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Abstract

Background: Selective logging is a frequent practice in the Tropical Montane Cloud Forest which can impact forest regeneration and the genetic
makeup of successive generations of trees. The spatial clustering of genetically related individuals, fine-scale genetic structure (FSGS), can de-
velop from the reduction of gene dispersal and the decrease in the number of reproductive individuals at the local scale due to selective logging.
Questions: In regeneration sites with a history of selective logging, does FSGS differ from a site without such a history? Is FSGS stronger in
seedlings and saplings relative to juveniles and adults? Is genetic diversity similar among life stages and sites?

Studied species: Magnolia iltisiana an endemic tree.

Study site and dates: Sierra de Manantlan Biosphere Reserve, Jalisco, Mexico.

2020.

Methods: We evaluated genetic diversity, genetic structure, and FSGS across four life stages (seedlings, saplings, juveniles, and adults) by
genotyping 211 individuals with seven nuclear microsatellite loci in two regeneration and one conserved site.

Results: We found statistically significant FSGS in the two regeneration sites only for seedlings and saplings, while no evidence of FSGS was
detected in the conserved site. No differences in genetic diversity estimates and structure were found among life stages.

Conclusions: Our study does not suggest an effect of selective logging on genetic diversity on the contrasted conditions and an FSGS pattern
only in the earlier stages of the regeneration sites in M. iltisiana.

Keywords: Tropical Montane Cloud Forest, Selective logging, Genetic diversity, Fine-scale genetic structure, Mexico.

Resumen

Antecedentes: La tala selectiva en el Bosque Mesofilo de Montafia es una practica frecuente y que puede impactar su regeneracion y la com-
posicion genética de los arboles de generaciones sucesivas. El agrupamiento de individuos relacionados en el espacio, estructura genética es-
pacial a escala fina (FSGS), puede desarrollarse debido a la reduccion en el flujo genético y en el niimero de individuos reproductivos a escala
local debido a la tala selectiva.

Preguntas: ;La FSGS difiere en sitios de bosque en regeneracion con historia de tala selectiva comparado con un sitio sin tala selectiva? ;La
FSGS es mayor en plantulas y brinzales en comparacion con juveniles y adultos? ;jHay diferencias en la diversidad genética entre los estadios
de vida y sitios?

Especies de estudio: Magnolia iltisiana, un arbol endémico.

Sitio y aiios de estudio: Reserva de la Biosfera Sierra de Manantlan, Jalisco, México. 2020

Métodos: Evaluamos la diversidad genética, estructura genética y la FSGS en plantulas, brinzales, juveniles y adultos a través del genotipado
de 211 individuos con siete microsatélites en dos sitios en regeneracion y uno conservado.

Resultados: Encontramos FSGS significativa en sitios en regeneracion so6lo en plantulas y brinzales, mientras que no encontramos evidencia en
el sitio conservado. No hubo diferencias en la diversidad genética y estructura entre los estadios de vida.

Conclusiones: Nuestro estudio no sugiere efectos de la tala selectiva sobre la diversidad genética entre las condiciones contrastadas, y un patron
de FSGS so6lo en los estadios tempranos para los sitios en regeneracion en M. iltisiana.

Palabras clave: Bosque Nuboso Tropical Montano, Diversidad genética, Estructura genética a escala fina, México, Tala selectiva.
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Fine-scale genetic structure in Magnolia iltisiana

orest tree species of the Tropical Montane Cloud Forest (TMCF) are highly vulnerable to anthropogenic

habitat changes, such as deforestation, fragmentation, and degradation, as many tree species are restricted

endemics with slow natural regeneration (Gonzalez-Espinosa et al. 2011). The TMCF is likewise threatened

by global climate warming due to the increase in temperature and changes in precipitation patterns that will
affect its cloud and mist formation (Ponce-Reyes et al. 2012). In Mexico, the TMCF occurs between 1,500 and 2,500
meters above sea level with a patchy distribution on steep slopes (Rzedowski 1978). This terrestrial ecosystem com-
prises Mexico’s highest biodiversity per unit area despite covering less than 1 % of the national territory (Rzedowski
1996). Unfortunately, 52 % of the TMCF have been transformed into degraded or secondary forests (Challenger et
al. 2009), and currently, 60 % of its tree species are under some threat category within the [UCN Red List (Gonzalez-
Espinosa et al. 2011).

