due to the higher number of plants and foliar coverage that was obtained in this treatment. A greater leaf area in direct contact with solar radiation is a very important factor to guarantee adequate flowering and fruiting in tropical legumes (Hopkinson & Reid 1979, Matías & Matías 1995).

The study carried out during the reproductive phase also confirms that the use of LN as a scarifying agent does not cause variability at the morphological level, at least in the characters evaluated. These results coincide with those obtained in plants of *Phaseolus vulgaris* (L.) (Cejas *et al.* 2013), *Solanum lycopersicum* (Mill.) (Zevallos *et al.* 2014), *Chrysanthemum morifolium* (Ramat.) (Bi *et al.* 2016), *Sorghum biclor* (L.) (Villalobos *et al.* 2019), *Cicer arietinum* (L.) (Villalobos *et al.* 2021) and *Neonotoni wightii* (Wight & Arn.) (Acosta *et al.* 2023a).

The results of this investigation showed variability in the response to the different scarification treatments used, which is consistent with several studies carried out in other legume species (Jones *et al.* 2016, Lozano *et al.* 2016, Statwick 2016, Zapata *et al.* 2017, Kildisheva *et al.* 2018, Odirile *et al.* 2019, Singh *et al.* 2020). This is mainly related to the size and morpho-anatomical characteristics of the seeds, as well as the thickness and chemical composition of the seed coat (Jones *et al.* 2016, Lozano *et al.* 2016, Mira *et al.* 2017, Kheloufi *et al.* 2019, Odirile *et al.* 2019, Salazar & Ramírez 2019, Carruggio *et al.* 2020).

Considering the results obtained in this research, all scarification treatments increased the percentage of seed absorption, the percentage of embedded seeds, the loss of electrolytes and the percentage of germination. However, the

use of sulfuric acid caused a disordered loss of solutes during imbibition, and, although the germination percentage was high, the percentage of dead seeds also increased. The damage caused to the seed with the use of this scarification treatment also caused a decrease in the percentage of seedlings emerged under field conditions and the percentage of covered area by the species at 120 d after sowing. With the use of liquid nitrogen as a scarification treatment, the best results were obtained in controlled laboratory conditions and in field conditions, reaching the establishment of the species in only 120 days, with a significant increase in the production of pods and seeds.

Acknowledgment

To S. Naidoo and J.A. Sánchez for his contribution to this scientific work and to the students, technicians and all those who were part of this research. Additionally, we thank the reviewers and the section editor for contributing to the quality of the manuscript.

