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Abstract

Background: Seed germination strategies are important for exotic species to identify the factors that control seed germination and establishment.
Questions and /or Hypotheses: Temperature and light germination requirements for seeds of Calotropis procera do not change neither in its native
regions nor in lands where it is exotic. Calotropis procera show germination traits that may increase their probability of colonization.

Studied species: Calotropis procera is a perennial plant native to some desertic areas in Asia and Africa and now naturalized in America.

Study site and dates: Mature fruits were collected in Oaxaca in September 2019 to test germination parameters. The last experiment was conducted in
September 2021.

Methods: We determined the effect of different temperatures, photoblastic response, and loss of viability of seeds kept at laboratory conditions for two
years. We performed several sowings under controlled conditions and achieved germinability, 50 and the time to germinate.

Results: Seeds were non-dormant, neutral photoblastic and did not lose viability after two years of dry storage. Temperature affected germinability and
#50. Optimum germination temperature was 30 °C with no germination above 40 °C.

Conclusions: Germination requirements of seeds of Calotropis procera studied were similar to those reported worldwide. Though seed germination was
affected by maximum mean temperatures, seeds germinated fast and at high percentages under a wide range of temperatures, which together with other
attributes, may confer C. procera great chances for successful colonization.
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Resumen

Antecedentes: Las estrategias germinativas de las semillas en especies exoticas son esenciales para identificar los factores que controlan la germinacion
y el establecimiento.

Preguntas y / o Hipotesis: Los requerimientos germinativos de temperatura y luz de las semillas de Calotropis procera no varian en su regioén nativa ni
donde es exotica. Calotropis procera muestra caracteristicas germinativas que pudieran incrementar su probabilidad de colonizacion.

Especies de estudio: Calotropis procera es una planta perenne nativa de regiones desérticas de Asia y Africa, naturalizada en América.

Sitio y aifios de estudio: Colectamos frutos maduros en Oaxaca, en septiembre de 2019 para determinar parametros germinativos. El ultimo experimento
se realizo en septiembre de 2021.

Métodos: Determinamos el efecto de diferentes temperaturas, fotoblastismo y pérdida de viabilidad de semillas almacenadas durante dos aflos en labo-
ratorio, mediante experimentos bajo condiciones controladas. Determinamos germinabilidad, 50 y tiempo de inicio de germinacion.

Resultados: Las semillas no mostraron latencia, tuvieron fotoblastismo indiferente y mantuvieron su viabilidad después de dos afos de almacenamiento.
La temperatura afecto la capacidad germinativa y el #50. La temperatura optima fue de 30 °C y no obtuvimos germinacion por arriba de 40 °C.
Conclusiones: Los requerimientos germinativos de semillas de Calotropis procera estudiadas fueron similares a los reportados en otras partes del mundo.
Aunque la germinacion fue afectada por la temperatura maxima, las semillas germinaron rapido y en porcentajes altos en un amplio intervalo de tempera-
tura lo que, junto con otros atributos, pudiera maximizar las probabilidades de C. procera para una colonizacion exitosa.

Palabras clave: exdtica, Oaxaca, fotoblastismo, temperatura, viabilidad.
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ike most native plant species, exotic/invasive species (from now on exotic) may reproduce by seeds or by

means of vegetative propagation, so the understanding of the variables which control germination pro-

cesses is necessary to identify the main habitat conditions that allow the formation of a new individual. In

exotic plant species, several traits such as growth rate and competitive abilities have been studied (Pysek
& Richardson 2007). However, the germination requirements which determine the survival and establishment of
plant species are of less interest (Udo et al. 2017). Seed biology aspects like germination requirements, dormancy
and dispersal are important to consider because they may affect the probability of establishment and its invasiveness
capacity (Baskin & Baskin 2014, Gioria & Pysek 2017).

