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Effect of temperature and drought stress on germination of Magnolia pugana, 
an endangered species from western Mexico
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Abstract
Background: Magnolia pugana populations are declining, in addition, it is estimated that precipitation will decrease by up to 10 % and tem-
peratures will increase (2-4 °C) under the most severe climate change scenario, which may affect germination.
Hypotheses: The interaction of increased temperature and decreased water potential reduces and delays the germination of Magnolia pugana 
seeds.
Studied species: Magnolia pugana, an endangered species endemic to western Mexico.
Study site and dates: Southern Zacatecas and central Jalisco, Mexico. April 2019.
Materials and methods: Seed viability was evaluated with tetrazolium test. In addition, the effects of temperature (24, 28, and 37 °C), water 
potential with PEG 8000 (0, -0.3, -0.6, -0.9, -1.2 MPa) and its interaction on the percentage and mean germination time were analyzed with 
factorial ANOVA tests. 
Results: Viability was 80 %. The interactions between temperature and water potential on germination percentage and mean germination time 
were significant. There was no germination at 37 °C. The highest germination (78 %) was at 24 °C and -0.3 MPa, while the lowest (3 %) was at 
28 °C and -0.6 MPa. The control treatment (24 °C and 0 MPa) facilitated germination in a shorter time (23.9 ± 1.5 days). At 28 °C and -0.9 MPa, 
the mean germination time was slowed by 1.5 times.
Conclusions: Magnolia pugana germinability was reduced by the interaction between low water potentials and increased temperature, condi-
tions predicted by future climate change scenarios, therefore its vulnerability to extinction could increase.
Keywords: Climate change, mean germination time, riparian tree species, seed ecophysiology, water potential.

Resumen
Antecedentes: Las poblaciones de Magnolia pugana están disminuyendo, asimismo la precipitación disminuirá 10 % y la temperatura aumen-
tará (2-4 °C) en su área de distribución, de acuerdo al escenario de cambio climático más severo, lo que puede comprometer su germinación.
Hipótesis: La interacción del aumento de temperatura y disminución del potencial hídrico reduce y retrasa la germinación de Magnolia pugana.
Especie de estudio: Magnolia pugana, endémica del occidente de México, en peligro de extinción.
Sitio y año de estudio: Sur de Zacatecas y centro de Jalisco, México. Abril, 2019.
Materiales y métodos: Se evaluó la viabilidad de semillas con la prueba de tetrazolio. Se analizó el efecto de temperatura (24, 28 y 37 °C), 
potencial hídrico (con PEG 8000) (0, -0.3, -0.6, -0.9, -1.2 MPa) y su interacción sobre porcentaje y tiempo medio de germinación, con ANOVA 
factoriales. 
Resultados: La viabilidad fue 80 %. Las interacciones entre temperatura y potencial hídrico sobre porcentaje y tiempo medio de germinación 
fueron significativas. No hubo germinación a 37 °C. El porcentaje de germinación más alto (78 %) se produjo a 24 °C y -0.3 MPa, el menor (3 
%) a 28 °C y -0.6 MPa. A 24 °C y 0 MPa germinaron en menor tiempo (23.9 ± 1.5 días), a 28 °C y -0.9 MPa se retrasó 1.5 veces.
Conclusiones: La interacción entre bajo potencial hídrico y aumento de temperatura redujo la germinabilidad de Magnolia pugana, condiciones 
previstas por futuros escenarios de cambio climático, con esto su vulnerabilidad a la extinción podría aumentar.
Palabras clave: Cambio climático, ecofisiología de semillas, especies arbóreas ribereñas, potencial hídrico, tiempo medio de germinación.
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There are nearly 300 to 350 species of Magnolia L. (Magnoliaceae Juss.) occurring worldwide, in tropical, 
subtropical, and warm temperate climates (Rivers et al. 2016, Vázquez-García et al. 2016). The genus is 
distributed across Southeast and East Asia, Eastern Canada, the United States of America, Mexico, the 
Caribbean, and Central and South America. Unfortunately, half of its species (48 %) are at risk of extinc-

tion (Rivers et al. 2016). Mexico is one of the two major centers of diversity for this genus in the Neotropics with 
38 species (Sánchez-González et al. 2021, Vázquez-García et al. 2021a, b). About 80 % of these species are under 
threat or endangered, and the conservation status for the remaining 20 % is not determined due to a lack of enough 
information (Rivers et al. 2016). 