Literature cited

- Acosta Y, Escalante D, Martínez-Montero ME, Fortes D, Zevallos-Bravo BE, Hajari E, Fontes D, Lorenzo JC. 2023a. Cryopreservation of Seeds of *Neonotonia Wightii* Wight & Arn: A Strategy for Conservation, Dormancy Breaking and Preservation of Nutritional Status. *CryoLetters* 44: 274-279. DOI: https://doi.org/10.54680/fr23510110712
- Acosta Y, Escobar-Gutiérrez A, Ahmed LQ, Cejas I, Martínez-Montero ME, Sánchez J, Hajari E, Höfer M, Lorenzo JC, Fontes D. 2023b. Morpho-anatomical evaluation of *Teramnus labialis* seeds: strategies to overcome physical dormancy. *Biologia* 1: 1-9. DOI: https://doi.org/10.1007/s11756-023-01341-6
- Acosta Y, Fontes D, Martínez-Montero ME. 2021. Liquid Nitrogen as promotor of seeds germination and seed-ling growth in tropical legumes. *INGE CUC* 17: 1-10. DOI: https://doi.org/10.17981/ingecuc.17.2.2021.01
- Acosta Y, Fontes D, Martínez-Montero ME, Mazorra-Calero CA. 2020a. Effect of storage time on the quality of *Teramnus labialis* (L.f.) Spreng seeds. *Universidad&Ciencia* 9: 44-55.
- Acosta Y, Hernández L, Mazorra C, Quintana N, Zevallos BE, Lorenzo JC, Martínez-Montero ME, Fontes D. 2019. Seed cryostorage enhances subsequent plant productivity in the forraje species *Teramnus labialis* (L.f.) Spreng. *CryoLetters* **40**: 36-44.
- Acosta Y, Pérez L, Escalante D, Nápoles L, Concepción O, Pérez A, Pérez LS, Martínez-Montero ME, Fontes D, Lorenzo JC. 2020b. Dormancy breaking in *Teramnus labialis* (L.f.) Spreng seeds through liquid nitrogen exposure is based on the modification of the hilar region, cuticle, and macrosclereid. *Acta Physiologiae Plantarum* 42: 1-7. DOI: https://doi.org/10.1007/s11738-020-03134-9
- Acosta Y, Pérez L, Escalante D, Pérez A, Martínez-Montero ME, Fontes D, Ahmed LQ, Sershen, Lorenzo JC. 2020c. Heteromorphic seed germination and seedling emergence in the legume *Teramnus labialis* (L.f.) Spreng (Fabacaeae). *Botany* 98: 371-379. DOI: https://doi.org/10.1139/cjb-2020-0008
- Acharya SN, Stout DG, Brooke B, Thompson D. 1999. Cultivar and storage effects on germination and hard seed content of alfalfa. *Canadian Journal of Plant Science* **79**: 201-208. DOI: https://doi.org/10.4141/P98-043
- Apodaca-Martínez M, Cetina Alcalá VM, Jasso-Mata J, López-López MÁ, González-Rosas H, Uscanga-Mortera E, García-Esteva A. 2019. Ruptura de la latencia física y germinación de semillas de *Chiranthodendron pentadactylon* (Malvaceae). *Botanical Sciences* 97: 211-217. DOI: https://doi.org/10.17129/botsci.2094
- Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, Boatwright JS, Borges LM, Brown GK, Bruneau A. 2017. A new subfamily classification of the *Leguminosae* based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group. *Taxon* 66: 44-77. DOI: https://doi.org/10.12705/661.3
- Baskin CC, Baskin JM. 2014. *Seeds: ecology, biogeography, and evolution of dormancy and germination*. San Diego, CA: Academic Press. ISBN: 978-0-12-416677-6.
- Baskin CC, Baskin JM, Yoshinaga A. 2007. Imbibition and germination of seeds of *Colubrina oppositifolia* (*Rhamnaceae*), a federal-endangered tree species endemic to Hawaii. *Natural Areas Journal* 27: 25-30. DOI: https://doi.org/10.3375/0885-8608(2007)27[25:IAGOSO]2.0.CO;2