Broadly, the germination parameters reported under different conditions are germinability, mean germination
time, synchrony, and days to germination, among others, which provide valuable information about germination
behavior. Particularly for exotic plants, the parameters 50 and time to germination are important for the invasion
process following introduction to new lands as already underlined by Gioria et al. (2018) and Wijayabandara et al.
(2013) which suggested that germination requirements can be used to predict the invasiveness potential of exotic
species. Further, other plant attributes commonly reported in exotic species that may contribute substantially to the
process of colonization are a flowering period throughout the whole year, high seed production with a high ability
for dispersal, non-dormant seeds, and germination of seeds within a short time and under a wide range of conditions
reaching high germination percentages (PySek & Richardson 2007, Mufioz & Ackerman 2011).

Calotropis procera is a perennial shrub or small tree native to tropical and subtropical Asia and Africa, common
to the Egyptian and Iranian deserts (Hassan et al. 2015). Its common names in different countries are rubber bush,
apple of Sodom, giant milkweed and in Mexico it is scarcely known as algodoncillo gigante africano. This species
has become naturalized in South America, Central America, Mexico and Caribbean and Pacific Islands (Rahman &
Wilcock 1991). In Brazil, some regions of Asia and Africa, and in Australia, C. procera is considered an invasive
species (Reddy 2008, Fabricante et al. 2013, Leal et al. 2013, Bufebo et al. 2016). In this last country, some stud-
ies report the formation of dense thickets in alluvial plains near rivers and its establishment in adjacent pastures is
reported, resulting in a decrease of the pasture value and difficulty in grazing (Meadley 1971, Parsons & Cuthbertson
2001). In Mexico, according to the CONABIO webpage of exotic plant species list, ENCICLOVIDA (2022), C.
procera has been naturalized which, for some authors, is the first step for invasiveness (Palma-Ordaz & Delgadillo-
Rodriguez 2014). This species has already been found in the states of Quintana Roo, Yucatan, Chiapas, Oaxaca, and
Michoacan (NaturaLista 2022), mostly showing a ruderal habit in xeric environments. Data obtained from different
herbaria (FCME, MEXU, and UAMIZ) confirm the presence of this species in these states, being Oaxaca the entity
with the highest number of specimens recorded.

Some germination studies done with C. procera in other countries have shown that seeds exhibit no dormancy
(Sen et al. 1968), that are neutrally photoblastic (Sen et al. 1968, Oliveira-Bento et al. 2013), that their optimum tem-
peratures for germination are 30 and 25/35 °C (Oliveira-Bento et al. 2013), 30 °C (Taghvaei et al. 2015, Menge et al.
2016), and 20, 25 and 30 °C (Sen et al. 1968). Some seed traits such as number of seeds per fruit and morphometric
data have been documented for C. procera seeds from other countries (Heneidak & Hassan 2005, Oliveira-Bento et
al. 2013, Gabr 2014) and more recently from seeds harvested in Mexico (Navarrete-Sauza et al. pers. obs.).

In Mexico, there are no formal studies of C. procera and due to its occurrence in some states, it is crucial to obtain
data about their germination behavior that, together with other studies, contribute to the understanding of their ger-
mination dynamics and establishment.

Some plant species considered exotic in different parts of the world vary in their germination requirements as a
response to the environment (Fakhr et al. 2022, Zhou et al. 2021). However, the permanence of some of these germi-
nation traits may increase the probability of colonization and spreading of other exotic plant species like Calotropis
procera. Therefore, the aim of this study was to prove, from several experiments done under laboratory conditions,
that germination requirements of temperature and light for C. procera seeds collected in Oaxaca, Mexico, do not
change neither in its native regions nor in lands where it is an exotic species.
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Materials and methods