Magnolia pugana (Iltis & A.Vázquez) A.Vázquez & Carvajal is an endangered species endemic to western Mex-
ico. It has been categorized as Endangered in the IUCN Red List of Threatened Species since 2014 (Gibbs & Khela 
2014, IUCN 2022). It thrives in riparian forests with intermittent streams and ravines of southern Zacatecas and 
central Jalisco (Vázquez-García et al. 2002). Despite the high fruit and seed production of Magnolia pugana in 
wild populations, germination without scarification is low (Jacobo-Pereira et al. 2016), and predation by rodents 
is high (Vázquez-García 1994). Thus, populations of this species consist of isolated individuals or small groups in 
tributary creeks within riparian forests, where natural recruitment is limited (Rivers et al. 2016). Multiple anthropic 
disturbance factors affect Magnolia populations, including livestock, habitat fragmentation, and illegal wood extrac-
tion (He et al. 2009, Kundu 2009, Vásquez-Morales et al. 2017, Serna-González et al. 2019). High fragmentation 
and isolation of populations and habitats, high deforestation rate, low regeneration, forest conversion to pasture lands 
and agriculture, forest fires, and expansion of urban and rural human settlements are the major threats to M. pugana 
populations (Linsky & Muñiz-Castro 2022). Furthermore, it is estimated that precipitations will decrease (up to 10 %) 
and temperatures will increase (2 to 4 °C) in western Mexico, under the most severe climate change scenario (Durán 
2010, Ibarra-Montoya et al. 2011, IPCC 2014, Ruiz-Corral et al. 2016), which may affect, to a great extent, seed ger-
mination and survival of seedlings occurring in natural populations, thus, increasing their vulnerability to extinction 
(Donohue et al. 2010, Vásquez-Morales et al. 2014).

Germination is a critical stage in the plant life cycle that modulates population and community dynamics as it 
depends on numerous potentially adverse biotic and abiotic conditions such as increased temperature and low water 
availability (Harper 1977, Dürr et al. 2015). Germination of Magnolia seeds has been studied in Mexico, particularly 
M. pugana (Jacobo-Pereira et al. 2016) and other species of the genus (Vovides & Iglesias 1996, Saldaña-Acosta et 
al. 2001, Corral-Aguirre & Sánchez-Velásquez 2006, Vásquez-Morales & Sánchez-Velásquez 2011, Toledo-Aceves 
2017, Vásquez-Morales & Ramírez-Marcial 2019, Gallardo-Yobal et al. 2022). However, the combined effect of 
temperature and water potential was not evaluated. Reductions in percentage and delayed germination under stress 
provoked by alterations caused by global warming (higher temperatures and decreased humidity) have already been 
documented for various ecosystems. Daws et al. (2008) found that 14 pioneer species of the Neotropical semidecidu-
ous forest in Panamá, exhibited reductions and delays in germination at water potentials ≤ -1 MPa. On the other hand, 
Flores & Briones (2001) and Flores et al. (2017) reported, in arid and semiarid environments, a probable increase 
in temperature > 4 °C and decrease in humidity, which would inhibit seed germination of some species, however, if 
the tolerance threshold of soil water potential above -0.4 MPa and high temperature is not exceeded, germinability 
could be increased and made faster. Furthermore, in Atlantic rainforests, Braz et al. (2014) reported that germination 
of Arecaceae species is reduced and mean germination time is prolonged at water potentials ≤ -0.4 MPa, however, 
they were able to observe a low germinability at -0.8 MPa. In contrast, Ooi et al. (2009) reported that germination 
percentage was not affected by the increase in temperatures from 60/20 to 70/25 °C (soil diurnal temperature range), 
in most ephemeral species in the arid region of the western interior of Australia, due to a possible adaptation in their 
germination ecology to a greater temperature range that facilitated the breaking of physical seed dormancy. There-
fore, it is evident that temperature and humidity fluctuation due to global warming can approach or exceed tolerance 
thresholds and lead to seed death and thereby influence species distributions (Donohue et al. 2010, Dürr et al. 2015).