- Baskin JM, Baskin CC. 2021. The great diversity in kinds of seed dormancy: a revision of the Nikolaeva-Baskin classification system for primary seed dormancy. *Seed Science Research*: 1-29. DOI: https://doi.org/10.1017/S096025852100026X
- Baskin JM, Davis BH, Baskin CC, Gleason SM, Cordell S. 2004. Physical dormancy in seeds of Dodonaea viscosa (*Sapindales*, *Sapindaceae*) from Hawaii. *Seed Science Research* 14: 81-90. DOI: https://doi.org/10.1079/SSR2003157
- Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. *Seeds: physiology of development, germination and dormancy*. New York, NY: Springer. ISBN: 978-1-4614-4692-7 978-1-4614-4693-4.
- Bi W-L, Pan C, Liu J, Wang Q-C. 2016. Greenhouse performance, genetic stability and biochemical compounds in *Chrysanthemum morifolium* "Hangju" plants regenerated from cryopreserved shoot tips. *Acta Physiologiae Plantarum* **38**: 1-10. DOI: https://doi.org/10.1007/s11738-016-2288-2
- Carruggio F, Onofri A, Impelluso C, Giusso del Galdo G, Scopece G, Cristaudo A. 2020. Seed dormancy breaking and germination in *Bituminaria basaltica* and *B. bituminosa* (*Fabaceae*). *Plants* 9: 1110. DOI: https://doi.org/10.3390/plants9091110
- Cejas I, Méndez R, Villalobos A, Palau F, Aragón C, Engelmann F, Carputo D, Aversano R, Martínez ME, Lorenzo JC. 2013. Phenotypic and molecular characterization of *Phaseolus vulgaris* plants from non-vryopreserved and cryopre-served seeds. *American Journal of Plant Sciences* 4: 844-849. DOI: https://doi.org/10.4236/ajps.2013.44103
- da Silva BM, de Oliveira C, Vitti F, Daiton R. 2018. Seed anatomy and water uptake and their relation to seed dormancy of *Ormosia paraensis* Ducke. *Journal of Seed Science* **40**: 237-245. DOI: https://doi.org/10.1590/2317-1545v40n3177599
- de Morais LF, Almeida JCC, Deminicis BB, Pádua FTd, Morenz MJF, Abreu JBRd, Araujo RP, Nepomuceno DD. 2014. Methods for breaking dormancy of seeds of tropical forage legumes. *American Journal of Plant Sciences* 5: 1831-1835. DOI: https://doi.org/10.4236/ajps.2014.513196
- Fontes D, Machado R, Cubillas N, Mazorra C, Borroto Á, Pulido L, Lezcano Y, Hernández N. 2008a. Selección de leguminosas herbáceas para el fomento de cobertura en plantaciones de naranja *Valencia late. Pastos y Forraies* **32**: 1-11.
- Fontes D, Mazorra C, Acosta Y, Pardo J, Martínez J, Hernández J, González A, Fernándes P, Lavigne C. 2018. Comportamiento productivo de coberturas vivas de leguminosas herbáceas en una plantación de guayaba (*Psidium guajava* L.) var. Enana Roja Cubana eea-1840. *Universidad & Ciencia* 7: 297-308.
- Fontes D, Mazorra C, Pulido L, Cubillas N, Hernández N, Lazo M, Rodríguez LA, Rodríguez W. 2008b. *Teramnus labialis*: leguminosa promisoria para la producción diversificada en fincas citrícolas. *Zootecnia Tropical* **26**: 351-354.
- Galíndez G, Malagrina G, Ceccato D, Ledesma T, Lindow-López L. 2015. Dormición física y conservación ex situ de semillas de *Amburana cearensis* y *Myroxylon peruiferum* (*Fabaceae*). *Boletín de la Sociedad Argentina de Botánica* 5: 153-161.
- González Y. 1995. *Momento óptimo de cosecha y conservación de la semilla de Andropogon gayanus cv. CIAT-621*. MSc Thesis. Universidad de Matanzas.
- González Y. 2011. Calidad de las semillas de accesiones colectadas en las regiones occidental, oriental y central de Cuba (Nota técnica). *Pastos y Forrajes* **34**: 259-266.
- González Y, Mendoza F. 1991. Comportamiento de la germinación de *Teramnus labialis* Cv. Semilla Clara. II. Tratamientos antes de almacenar. *Pastos y forrajes* **14**: 227-234.
- Gutiérrez IR, Pérez G, Benega R, Gómez L. 2002. Coberturas vivas de leguminosas en el plátano (*Musa* sp.) FHIA 03. *Cultivos Tropicales* **23**: 11-17.
- Hernández A, Pérez J, Bosch D, Castro N. 2019. Clasificación de los suelos de Cuba: énfasis en la versión de 2015. *Cultivos Tropicales* **40**: 1-31.
- Hopkinson JM, Reid R. 1979. Significance of climate in tropical pasture legume seed production. *In*: Sánchez PA, Tergas LE, eds. *Pasture Production in Acid Soils of the Tropics*. Cali, Colombia: CIAT. pp. 343-360.
- Jaganathan GK, Yule KJ, Biddick M. 2018. Determination of the water gap and the germination ecology of