Selective logging is a common activity in the TMCF of Mexico despite its low productivity for fuelwood and tim-
ber production (Riiger et al. 2008, Toledo-Aceves et al. 2011). Although this practice can be less invasive than defor-
estation, selective logging can impact the process of forest regeneration and the population dynamics of pollinators,
seed dispersers, and other animal interactions (Negrete-Yankelevich ef al. 2007, Farwig et al. 2008, Clark & Covey
2012, Toledo-Aceves et al. 2021) and the local genetic makeup of successive generations of forest trees (Degen et
al. 2006, Sebbenn et al. 2008, Carneiro et al. 2011, Vinson et al. 2015). For instance, canopy openness and changes
in plant density can affect the microenvironmental conditions for seedling establishment and seed bank formation
(Lobo et al. 2007, Anthelme et al. 2011, Alvarez-Aquino et al. 2005), causing a decrease in late successional trees
(Farwig et al. 2008, Clark & Covey 2012). Moreover, a reduction of gene dispersal by pollen flow and seed dispersal
and the decline in the number of reproductive individuals can decrease genetic diversity (Aguilar et al. 2019) and
increase the spatial clustering of genetically related individuals at the local scale in a pattern known as fine-scale ge-
netic structure (FSGS) (Degen et al. 2006, Ng et al. 2009, Alcala et al. 2015). FSGS results from the combination of
microevolutionary forces of genetic drift, selection, and adaptation that interact at the local scale (Kalisz et al. 2001).
FSGS is fundamental in plant populations’ ecology and evolutionary dynamics as it can decrease effective population
size, reduce offspring fitness, and consequently affect long-term population persistence (Leimu et al. 2006, Jacque-
myn et al. 2012). Moreover, it is also relevant for the conservation and management of forest ecosystems because it
allows us to analyze the distribution of genetic variation at fine spatial scales for the identification of seed sources and
to assess whether forest restoration has been successful at disturbed sites (Smith et al. 2018).

Empirical evidence has shown that the intensity and spatial extent of FSGS may primarily depend on intrinsic
factors, such as pollination and seed dispersal vectors, plant density, life form, mating system, and life stage (Veke-
mans & Hardy 2004, Dick et al. 2008, Kloss et al. 2011, Hoban et al. 2014, Gelmi-Candusso et al. 2017). However,
extrinsic factors, such as habitat disturbance and selective logging may also play an important role (Ismail et al.
2012, Hoban et al. 2014, Alcala et al. 2015, Kitamura et al. 2018). Empirical studies so far have shown contradict-
ing findings. For instance, a significant pattern of FSGS in sites subject to selective logging was observed for the
tropical rainforest trees Hopea dryobalanoides Miq. and Shorea parvifolia Dyer, while no effect was found for the
tropical trees Shorea acuminata Dyer (Takeuchi et al. 2004), Carapa guianensis Aubl. (Cloutier et al. 2007) and
Erythrophleum suaveolens (Guill. & Perr.) Brenan (Duminil ez al. 2016). These varying results may imply an inter-
action between the species’ life history traits, the disturbance history, and the ecological context of each site, thereby
complicating generalizations.