However, these phenomena have been understudied in species thriving in warm temperate mesic forests (Siegel 
& Brock 1990, Falleri et al. 2004). On the surface soil of such environments, low water potentials (drought stress) 
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are rarely present, but if they decrease, seed germination of some species, such as Magnolia pugana, may be affected 
(Evans & Etherington 1990, Daws et al. 2008, Walck et al. 2011). Studies conducted on different species of this ge-
nus warn us about sensitivity and vulnerability to drought during the stages comprising their growth and development 
(Nash & Graves 1993, Sjöman et al. 2018). Thus, the present study aims to evaluate the combined effects of higher 
temperatures and water stress on the germination of M. pugana seeds. We test the hypothesis that the interaction of 
increased temperature and decreased water potentials harms seed germination of M. pugana by reducing its germina-
tion rate and germination percentage.

Materials and methods

Study species. Magnolia pugana is an evergreen tree species of high longevity that grows up to 25 m tall and could reach 
over 1.5 m in dbh (Vázquez-García et al. 2021b). It occurs naturally in western Mexico between 1,100 to 1,569 m asl., 
with mean annual temperatures from 20 to 26 °C, and annual precipitation from 900 to 1,000 mm (Jacobo-Pereira et al. 
2016). The reproductive age of the species has not been reported; however, based on cultivated plants, it starts at seven 
years of age. This species exhibits a flowering period between March and June, with the possibility of observing flowers 
throughout the year (Dahua-Machoa 2018). Additionally, it produces white fragrant flowers and has narrow oblong or 
elliptic coriaceous leaves (Figure 1A). Their fruits are dehiscent oblongoid polyfollicles that usually stay joined togeth-
er, with dehiscence occurring in April or May of the following year (Figure 1B). The polyfollicles contain 21 to 47 seeds 
with a size of approx. 3-7 mm covered with a scarlet aril (Figure 1C). The species is used for medicinal purposes, where 
its petals, prepared as tea, are thought to have properties beneficial for the treatment of the heart (Osorio-Muñoz 2020).

Sampling sites. To obtain current environmental conditions and sampling heterogeneity, two populations of M. pu-
gana located in tributary creeks that drastically reduce their flow in dry seasons were selected, one from Palo Verde, 
in the municipality of Mezquital del Oro, southern Zacatecas, Mexico (21° 15´ 38. 4” N, 103° 18´ 22.3” W; 1,530 m 
asl), and the other near San Nicolás, in the municipality of Zapopan, central Jalisco, Mexico (20° 48´ 53.4” N, 103° 
34´ 49.8” W; 1,445 m asl). Its mean annual temperatures are 22.1 and 20.6 °C, while annual precipitation is 803.5 
and 1,007.1 mm, respectively (CONAGUA 2019).

Seed collection. Mature polyfollicles of the two populations were collected in April 2019, from at least 10 M. pugana 
parental trees which were separated by distances of 10-100 m from each other.  Approximately 2,100 seeds were 
sorted and then treated with a 3 % sodium hypochlorite solution for 30 min to remove fungal contamination and later 
dried with absorbent paper (Saldaña-Acosta et al. 2001). Seeds were stored in a plastic container in a conventional 
refrigerator at 4 °C to avoid dehydration (Jacobo-Pereira et al. 2016).