- *Adenanthera pavonina (Fabaceae, Mimosoideae)*; the adaptive role of physical dormancy in mimetic seeds. *AoB Plants* **10**: 1-12. DOI: https://doi.org/10.1093/aobpla/ply048
- Jimenez-Lopez JC, Singh KB, Clemente A, Nelson MN, Ochatt S, Smith P. 2020. Legumes for Global Food Security. *Frontiers in Plant Science* 11: 1-5. DOI: https://doi.org/10.3389/fpls.2020.00926
- Johansen DA. 1940. Plant microtechnique. New York: McGraw-Hill Publ. Co., Ltd. ISBN: 0070325405.
- Jones CD, Stevens MR, Jolley VD, Hopkins BG, Jensen SL, Turner D, Stettler JM. 2016. Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species. *Native Plants Journal* 17: 5-18.
- Kheloufi A, Boukhatem FZ, Mansouri LM, Djelilate M. 2019. Maximizing seed germination in five species of the genus *Acacia* (*Fabaceae*, *Mimosaceae*). *Reforesta* 7: 15-23. DOI: https://doi.org/10.21750/REFOR.7.02.64
- Kildisheva OA, Erickson TE, Merritt DJ, Madsen MD, Dixon KW, Vargas J, Amarteifio R, Kramer AT. 2018. Do abrasion or temperature based techniques more effectively relieve physical dormancy in seeds of cold desert perennials? *Rangeland Ecology & Management* 71: 318-322. DOI: https://doi.org/10.1016/j.rama.2018.02.004
- Lozano EC, Zapater MA, Mamani C, Flores CB, Gil MN, Sühring SS. 2016. Efecto de pretratamientos en semillas de *Enterolobium contortisiliquum* (*Fabaceae*) de la selva pedemontana argentina. *Boletín de la Sociedad Argentina de Botánica* 51: 79-87.
- Luan Z, Zhao J, Shao D, Zhou D, Zhang L, Zheng W, Sun Q. 2017. A comparison study of permeable and impermeable seed coats of legume seed crops reveals the permeability related structure difference. *Pakistan Journal Botany* **49**: 1435-1441.
- Llamas F, Acedo C. 2016. Las leguminosas (*Leguminosae o Fabaceae*): una síntesis de las clasificaciones, taxonomía y filogenia de la familia a lo largo del tiempo. *Ambio Ciencias* **14**: 5-18. DOI: https://doi.org/10.18002/ambioc.v0i14.5542
- Machado R, Olivera Y. 2008. Caracterización morfológica de una colección de *Teramnus* spp. *Pastos y Forrajes* **31**: 119-127.