Contrasting patterns of FSGS from seedlings to adults in regeneration sites after selective logging may be expect-
ed if seed dispersal patterns, seedling establishment, and the number of reproductive individuals differ between pre-
and post-disturbance conditions (Kitamura et a/. 2018). Other demographic processes, such as self-thinning can also
influence differential patterns of FSGS among life stages (Chung et al. 2007). FSGS analyses across cohorts provide
better insights into the population dynamics occurring in forest regeneration sites following habitat disturbance. In
this context, a significant pattern of FSGS and reduced genetic diversity was found for juveniles relative to adults of
the tropical tree Swietenia macrophylla King, suggesting a negative effect of selective logging in the younger genera-
tions succeeding the logging event (Alcala ef al. 2015). Similarly, significant FSGS in seedlings, saplings, and juve-
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niles, but not in mature trees, was observed for Picea jezoensis (Siebold & Zucc.) Carr. in regeneration sites, which
was attributed to different colonization histories between early and late life stages (Kitamura ef al. 2018). Studies of
FSGS in TMCF forest tree species are scarce (e.g., Quevedo et al. 2013), while the effects of FSGS due to selective
logging have not yet been documented for any TCMF forest tree species.

Magnolia iltisiana A. Vazquez is an endemic tree associated with remnant fragments of the TMCF in Jalisco and
Michoacan in the west of Mexico. It is classified as vulnerable in the Red List of Magnoliaceae (Rivers et al. 2016)
and as threatened in the NOM-059-SEMARNAT (SEMARNAT 2010). It is considered a late successional TMCF
species of low natural regeneration (Sanchez-Velazquez & Garcia-Moya 1993, Saldafia Acosta 2001). Nothing is
known about seed dispersal, although as in other Magnolia L. species, it may be carried out by birds and small mam-
mals (Watanabe et al. 2002) despite their restricted gene flow and spatial aggregation (Rico & Gutiérrez-Becerril
2019, Aldaba-Nufiez ef al. 2021, Chavez-Cortazar et al. 2021). In this study, we investigated patterns of FSGS of M.
iltisiana at the Sierra de Manantlan Biosphere Reserve (SMBR) in Jalisco, where prior to the establishment of the
SMBR, the species was subjected to a history of selective logging from 1960 to 1985. Selective logging consisted
of removing mature trees from the forest that measured 25-30 meters in height and 100-250 c¢cm in diameter, which
we confirmed in the field by the presence of tree stumps. Furthermore, several clearings were opened because roads
were built for transporting the wood (Jardel 1991). We sampled four age classes (seedlings, saplings, juveniles, and
adults) of M. iltisiana in three TMCEF sites to ask the following questions: (i) In regeneration sites with a history of
selective logging, does FSGS differ from a site without such a history? (if) Is FSGS stronger in seedlings and saplings
relative to juveniles and adults at regeneration sites? (iii) Is genetic diversity similar among life stages and sites? The
strength of FSGS is expected greater in regeneration sites with a history of selective logging because it can restrict
seed dispersal and reduce the availability of reproductive congeners, resulting in higher kinship. Moreover, we ex-
pect stronger FSGS in seedlings and saplings compared to adults. Since habitat fragmentation and disturbance can
negatively affect the genetic diversity of succeeding generations, seedlings and saplings may have lower genetic
diversity than adults (Vranckx et al. 2012, Alcald et al. 2015, Aguilar et al. 2019).

Materials and methods

Target species, study area, and sampling. Magnolia iltisiana is a perennial tree of 20 to 40 m in height. It has gray
bark and coriaceous leaves, elliptic to oblong-lanceolate, lustrous green on the ventral side, and pale green on the
dorsal side. Flowering occurs from March to July, with chrysomelid beetles as pollinators. Seeds are predated by
squirrels, which might contribute to their dispersal (Vazquez-Garcia 1994).