Viability test. A sample of thirty seeds was randomly selected from a mixture from the two locations. Aril was re-
moved via manual scarification and then seeds were placed in sterile plastic Petri dishes (90 × 15 mm). The seeds 
were washed in running water, dissected transversely with a scalpel, submerged in a 1 % tetrazolium solution, and 
then placed in a drying oven (JISICO Co., Ltd. J-DECO) at a temperature of 30 ºC for 24 hours in complete darkness 
(Yaklich & Kulick 1979, Jacobo-Pereira et al. 2016). Finally, the seeds were examined under a stereoscope and clas-
sified according to the coloration of the embryo. Embryos dyed red were considered viable and those presenting no 
coloration were considered non-viable (Baskin & Baskin 2014). 

Germination tests. The experimental design was a 3 × 5 factorial arrangement, comprising three constant tempera-
tures (24, 28, 37 °C) and five water potentials (Ψw of 0, -0.3, -0.6, -0.9, -1.2 MPa). The temperature of 24 °C was se-
lected because it is the optimum temperature for the germination of this species (Bonner & Karrfalt 2008) and repre-
sents the average of the month when seeds are dispersed for germination, whereas 28 °C is the maximum temperature 
in the warmest month in the habitat. We consider that 37 °C could represent the maximum extreme temperature to 
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Figure 1. Magnolia pugana: A) Flower, B) fruit (oblongoid polyfollicles), and C) seeds (with or without aril). 

which M. pugana seeds could be exposed in western Mexico under the climate change scenario RCP 4.5 projected for 
future years (2050-2100) in groups G3 and G5, which includes levels of severe warming (2 to 3 °C) and severe drying 
(-50 to -10 mm of seasonal precipitation), and levels of moderate continentalization (0-1.5 °C) (Ibarra-Montoya et al. 
2011, IPCC 2014, Ruiz-Corral et al. 2016, CONAGUA 2019).

The five different water potentials (Ψw of 0, -0.3, -0.6, -0.9, -1.2 MPa) were chosen to simulate the diverse levels 
of water stress that seeds would experience under global climate change scenarios, and are within the range of values 
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described for different soil types worldwide (Dürr et al. 2015). The different water potentials were calculated and pre-
pared with polyethylene glycol (PEG 8000) following Michel (1983). PEG 8000 was dissolved in distilled water and 
placed in a magnetic stirrer for 16 hours at 20 °C. Each treatment combination for five water potentials and the three 
temperatures comprised five repetitions of 20 randomly selected seeds. Seeds were placed separately in sterile plas-
tic Petri dishes (90 × 15 mm) containing 20 ml of the respective PEG 8000 solution and sealed with plastic wrap to 
prevent evaporation, while 20 ml of distilled water (Ψw = 0 MPa) in a temperature of 24 °C was used as control. The 
experiment used a 12 hours’ photoperiod in a germination chamber (Lumistell ICP-19 d-c/iv), Treatments at differ-
ent temperatures and water potentials were evaluated over 45 days the time suggested by Barbour (2008) necessary 
for Magnolia seeds to germinate. Seeds showing an emerged radicle were considered germinated (Baskin & Baskin 
2014). The number of germinated seeds was counted, and the germination percentage (GRP) and mean germination 
time (MGT) were calculated. The MGT of germinated seeds per experimental unit was calculated using the following 
formula according to Ranal et al. (2009):

Where ni is the number of seeds germinated in the ith time; k is the last day of germination evaluation; ti is the time 
from the beginning of the experiment to the ith observation, given in the corresponding experimental unit expressed 
in the number of days. 

The GRP was transformed with Arcsine square root, to ensure homogeneity of variances (Ranal & Santana 2006). 
Shapiro-Wilk test was used to test for normality and a Bartlett test was used to test for equal variances (Crawley 
2012). A two-way analysis of variance (ANOVA) was performed to study the effects of the factors: temperature, 
water potential, and its interaction on GRP and MGT. Environmental chambers were nested to the temperature fac-
tor. All statistical analyses were performed with the GerminaR package (Lozano-Isla et al. 2019) in R. When statisti-
cal differences were observed, means were compared using multiple comparisons Student-Newman-Keuls (SNK)  
(α = 0.05). All statistical analyses were carried out in the R software v. 3.5.2 (R Core Team 2018).