- Machado R, Roche R. 2004. Colecta de germoplasma forrajero en la región norte de la provincia de Villa Clara, Cuba. *Pastos y Forrajes* **27**: 219-224.
- Magalhães CR, Oliveira DMT. 2020. Testa structure in *Erythrina speciosa* (*Leguminosae*): the role of the mucilaginous stratum in the acquisition of physical dormancy. *Acta Botanica Brasilica* **34**: 592-598. DOI: https://doi.org/10.1590/0102-33062020abb0044
- Marcos-Filho J. 2015. Seed vigor testing: an overview of the past, present and future perspective. *Scientia Agricola* **72**: 363-374. DOI: https://doi.org/10.1590/0103-9016-2015-0007
- Matías C, Matías Y. 1995. Efecto de los soportes en la producción de semillas de *Teramnus labialis* cv. Semilla Clara. 1. Selección de soporte. *Pastos y Forrajes* **18**: 51-57.
- Mazorra CA, Fontes D, Donis LH, Martínez J, Acosta Y, Espinosa I, Lavinge C, Fernandes P. 2016. Diagnóstico tecnológico y socioeconómico del establecimiento de *Psidium guajava* L. y *Teramnus labialis* en Ciego de Ávila, Cuba. *Pastos y Forrajes* **39**: 259-264.
- Mazorra CA, Martínez J, Fontes D, Santiago F, González A, Acosta Y. 2020. Viabilidad tecnológica y económica del sistema integrado Guayaba-Leguminosa-Ovino en Ciego de Ávila, Cuba. *Revista de Producción Animal* **32**: 84-99. Menéndez J. 1982. *Teramnus* Swartz. *Pastos y Forrajes* **5**: 251-263.
- Mira S, Schnadelbach A, Correa EC, Pérez-García F, González-Benito ME. 2017. Variability of physical dormancy in relation to seed mechanical properties of three legume species. *Seed Science and Technology* **45**: 540-556. DOI: https://doi.org/10.15258/sst.2017.45.3.11
- Molizane DM, Julio PGdS, Carmello-Guerreiro SM, Barbedo CJ. 2018. Physical, physiological and anatomical changes in Erythrina speciosa Andrews seeds from different seasons related to the dormancy degree. *Journal of Seed Science* **40**: 331-341. DOI: https://doi.org/10.1590/2317-1545v40n3199428
- Moreno Casasola P. 1996. *Vida y obra de granos y semillas*. DF, México: Secretaría de Educación Pública, Fondo de Cultura Económica. ISBN: 978-968-16-4369-0.
- Müller F, Raitt L, Cupido C, Chimphango S, Samuels M, Boatwright J. 2017. Dormancy-breaking treatments