Study species. Calotropis procera (Aiton) W.T. (Apocynaceae) is a perennial plant with a flowering period that lasts
the whole year in Mexico. It is shrubby in most cases, but small trees that do not exceed four meters high can also
be found. The flowers, when pollinated, produce green sub-globose/ovoid follicles. The fruit opens longitudinally
through a dehiscence line that completely exposes the seeds at maturity (Hassan et al. 2015, Navarrete-Sauza et al.
unpub. work). Each follicle has up to 500 seeds and each one has a tuft of silky hairs (collectively called “coma’)
that facilitates their dispersion by wind but may also be dispersed by water or by animals (Parsons & Cuthbertson
2001, Hassan ef al. 2015). It is a drought-resistant and salt-tolerant xerophytic species that can grow easily in xeric
habitats, survive in adverse climatic conditions, and develop in poor soils (Galal et al. 2015). It reproduces mainly
sexually (Lottermoser 2011, Galal et al. 2015), but also asexually through half stumps, root suckers, and root cuttings
(Hassan et al. 2015).

Collection site. Information of the collection sites in the state of Oaxaca, Mexico, was obtained from data extracted
from the National Herbarium (MEXU) and from the coordinates provided by Dr. Leonardo O. Alvarado-Cérdenas.
Other herbaria were examined to register coordinates, but no specimens were found in most cases, or just a few not
considered because their collection sites were already within MEXU data.

Fruit collection was made alongside roads and highways in an approximately 55 km trajectory. Because it is a
ruderal plant and does not distribute abundantly in any particular area, the route represented the population. All along
this trajectory the same type of vegetation was observed (tropical deciduous forest; Torres-Colin 2004). The harvest
was done in September 2019 and began in the municipality of San Cristobal (16° 26° 16.09” N; 95° 31° 28.13” W),
continued at some points within the urban area of Tehuantepec (16° 19° 28.69 N; 95° 14’ 27.72” W) and ended on
the La Ventosa-Salina Cruz highway (16° 12’ 13.47” N; 95° 18’ 47.44” W), in the municipality of Santo Domingo
Tehuantepec. Climatic conditions reported an annual temperature variation between 20 and 30 °C, with a maximum
mean temperature of 35 °C, a minimum annual precipitation of 600 mm and a maximum of 1,000 mm (INEGI 2010).

A total of 78 fruits were collected, mature seeds were extracted from the fruits and seeds were mixed and stored
inside paper bags at room temperature until germination experiments were performed.

Germination experiments. Initial germination experiment.- To test germinability of fresh seeds, six replicates of 50
seeds each were sown fifteen days after seed harvest in Petri dishes with 1 % bacteriological agar (Bioxon) and put
inside a germination chamber (Lab-Line model 844L, Melrose Park, Illinois) at 25 °C with a 12-h photoperiod. Ger-
mination was considered once the radicle emerged from the testa and the experiment lasted 10 days.

Temperature and light treatments.- To determine the effect of temperature and the photoblastic response under a
12-h photoperiod and under complete darkness conditions, six replicates of 50 seeds for each treatment were sown
in Petri dishes of 10 cm diameter with 1 % bacteriological agar (Bioxon) and put inside six germination chambers
(Lab-Line model 844L, Melrose Park, Illinois), each one with a different temperature going from 20 to 45 °C every
5 °C. Germination chambers had a 12-h photoperiod, and the experiment was followed for 19 days. For experiments
under 12-h photoperiod, Petri dishes were put inside a transparent plastic bag and checked daily. For complete dark-
ness experiments, Petri dishes were covered with two layers of aluminum foil and were checked until the end of the
experiment. A seed was considered germinated once the radicle emerged from the testa. The experiment lasted 19
days. Germination capacity, the time to reach 50 % germination (#50) and the time to initiate germination (lag time)
were the data obtained from this experiment. Cumulative germination curves were obtained with SigmaPlot (v. 11.0).

Seed viability. To determine the time seeds of C. procera may maintain their viability under dry laboratory conditions

(20 £ 2 °C), seeds after collection were stored for two years. During this period, four sowings were conducted to test
seed germinability. The first was performed two months after collection (November 2019) and the second in January
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2020. The initial experimental design considered a sowing every two months for two years following the same proce-
dure, but due to the COVID-19 global pandemics we performed only two more experiments, one in September 2020
—when seeds were one year old— and the last experiment was conducted in September 2021 —when the seeds were
two years old—. Experiments were done with six replicates of 50 seeds each placed inside a germination chamber
(Lab-Line model 844L, Melrose Park, Illinois) with a 12-h photoperiod and at a constant temperature of 30 °C. The
experiment lasted 10 days. Once every experiment was conducted, the final germination percentage was obtained to
assess if seeds were losing their viability through time while kept under laboratory conditions.