Results

The viability test showed positive results for 24 viable seeds out of 30 (80 %). As no germination was observed in 
the seeds placed at 37 °C, this temperature was excluded from the analysis. The ANOVA test for GRP revealed sig-
nificant effects of both factors, temperature (F = 24.49, P < 0.001) and water potential (F = 68.75, P < 0.001), and 
of its interaction (F = 13.32, P < 0.001) (Figure 2). The GRP decreased significantly as the temperature increased 
and water potential decreased. On the other hand, the effect of the interaction between temperature and water po-
tential on MGT was significant (F = 3.86, P < 0.001). The MGT was delayed due to the effect of decreasing water 
potentials (F = 24.00, P < 0.001) and increasing temperature (F = 20.01, P < 0.001) (Figure 3). The highest GRP 
was 78 % at 24 °C and water potential Ψw = -0.3 MPa, while the lowest was 5 % at 24 °C and water potential Ψw 
= -0.9 MPa (Table 1).

Additionally, when water potential Ψw = 0 MPa was applied at 28 °C resulted in 77 % of germination, but with the 
same temperature and Ψw = -0.6 and –0.9 MPa, resulted in a significant decrease in the number of germinated seeds 
(3 and 0 %, respectively). Finally, a water potential Ψw = -1.2 MPa resulted in no germination at both temperatures. 

The water potential Ψw = 0 MPa facilitated germination in a shorter time at temperatures of 24 °C (MGT = 23.93 
± 1.52 days), and at 28 °C (MGT = 24.79 ± 0.90 days), while the Ψw = -0.9 MPa treatment registered a delay for 
MGT at 24 °C (36.62 ± 1.79 days) and it produced any germination at 28 °C. In the combination of 24 °C and water 
potential Ψw = 0 MPa (control), seeds began to germinate on day 16, on the other hand, with 28 °C and Ψw = 0 MPa 
germination initiated the day 17th. At 24 °C and Ψw = -0.3 MPa germination began on day 17, but at 28 °C and -0.3 
MPa, the beginning of germination was delayed until day 20 (Figure 4). At the other lower water potential treatments 
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Figure 2. Interaction of factors temperature and water potential on the germination percentages of Magnolia pugana seeds, different letters mean statisti-
cal differences between averages by multiple comparisons (Student-Newman-Keuls) (α = 0.05).

Figure 3. Effects temperature, water potential, and interaction between factors, on the mean germination time of Magnolia pugana seeds, different letters 
mean statistical differences by multiple comparisons (Student-Newman-Keuls) (α = 0.05).

and the higher temperature combinations, germination was delayed even more or was zero. MGT increased due to 
the effect of decreased water potential and high temperature. 

Discussion

This study represents the first report about the effects of temperature and water potential as combined factors on the 
germination of Magnolia seeds. Our results support our hypothesis that germination of Magnolia pugana is nega-
tively affected by the combined effect of increasing temperature and water stress, thus confirming that germination 
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in this species would be adversely affected under the predicted conditions of global warming. Interactions between 
low water potential due to decreases in precipitation (up to 10 %), and temperature increases (between 2 and 4 °C), 
are conditions that may be present in habitats within the natural distribution of M. pugana under climate change sce-
narios (Durán 2010, Ibarra-Montoya et al. 2011, IPCC 2014, Ruiz-Corral et al. 2016). We infer that a temperature 
increment of 4 °C (up to 28 °C) only affects germination if there is water stress, but temperatures higher than 28 °C 
inhibit germination in drier conditions.