- in two potential forage crop legumes from the semi-arid rangelands of South Africa. *South African Journal of Botany* **113**: 133-136. DOI: https://doi.org/10.1016/j.sajb.2017.08.007
- Muñoz BC, Sánchez J, Montejo LA, González Y, Reino J. 2009. Valoración germinativa de 20 accesiones de leguminosas almacenadas en condiciones desfavorables. *Pastos y Forrajes* **32**: 1-15.
- Navarro M, Febles G, Torres V. 2016. Effects of scarification and storage on vigor expression of *Albizia lebbeck* (L.) Benth seeds. *Cuban Journal of Agricultural Science* **50**: 465-478.
- Odirile O, Mojeremane W, Teketay D, Kashe K, Mathowa T. 2019. Responses of seeds of *Vachellia erioloba* (E. Mey.) PJH Hurter in Botswana to different pre-sowing treatment methods. *International Journal of Biology and Biotechnology* **16**: 181-188.
- Okonwu K, Ariaga C. 2017. Effects of seed treatment on removal of physical dormancy in *Canna indica* L. *International Journal of Plant & Soil Science* **14**: 1-9. DOI: https://doi.org/10.9734/IJPSS/2017/31048
- Olivera Y. 2011. Evaluación agronómica y selección de accesiones de *Teramnus* spp. *Pastos y Forrajes* **34**: 21-28.
- Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. 2012. Seed germination and vigor. *Annual Review of Plant Biology* **63**: 507-533. DOI: https://doi.org/10.1146/annurev-arplant-042811-105550
- Ranal MA, Santana DGd. 2006. How and why to measure the germination process? *Revista Brasileira de Botânica* **29**: 1-11. DOI: https://doi.org/10.1590/S0100-84042006000100002
- Roach T, Nagel M, Börner A, Eberle C, Kranner I. 2018. Changes in tocochromanols and glutathione reveal differences in the mechanisms of seed ageing under seedbank conditions and controlled deterioration in barley. *Environmental and Experimental Botany* **156**: 8-15. DOI: https://doi.org/10.1016/j.envexpbot.2018.08.027
- Rodrigues-Junior AG, Santos MT, Hass J, Paschoal BS, De-Paula OC. 2020. What kind of seed dormancy occurs in the legume genus *Cassia? Scientific Reports* **10**: 1-11. DOI: https://doi.org/10.1371/journal.pone.0202038
- Rolston MP. 1978. Water impermeable seed dormancy. *The Botanical Review* **44**: 365-396. DOI: https://doi.org/10.1007/BF02957854
- Ruiz TE, Febles G. 2005. Las leguminosas: sus posibilidades para implantar sistemas ganaderos sostenibles. *Revista Cubana de Ciencia Agrícola* **39**: 501-514.
- Ruiz TE, Febles G, Alonso J. 2015. A scientific contribution to legume studies during the fifty years of the Institute of Animal Science. *Cuban Journal of Agricultural Science* **49**: 233-241.
- Salazar A, Ramírez C. 2019. Effects of mechanical and acid scarification on germination performance of *Schizolobium parahyba* (*Fabaceae*, *Caesalpinioideae*) seeds. *Journal of Tropical Biology & Conservation* 1: 213-227. DOI: https://doi.org/10.51200/jtbc.v16i.2040
- Sánchez-Gómez A, Rosendo-Ponce A, Vargas-Romero JM, Rosales-Martínez F, Platas-Rosado DE, Becerril-Pérez CM. 2018. Energía germinativa en guaje (*Leucaena leucocephala* cv. Cunningham) con diferentes métodos de escarificación de la semilla. *Agrociencia* 52: 863-874.
- Santorum M, Nóbrega LHP, Souza EGd, Santos DD, Boller W, Mauli MM. 2013. Comparison of tests for the analysis of vigor and viability in soybean seeds and their relationship to field emergence. *Acta Scientiarum* **35**: 83-92. DOI: https://doi.org/10.4025/actasciagron.v35i1.14955
- Schnadelbach A, Veiga-Barbosa L, Ruiz C, Pérez-García F. 2016. Dormancy breaking and germination of *Adenocarpus desertorum*, *Astragalus gines-lopezii* and *Hippocrepis grosii* (*Fabaceae*) seeds, three threatened endemic Spanish species. *Seed Science and Technology* **44**: 1-14. DOI: https://doi.org/10.15258/sst.2016.44.1.04
- Sethi R, Kaur N, Singh M. 2020. Morphological and physiological characterization of seed heteromorphism in *Medicago denticulata* Willd. *Plant Physiology Reports* **25**: 107-119. DOI: https://doi.org/10.1007/s40502-019-00496-2
- Shehata FA, Aqlan EM. 2020. Embryo and seedling morphology of some *Trifolium* L. species (*Fabaceae*). *Taeckholmia* **40**: 64-84. DOI: https://doi.org/10.21608/taec.2020.25128.1017
- Singh N, Gore PG, Aravind J. 2020. Breaking seed coat impermeability to aid conservation and utilization of wild *Vigna species*. *Genetic Resources and Crop Evolution* **67**: 523-529. DOI: https://doi.org/10.1007/s10722-019-00872-9