Statistical analyses. Temperature and light treatments.- A two-way ANOVA with a multiple comparison test (Tukey)
was performed using the GraphPad Prism (v. 6) program to determine if there were significant differences in the
germination percentages obtained under each treatment. Prior to the analysis of variance, an arcsine transformation
of the germination percentages was performed to normalize the data (Sokal & Rohlf 1995).

To obtain the germination parameters of #£50 and lag time for each temperature, a curve fitting to a sigmoid model
was used (y =a + b/ (1 + exp (— (x — ¢)/d))) in the Table Curve 2D program (v. 5.01). From the fitted curve we ob-
tained the #50 (the day in each fitted curve where we got 50 % germination) and the lag times (time to germination
of the first seed). Subsequently, one-way ANOVAs were performed for each parameter between temperatures in the
GraphPad Prism program to determine significant differences among them. This analysis was not performed for the
darkness treatment because germination was checked until the end of the experiment, so there is no time-related data
to compare among treatments.

Seed viability.- A one-way ANOVA test with a multiple comparison test was performed to determine the loss of vi-
ability through time of seeds stored under room conditions (20 + 2 °C). Germination percentages were arcsine trans-
formed to normalize the data (Sokal & Rohlf 1995). The analysis was performed in the GraphPad Prism program to
determine significant differences between treatments (i.e., sowings at different periods of time).

Results

Fruit collection. We obtained a total of 28,401 seeds from the collected fruits. The mean number of seeds per fruit
collected was 364 + 86 SD. The maximum number of seeds in a fruit was 481, while the minimum was 95.

Initial germination experiment. Calotropis procera seeds showed no primary dormancy. The seed sowing was performed
only 15 days after collection and germination percentage reached a maximum of 98.7 % one week after the sowing.

Temperature and photoblastic response on germination. Germinability.- Germination was obtained at 20, 25, 30 and
35 °C under both light conditions. In contrast, germination at the two highest temperatures (40 and 45 °C), under
both light treatments, was nil (Figure 1). The optimum temperature for germination was 30 °C at a 12-h photoperiod,
where C. procera seeds got the highest and the fastest germination (Table 1). The germination percentage obtained
at 30 °C under a 12-h photoperiod and at 25 °C under complete darkness was 99 %, the highest percentage obtained,
while the lowest was 19.33 % at 35 °C under complete darkness (Figure 2).

The two-way ANOVA with multiple comparison test resulted in significant differences in germination among
temperatures (P < 0.001; F, ,, = 62.49), between light treatments (P < 0.001; F | , = 52.32) and among the inter-
actions (P <0.001; ' , ,, = 57.94). We only found significant differences at 35 °C in the germination of C. procera
seeds between both light treatments at the same temperature. Likewise, we only obtained significant differences
between 20 and 30 °C in the germination under a 12-h photoperiod, which represent the lowest speed and the lowest
percentage of germination, and the highest speed and the highest percentage of germination, respectively. Regarding
the comparison between the seeds that germinated in darkness treatment, the difference between those exposed to a
temperature of 35 °C and all the other temperatures is noticeable. The germination percentage under this condition,
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as already mentioned, was the lowest of the whole experiment with only 19.33 %. The same analysis shows that
there are also significant differences in germination under darkness conditions between those exposed to 20 and at 25
°C. In this experiment it is observed that seeds at 20 and 25 °C under darkness treatment had a higher germination
percentage than those that were in a 12-h photoperiod (Figure 2).
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Figure 1. Cumulative germination percentage of Calotropis procera seeds fitted to sigmoid curves at four temperature treatments under a 12-h photope-
riod. Where: A is 20 °C treatment, 4 is 25 °C treatment, ® is 30 °C treatment and x is 35 °C treatment.