The SMBR is in the southwest of the state of Jalisco and northeast of Colima. It has a total range of 139,577
ha and has three core conservation areas: Manantlan-Las Joyas, El Tigre, and Cerro Grande (Ejecutivo Federal
1987, Carabias et al. 2000, Carranza & Rhodes 2010, UNESCO-MAB 2012). A high level of biodiversity is found
in the SMBR, as it supports 8 % of vascular plants, 36 % of bird species, and 26 % of mammals found in Mexico
(UNESCO-MAB 2012). The natural vegetation of the SMBR has been modified by anthropogenic activities, such as
agriculture, livestock grazing, forest fires, and commercial logging. Timber from M. iltisiana, Juglans major (Tor.)
A. Heller, llex brandegeeana Loes., and Fraxinus uhdei (Wenz.) Ligelsh was harvested via selective logging, while
intensive logging was restricted to pine forests in the SMBR (Jardel 1991). Forest succession is characterized by the
establishment of pines and oaks, followed by latifoliate species, and culminates with slow-growing latifoliates, such
as M. iltisiana and Aiouea pachypoda (Nees) R. Rohde (Sanchez-Velazquez & Garcia-Moya 1993, Saldafia Acosta
2001), which take over ten years to produce seeds as suggested for M. grandifolia L., a related North American spe-
cies (Burns & Honkala 1990). During 2020, we identified three sites (S1-S3, Figure 1) in Las Joyas Scientific Station
(LJSS) with varying species composition and structure that were subject to selective logging before establishing the
LJSS. Selective logging in the LJSS started in 1960 and ended with its foundation in 1985, in which adult trees of
valued timber species were removed. To characterize the three sampling sites, we recorded: (i) the main plant spe-
cies, (i7) the life stages of M. iltisiana, and (iii) the presence of big clearings with the occurrence of old tree stumps.
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Each study site was suggested by field technicians of the LJSS based on their knowledge of the research station’s
vegetation history and restoration status, and where M. iltisiana is frequent because it is not found everywhere. The
classification of the sites comprised a site without a history of selective logging, which here we named the conserved
site (S1) as it was characterized by the abundance of adult individuals of late-successional tree species, including
M. iltisiana. The other two selected sites (S2 and S3) had a history of selective logging (ca., 25 years), and currently
are under regeneration as both have a large abundance of early life stages of M. iltisiana and with open canopies
(Supplementary material, Table S1).
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Figure 1. Sampling sites of M. iltisiana in Las Joyas Scientific Station, (SMBR): S1 (upper), S2 (bottom left), S3 (bottom right). Symbols represent: A.
adults, J. juveniles, Sa. Saplings and Se. seedlings.

In each site, we collected leaf material from all individuals within a linear transect of four hundred (S2, n = 77
and S3, n = 100) to six hundred (S1, n = 34) meters in length, depending on the size of the vegetation patches and
15 meters in width to each. The transects were separated from each other by eight hundred (S1 - S3 and S3 - S2) to
1,600 (S1 - S2) meters in distance. The length of the linear transect covered almost all the individuals found at each
site (approx. 60 - 80 % for S3 and S2 respectively and 95 % for S1). The transect at S1 was larger in extent due to a
wider spacing between individuals and because of its much lower abundance. For each individual, we recorded the
GPS coordinate, diameter at breast height (DBH), and height. Tissue samples from fresh leaves were dried in silica
until DNA extraction. We classified life stages according to the following DBH categories (Vasquez-Morales et al.
2017): (i) adults 12.01-160 cm, (i) juveniles 5.01-12 cm, (7ii) saplings 0.31-5 cm, and (iv) seedlings 0-0.30 cm. Life
stages were unevenly represented across sites: adults were mostly present in S1, while few were found for S2 and
none for S3.