- Statwick JM. 2016. Germination pretreatments to break hard-seed dormancy in *Astragalus cicer* L. (*Fabaceae*). *PeerJ* 4: 1-8. DOI: https://doi.org/10.7717/peerj.2621
- Sun Q, Zhu L, Zhang W, Wang J. 2018. Physical and chemical difference of seed coat between hard and soft seeds of Licorice (*Glycyrrhiza uralensis* Fisch). *Legume Research* **41**: 441-446. DOI: https://doi.org/10.18805/LR-376
- Thant P, Puteh A, Sinniah U, Ismail M. 2017. Physiological and chromosomal changes of delayed harvest soybean (*Glycine max* L. Merr.) seeds. *Seed Science and Technology* **45**: 340-353. DOI: https://doi.org/10.15258/sst.2017.45.2.13
- Toral OC, Navarro M, Reino J. 2015. Prospection and collection of species of interest for livestock production in two Cuban provinces. *Pastos y Forrajes* **38**: 220-225.
- Villalobos A, Arguedas M, Escalante D, Martínez J, Zevallos BE, Cejas I, Yabor L, Martínez-Montero ME, Sershen, Lorenzo JC. 2019. Cryopreservation of *Sorghum* seeds modifies germination and seedling growth but not field performance of adult plants. Journal of Applied Botany and Food Quality (JABFQ) **92**: 94-99. DOI: https://doi.org/10.5073/JABFQ.2019.092.013
- Villalobos A, Campbell R, Díaz R, Martínez J, Escalante D, Martinez-Montero ME, Quintana N, Yabor L, Hoefer M, Lorenzo JC. 2021. Chickpea seed cryostorage alters germinant but not adult plant growth. *Biologia* **76**: 55-61. DOI: https://doi.org/10.2478/s11756-020-00613-9
- Voronkova NM, Kholina AB. 2010. Conservation of endemic species from the Russian far east using seed cryopreservation. *Biology Bulletin* **37**: 496-501. DOI: https://doi.org/10.1134/S1062359010050092
- Wang H, Chen L, Dai s, Ma Q, Wu Y, Ma Q, Li S. 2019. Seed coat anatomy of *Cercis chinensis* and its relationship to water uptake. *Canadian Journal of Plant Science* **100**: 276-283. DOI: https://doi.org/10.1139/CJPS-2019-0164
- Wu G, Jaganathan GK, Song D, Liu B. 2017. Cryopreservation of selected physical dormant species with special socus on dormancy breaking time. *Research Journal of Seed Science* **10**: 38-42. DOI: https://doi.org/10.3923/rjss.2017.38.42
- Yousif MAI, Wang YR, Dali C. 2020. Seed dormancy overcoming and seed coat structure change in *Leucaena leucocephala* and *Acacia nilotica*. *Forest Science and Technology* **16**: 18-25. DOI: https://doi.org/10.1080/21580103.2019.1700832
- Yousif MAI, Wang YR, Hu XW. 2019. Seed dormancy and dormancy breaking of selected *Acacia* species from Sub-Saharan Africa. *Seed Science and Technology* **47**: 131-144.
- Zapata RM, Azagra Malo C, Karlin MS. 2017. Pre-germinative treatments for seed dormancy breaking of three populations of *Ramorinoa girolae*, an endemic woody species from arid zones in Argentina. *Bosque* **38**: 237-245. DOI: https://doi.org/10.4067/S0717-92002017000200002
- Zemouri Z, Djabeur A, Frimehdi N, Khelil O, Kaid-Harche M. 2020. The seed diversity of Carob (*Ceratonia siliqua* L.) and the relationship between seeds color and coat dormancy. *Scientia Horticulturae* 274: 1-8. DOI: https://doi.org/10.1016/j.scienta.2020.109679
- Zevallos B, Cejas I, Engelmann F, Carputo D, Scarano M-T, Yanes E, Martínez-Montero M, Lorenzo JC. 2014. Phenotypic and molecular characterization of plants regenerated from non-cryopreserved and cryopreserved wild *Solanum lycopersicum* Mill. seeds. *CryoLetters* **35**: 216-225.

Associate editor: Joel Flores

Author Contributions: YA, conceptualization, investigation, methodology and validation, writing review, visualization and editing; SN, conceptualization and writing review; JAS, methodology and validation, visualization and editing; IC, investigation, writing review and editing; DF, conceptualization, investigation, writing review, visualization and editing; MEMM, conceptualization, writing review, visualization and editing. Supporting agencies: This research was supported by the Bioplantas Centre and the Faculty of Agricultural Sciences of the University of Ciego de Ávila Máximo Gómez Báez; the Department of Biodiversity and Conservation Biology, University of the Western Cape and the Institute of Ecology and Systematics.

Conflict of interests: Authors do not have any conflict of interests.