Table 1. Germination parameters (germinability, #£50 and lag time) of Calotropis procera seeds. Different letters indicate significant

differences among treatments (P < 0.05).

Temperature treatment Germinability under 12-h 150 (= SE) lag time (days)
photoperiod (% =+ SD)

20 °C 83.34+4.63a 13.87+0.52 a 2.7a

25°C 94.34 £2.04 b 7.09+0.52 b 1.09 b

30°C 99+0.54 b 2.53+£0.52¢ 1.18 b

35°C 95.67+1.60 b 4.08+0.52d 1.03 b

50 and lag time.- The one-way ANOVAs performed to compare each treatment resulted in significant differences for
all parameters (Table 1). In the case of #50, it is observed that at 30 °C the seeds got the shortest time to reach the 50
% of cumulative germination (3 days). On the other hand, at 20 °C, the seeds took approximately 14 days to reach
50 % of cumulative germination, the highest time obtained. This parameter showed significant differences among
each temperature.

The analysis of the lag time shows that only germination at 20 °C is significantly different from the other tempera-
tures (Table 1). As observed, at this temperature the lag time is at least two times higher than at any other temperature,
which means that the seeds of C. procera germinate faster at higher temperatures.

Seed viability.- The results indicate that seeds of C. procera kept under dry room conditions (20 + 2 °C) did not
reduce or lose their viability after two years (Table 2). The one-way ANOVA test showed no significant differ-
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ences in germination obtained through time (P = 0.1864; F
than 98 %.

(.20 = 1.263) with germination percentages higher

Discussion

Initial germination experiment. According to the high germination percentage obtained in the first experiment, fifteen
days after collection, seeds of C. procera showed no primary dormancy, which is in accordance with research from
species in other countries where it is either a native or an exotic species (Sen et al. 1968, Leal et al. 2013, Bebawi
et al. 2015, Taghvaei et al. 2015), probably meaning that the different environmental conditions experienced by
the seeds during their development have not affected their dormancy behavior. Calotropis procera seeds are non-
dormant in agreement with other exotic species (Gioria ef al. 2018, Xu ef al. 2019) like Asphodelus fistulosus L.
(Guerrero-Eloisa 2017) but differs from others that have shown dormancy (El-Keblawy & Al-Rawai 2006, Wijaya-
bandara et al. 2013, Ozaslan et al. 2017).

Some authors have suggested that seed dormancy is a common attribute of exotic species which may result in the
formation of a soil seed bank (Benech-Arnold et al. 2000, Fenner & Thompson 2005, Redwood et al. 2019). For
example, Lantana camara L., a widespread exotic species, showed a deep physiological dormancy (Wijayabandara
et al. 2013), Ulex europaeus L. possesses physical dormancy (Udo et al. 2017), and Xu et al. (2019) and Ozaslan et
al. (2017) reported that seeds of introduced Plantago virginica L. populations and two Physalis L. species showed
dormancy, respectively. Also, the germination results obtained by Diaz-Segura ef al. (2020) with Leonotis nepetifolia
(L.) R. Br. suggest a physiological dormancy. Contrary to these species, data obtained for C. procera show high ger-
mination percentages for fresh seeds during the first seven days after sowing. However, in a study conducted in India,
Amritphale et al. (1984) found that one of three sympatric populations showed dormancy. This may be linked to the
fact that this population had the lowest seed size and could be explained by a maternal effect induced by different
environmental conditions (Campbell ez a/. 2015). In a simulation of adaptive traits done with several weed species,
Martinez-Ghersa et al. (2000) found no clear relationship between germination traits and dormancy. Concerning how
this may contribute to the success in exotic species has been poorly studied (Xu et al. 2019).
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Figure 2. Final germination percentage of Calotropis procera seeds at four different temperatures. Black bars indicate complete darkness treatment and

white bars indicate the 12-h photoperiod treatment. Different lowercase and capital letters indicate significant differences (P < 0.05) among treatments.
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Table 2. Germinability of seeds of different ages of Calotropis procera. No significant differences were found among seed ages
(P <0.0%).