DNA extraction, PCR amplification, and genotyping. Genomic DNA was extracted from 15-20 mg of dried leaf
tissue following the CTAB extraction protocol of Doyle & Doyle (1987). A single DNA band (i.e., not multiple
bands) was observed in a 1 % agarose gel using a UV imaging system Gel Doc™ EZ to determine DNA integrity.
We evaluated the amplification of twelve microsatellites from Isagi et al. (1999), Setsuko et al. (2005), and Veltjen
et al. (2019) developed for M. obovata Thunb, M. stellata (Siebold & Zucc.) Maxim., and Neotropical magno-
lias, but only seven (M6D3, M15D5, STM0218, STM0214, STM0200, STM0383, and MA42-481) showed clear
scorable polymorphic allele peaks in the electropherogram. Nuclear microsatellite amplifications were conducted
using the Type-it Microsatellite PCR kit (QIAGEN, Venlo, Netherlands) as follows: 0.2 pl of each 10 uM forward
and reverse primers, 5 pl of the PCR mix, and 1.0 pl of genomic DNA (5-10 ng) in a total reaction volume of 10 pl.
Forward primers were NED (M6D3), HEX (STMO0383 and STM0218), and FAM (MA42-481, M15D5, STM0214,
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and STM0200) fluorescently labeled, and we pooled their amplification in two PCR multiplexes: Multiplex1 (M6D3,
STMO0383, MA42-481, and STM0218) and Multiplex2 (M15D5, STM0214, and STM0200). PCR conditions were
carried out following the procedure from Rico & Gutiérrez-Becerril (2019), which began with 15 min denaturation
at 95 °C, followed by thirty-two cycles of 30 s denaturation at 94 °C, 30 s annealing at 55 °C, 1 min extension at
72 °C, and a final extension of 12 min at 72 °C. Amplification fragments were corroborated by electrophoresis on
1 % agarose gels under the UV imaging system Gel Doc™ EZ. PCR products were run on an ABI 3730X Automated
Sequencer (Applied Biosystems) with 600 LIZ as the size standard. We included a positive and negative control to
check for contamination, and approximately 35 % of the samples were amplified twice to assess genotyping error
rate. Electropherograms were analyzed using GeneMapper v.6 with visual checking of all genotypes at least twice.
The final genetic data set included 211 samples at seven microsatellite loci.

Genetic diversity and structure. The presence of null alleles was assessed with FreeNA using 50,000 iterations
(Chapuis & Estoup 2007). Departures from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD)
were tested using probability tests with 10,000 Markov chain iterations in GENEPOP (Rousset 2008). For each life
stage and for the complete data set, we estimated the observed (Ho) and unbiased expected heterozygosity (uHe), the
effective number of alleles (4e), and the fixation index (F,) with GENALEX 6.5 (Peakall & Smouse 2012). Correct-
ed measures of allelic richness (4r) and private allelic richness (Par) for the effect of sample size by rarefaction were
estimated in HP-RARE (Kalinowski 2005). Inbreeding coefficients (F) and its confidence interval with a = 0.05
and 10,000 bootstraps were estimated with the package DiveRsity (Keenan et al. 2013) in R v. 4.0.3 (R Core Team
2020). The effect of null alleles on the estimation of the inbreeding coefficient was evaluated by comparing the nfb
(full model which includes null alleles, inbreeding coefficients, and genotyping failures) against the /b model (model
without null alleles) by performing a Bayesian Individual Inbreeding Model (IMM) analysis with 500,000 Markov
chain Monte Carlo (MCMC) iterations and 50,000 burn-in cycles in INEST 2.2 (Chybicki & Burczyk 2009). The
genetic diversity parameters were statistically compared among life stages with the non-parametric Kruskal-Wallis
H test (Zar 1999) in R. Pairwise genetic distance between life stages and its significance was assessed in Arlequin v.
3.5.2.2 (Excoffier & Lischer 2010) with 10,000 permutations.