Our results showed that GRP decreased and MGT increased at the highest temperature (28 °C) in combination 
with lower water potentials (Ψw of -0.3, -0.6, –0.9, and -1.2 MPa). At water potential Ψw = 0 MPa GRP was not 
different between 24 and 28 °C treatments but decreased to 0 % at the highest temperature (37 °C). Temperatures 
higher than 30 °C have been reported to decrease the germinability of Magnolia wilsonii, M. sinica, and other tropi-
cal woody species (Han & Long 2010a, Buttler et al. 2014, Lin et al. 2022). This could be explained by the fact that 
increasing temperatures and desiccation unbalance endogenous abscisic acid concentrations by decreasing auxins, 
gibberellins, and cytokinins to inhibit germination (Baskin & Baskin 2014, Liu et al. 2019). Similar results have been 
observed for some species in other temperate and humid environments: the effect of temperature (5 to 25 °C) and 
water potentials (Ψw = -0.10 to -0.30 MPa) on germinability for riparian species (Salix alba, S. triandra, S. vimina-
lis, and Populus nigra) resulted in 80 to 100 % germination at all temperatures for all species (Van Splunder et al. 
1995), at this temperature range, thermal variation was not a restrictive factor for the cited species as it was not for 
M. pugana; however, germination percentages for all these species were from approximately 100 % at Ψw = -0.10 
MPa and decreased to 0 % at Ψw = -0.26 MPa.

The later results agree with those reported for two riparian species, Populus euphratica, and P. pruinosa, which 
showed considerably lower germination percentages with decreasing water potentials, to almost 0 % at Ψw = -0.6 
MPa (P. pruinosa), and up to 5 % at Ψw = -0.9 MPa (P. euphratica) (Li et al. 2006), whereas both species had 100 
% germination at Ψw = 0 MPa. Although Li et al. (2006) took into account the factors included in the present study, 
they did not evaluate their interactions. 

The reduction in germinability with increasing temperatures has been observed for other temperate mesic tree 
species such as Magnolia officinalis (Zhou et al. 2012), M. sinica (Lin et al. 2022), and Acer saccharum (Solarik et 
al. 2016). M. officinalis experienced the highest germination percentage between 15 and 25 °C, which coincides with 
the results in the present study, as well as the finding that temperatures higher than 30 °C also considerably decreased 
germination percentage (Zhou et al. 2012). Similarly, Lin et al. (2022) reported a M. sinica germinability ca. 87 % at 
25/15 °C but poorly at 30 °C. A possible explanation for these responses could be related to the environmental con-

Temperature (°C) /  
water potential (Ψw, MPa)

GRP (%) MGT (days)

24/0        64 ± 12.6 a 23.9 ± 1.5 d
24/-0.3 78 ± 4.0 a 26.4 ± 0.4 cd
24/-0.6 44 ± 9.4 b 30.16 ±± 1.2 bc
24/-0.9 5 ± 1.6 c 36.62 ± 1.8 a
24/-1.2 0 ± 0 c 0 ± 0 a
28/0        77 ± 13 a 24.79 ± 0.9 d
28/-0.3 28 ± 4.6 b 33.08 ± 1.2 ab
28/-0.6 3 ± 1.22 c 37.6 ± 1.8 a
28/-0.9 0 ± 0 c 0 ± 0 a
28/-1.2 0 ± 0 c 0 ± 0 a

Table 1. Effects of temperature and water potential (Ψw) on germination percentage (GRP) and mean germination time (MGT) of 
Magnolia pugana.

±
± 
±
±

±
± 
±
±
±
±

Significant differences between treatment means are indicated by lower-
case letters next to the standard error according to the SNK test (α = 0.05).
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ditions of their habitats (Han & Long 2010a, b, Fernando et al. 2013, Iralu & Upadhaya 2016, Aragón-Gastélum et 
al. 2018). Germinability and germination speed represented by MGT may be affected by seed quality (e.g., seed size, 
mass, and nutrients), which are strongly related to environmental factors such as temperature, light, and precipitation 
of the seed provenances (De Frenne et al. 2011, Chamorro et al. 2013, Carón et al. 2014). Thus, the sensitivity of 
germination to climatic variability could be a function of the phenotypic plasticity of the species, its local adaptation, 
and its geographic distribution (Nicotra et al. 2010, Cochrane et al. 2015).