Age of seeds Germinability (% + SD)
1 month 98.67+0.82a

4 months 99+0.84a

1 year 100£0a

2 years 99.33+£0.52a

Any kind of dormancy may help seeds to persist in the soil seed bank for longer periods, but at present there is no
investigation available concerning a soil seed bank for C. procera in Mexico. Bebawi et al. (2015) suggest that seeds
of C. procera from northern Queensland, Australia, may form a short-term persistent soil seed bank. It is possible
to consider that the formation of a persistent soil seed bank may not be a strategy for C. procera in Mexico because
flowering and fruiting period lasts almost all the year, so numerous and viable seeds are being incorporated continu-
ously into the soil and a fast germination may promote an early uptake of resources from the soil representing an
advantage in xeric environments.

Effect of temperature on germination. Many ecophysiological studies have suggested that temperature plays a crucial
role in the detection of the appropriate time for seed germination being the most determinative environmental signal
(Baskin & Baskin 2014). Some authors have evaluated the germinative response of exotic species in a temperature
gradient (e.g., Vieira et al. 2010, Ozaslan et al. 2017).

For C. procera seeds, a similar germination response to temperatures has been reported from countries where it is
a native or an exotic species (Labouriau & Valadares 1976, Taghvaei et al. 2015, Menge et al. 2016). Seeds from the
Iranian deserts showed that the optimum temperature for seed germination was 30 °C, germination rate was slower at
20 °C and the germination rate increased with temperature until the optimum was reached, then it decreased (Tagh-
vaei et al. 2015). Besides, these authors reported germination percentages of 100 % in a temperature gradient from
20 to 40 °C, and here we obtained a germination above 94 % from 25 to 35 °C. However, the results they obtained
at the maximum temperature for germination (high percentages at 40 °C) differ from ours because our seeds did not
germinate at 40 and 45 °C. This differential germination may be due to the temperatures that seeds experience dur-
ing development in the mother plants (Roach & Wulff 1987). Accordingly, in Iranian deserts the mean maximum
temperature is 35 °C, reaching over 40 °C at least four months in a year, contrasting with the mean temperature of the
collection sites in Oaxaca, which is 30 °C with a maximum average of 35 °C, but not reaching 40 °C.

Also, Menge et al. (2016) mentioned that in nine different sites in Australia where water stress and temperature
upon germination was tested, the maximum summer temperatures were lower than 40 °C so seeds barely germinated
at this temperature and did not germinate at 45 °C, with an optimum temperature for germination at 30 °C. Also, La-
bouriau & Valadares (1976) studied germination from 17 to 37 °C with seeds from Northeastern Brazil and obtained
that their seeds had low germination at temperatures near 20 °C, the germination rate and percentage increased with
temperature until the optimum temperature for germination was reached (30 °C) and germination decreased at tem-
peratures higher than the optimum until germination was nil, though no information from mean temperatures in the
study site was provided.

With respect to the germination parameters #50 and lag time, Soltani et al. (2015) mention that #50 is the best
parameter to compare germination rate, representing the time for 50 % of germinated seeds, and together with lag
time, Gioria & PySek (2017) mention that a fast germination is an expected characteristic of exotic species compared
with their native congeners. The importance of both parameters in exotic plants lays upon the need to understand its
timing for germination as a strategy to establish themselves in new or invaded areas (Gioria ef al. 2018), but unfor-
tunately none of these two parameters have been reported in other studies with C. procera. Nevertheless, they have
been reported for other exotic species (Tinoco-Ojanguren et al. 2016, Guido et al. 2017, Hao et al. 2017, Song et al.
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2017) and may be important to evaluate germination and successful establishment in exotic species because it indi-
cates which conditions suit best for a fast germination. Calotropis procera seeds started to germinate quickly after
sowing and 750 decreased as temperatures increased until the optimum was reached, and was negatively affected by
temperatures lower than 25 °C and higher than 35 °C. This emphasizes the importance for C. procera seeds to be
constantly exposed to temperatures above 20 and below 40 °C to have a higher probability for a fast germination at
high percentages which could maximize a successful establishment.

Photoblastic response. A neutral photoblastic response under the temperature regime was obtained in accordance
with results obtained by other authors (Sen et al. 1968, Amritphale et al. 1984, Oliveira-Bento et al. 2013, Tagh-
vaei et al. 2015). Moreover, Leal et al. (2013) reported that germinability was not influenced by five levels of light
intensity. The neutral photoblastic response reported in all studies done may indicate that the differential maternal
environment might not be influencing this response.

Other exotic species have shown a neutral photoblastic response. For example, Vieira ef al. (2010) found that seeds
of Clausena excavata Burm. f. is neutrally photoblastic within a temperature range from 20 to 35 °C, Guerrero-Eloisa
(2017) reported a neutral photoblastism for Asphodelus fistulosus sown under different conditions, Diaz-Segura et
al. (2020) report neutral photoblastic seeds of Leonotis nepetifolia under five different light intensities and NeSi¢ et
al. (2022) suggested that Symphyotrichum lanceolatum (Willd.) G.L. Nesom seeds germinated in higher percentages
under light, but a significant percentage may germinate under darkness.

Here, for C. procera, we report that germination percentage for seeds incubated under complete darkness was
higher at temperatures below 30 °C, though with no significant differences compared with seeds incubated under a
12-h photoperiod. At 35 °C we observed a decrease in the germination percentage under darkness treatment being
the lowest percentage obtained in all treatments. In Egypt, Galal ef al. (2015) obtained that 30 °C under complete
darkness are the optimum conditions for germination of C. procera seeds as they recorded the highest germination
percentage, so with their results they concluded that seeds, once dispersed, must be buried because burial lowers
surface temperature. The aforementioned is in accordance with the study conducted by Bebawi et al. (2015), where
seeds that were not buried in the soil had the lowest germination percentages. This shows the effect that the interac-
tion between light and temperature may cause in the germination response.

Following the environmental conditions to which C. procera seeds are exposed in the collection site in Oaxaca, we
propose that, if they remain on the surface, they will be more exposed to sunlight and high temperatures that might
inhibit or restrain germination, but seeds buried within the first centimeters under the soil may be able to germinate
because burial ameliorates extreme temperatures and desiccation. If enough moisture is available, neutral photoblas-
tism may allow seeds of C. procera to germinate either on the soil surface if temperatures do not exceed 35 °C, or if
they are buried a few centimeters under the soil.

Seed viability. Our findings are in accordance with those obtained by Sen ef a/. (1968), who also found that germina-
tion did not change for two-years old seeds kept under laboratory conditions. However, in Australia, Bebawi et al.
(2015) mention that C. procera seeds buried on two kinds of soil lost their viability completely in two years.

In conclusion, C. procera seed germination requirements of the Oaxaca population studied are similar to those
reported worldwide, where 30 °C is the temperature recorded for optimum germination. Though seed germination
was affected by the maximum mean temperature, seeds germinated fast and at high percentages under a wide range
of temperatures, which together with attributes such as an extended flowering and fructification (Navarrete-Sauza
et al. pers. observ., Labouriau & Valadares 1976, Leal et al. 2013), asexual propagation (Hassan et al. 2015), great
number of wind-dispersed seeds produced per fruit ( Navarrete-Sauza et al. pers. observ.), ability to grow in disturbed
and arid environments, and phytotoxic characteristics (Kaur ez al. 2021) may confer C. procera great chances for a
successful colonization of new arid and semiarid environments in Mexico. Further studies of C. procera are required
to better understand its establishment, growth, and reproduction, but also to explain the effects of its presence in
Mexico, or to explore its potential uses.
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