Therefore, we infer that germination of Magnolia pugana seeds is likely to be manifested by decreasing germina-
tion percentages and delayed mean times, due to the future warmer climate and lower precipitation predicted for the 
geographical distribution area of this species (IPCC 2014, Ruiz-Corral et al. 2016). A similar effect was found with 
temperature increase for M. sinica and M. wilsonii, for which climate warming could hurt their germinability (Han 
& Long 2010a, Lin et al. 2022). In addition, Vázquez-García et al. (2021b) predicted a loss of 66 % of the suitable 
environmental area of M. pugana by the end of the present century under a scenario of high emissions of greenhouse 
gases (SSP3-7.0), which may increase its vulnerability to extinction, since not only its germination could be affected, 
but also the survivorship of seedlings, saplings, and adult trees. 

Germination percentages in Magnolia pugana decreased and MGT increased with reducing water potential, as 
reported in other tropical woody plant species showing faster germination time and the highest percentage at a water 
potential of Ψw = 0 MPa and the lowest at Ψw = -1.0 MPa (Daws et al. 2008). However, these authors did not evalu-
ate the interaction with temperature, since they focused on ten species at a single temperature (26 °C). Generally, in 
subtropical species, such as eucalypts, germination does not occur in water potentials of less than Ψw = -0.25 MPa, 
with greater germination typically occurring at Ψw = 0 MPa (López et al. 2000). In contrast, it has been reported that 
in Cercidium praecox and Prosopis laevigata, from semi-arid environments, a 0 MPa treatment resulted in the lowest 
germination 77 and 64 % respectively, while a Ψw = -0.41 MPa resulted in 100 % for both species (Flores & Briones 
2001). In general, for these xerophilous species, the germination percentage increased with increasing temperature, 

Figure 4. Cumulative germination of Magnolia pugana at different water potentials (Ψw of 0, -0.3, -0.6, -0.9, and -1.2 MPa), and two temperatures (24 
and 28 °C), during the 45 days of the test.
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in combination with low water potentials, while the MGT was shorter, as reported for seeds associated with drier 
habitats which present higher germination percentages in a reduced time (Evans & Etherington 1990).

The viability of seeds obtained in the present study was 80 %, higher than that previously reported for the same 
species (Jacobo-Pereira et al. 2016). Various authors have reported different viability percentages in Magnolia spe-
cies: 78 % for M. iltisiana (Saldaña-Acosta et al. 2001), 100 % for M. dealbata (Corral-Aguirre & Sánchez-Velásquez 
2006), 80 % for M. schiedeana (Vásquez-Morales & Sánchez-Velásquez 2011), 92 and 87.5 % for M. perezfarrerae 
and M. sharpii, respectively (Vásquez-Morales & Ramírez-Marcial 2019). Habitat characteristics, longevity dur-
ing storage, seed moisture content, and the morpho-anatomical features of recalcitrant seeds explain this variability 
(Ibrahim & Roberts 1983, Vaz et al. 2018). Our main conclusion in this experimental study on the effect of increased 
temperature and drought stress on the germination of Magnolia pugana seeds is that the interaction of simulated 
drought and temperature increases affected decreasing germination percentages and delaying the mean germination 
time. Such conditions are expected under climate change scenarios where severe warming (> 3 °C) and levels of se-
vere drying -300 to -150 mm (< 10 % of seasonal precipitation) in the species distribution zones, which will, in turn, 
determine the dynamics of natural populations, increasing their medium to long-term vulnerability. A temperature 
increment of 4 °C (at a germination temperature of 28 °C) only affects germination if there is drought stress. At drier 
conditions, temperatures higher than 28 °C inhibit germination. The observed effects of temperature increase and 
water potential reduction to the germination of M. pugana seeds will help predict the fate of this critically endangered 
endemic species under future climate change.
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