Population genetic structure was assessed with a Bayesian analysis in STRUCTURE v. 2.3.4 (Pritchard et al.
2000) using the model of genetic admixture and correlated frequencies for 200,000 burn-in steps followed by 500,000
post-burn MCMC iterations. We ran models for one to six genetic clusters (K), with ten replicates for each K. To
determine the value for K clusters, we used STRUCTURE HARVESTER (Earl & vonHoldt 2012) and the ad hoc
AK method (Evanno et al. 2005). The visualization of k-clusters was performed using DISTRUCT (Rosenberg 2004)
and CLUMPAK (Kopelman et al. 2015). Additionally, we evaluated the degree of genetic differentiation among
life stages per site as a priori groups using the Discriminant Analysis of Principal Components (DAPC) with the R
package adegenet (Jombart 2008). The optimal number of PCs to retain was determined with the xvalDapc function.
We graphically visualized the first two discriminant functions using scatter plots in R. We also applied an Analysis
of Molecular Variance (AMOVA) with the R package poppr (Kamvar et al. 2014) using the four life stages and the
three sites as hierarchical groups to observe the amount of genetic variation among and within life-stages and sites,
and their significance was tested by 9,999 permutations with the randtest function.

FSGS analysis.We assessed FSGS for the three sites and for each life stage within each of the sites using spatial auto-
correlation analyses in SPAGEDI v. 1.5 (Vekemans & Hardy 2002) by estimating the pairwise kinship coefficient Fij
of Loiselle et al. (1995) for four to five even distance classes of 50 m. Choosing this distance ensured that each class
included enough pairwise observations (Vekemans & Hardy 2004) and that spatial patterns were comparable among
the sites. We evaluated for each class significance with 10,000 permutations. Additionally, we estimated the Sp statis-
tic proposed by Vekemans & Hardy (2004) as a measure to facilitate comparisons between sites. The Sp statistic has
been widely applied in empirical FSGS studies since it provides an estimate of the strength of FSGS under isolation
by distance (higher values of Sp indicate higher FSGS; Vekemans & Hardy 2004). The Sp statistic was calculated as
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Sp = —br/(1 — F(y)), where —bp is the regression slope of the kinship coefficient on the distance and F(yy is the mean
kinship coefficient for the smallest distance class (Vekemans & Hardy 2004).

Moreover, since we have contrasting sample sizes between site S1 vs sites S2 and S3, we used a resampling ap-
proach to evaluate the sensitivity of FSGS statistics to sample size given the lower number of individuals for S1. For
each S2 and S3 site, we randomly resampled thirty-five individuals (without replacement) 1,000 times, and for each
resampled dataset we estimated the Sp and its significance (using 999 permutations). We observed the number of
times, significant Sp values (P < 0.05) were obtained. This analysis was conducted in R.

Results

The genotyping error rate was < 2 % based on the allele match estimation of the repeated samples. The number of al-
leles per locus ranged from seven (M6D?3) to seventeen (STM0200), totaling sixty-nine alleles across loci. Estimated
frequencies of null alleles per each locus ranged from 0 to 0.14. Significant departures from HWE were detected in
two loci (M6D3 and MA42-481). Significant LD was detected in fifteen pairwise loci comparisons (Table S2 Supple-
mentary material). We retained all seven microsatellite loci for subsequent analyses.

Genetic structure. Results based on the AK plot from STRUCTURE suggested K = 4 as the most likely number of ge-
netic clusters. However, high admixture was observed among all clusters, such that no genetic structure exists among
the three sites (Figure S1 Supplementary material). The DAPC obtained in adegenet showed a large overlap among
the four life stages for each of the three sites, and without clearly separating any group (Figure S2 Supplementary
material). Results from the AMOVA indicated that most of the genetic variation is found within sites (97.23 %, P <
0.05), and little is found between sites within life stages (3.78 %, P < 0.05) and nothing between sites (-1.02 %, P >
0.05) (Table S3). Arlequin estimates of pairwise ', between sites ranged from 0.017 to 0.032, and all comparisons
were statistically significant (Table S4 Supplementary material). The pairwise F . values between the life stages were
low and ranged from 0.005 to 0.0021, with adults and seedlings showing the highest differentiation, although differ-
ences were not statistically significant (Table S5).

Genetic diversity. Because the STRUCTURE, DAPC, and AMOVA showed weak genetic structure among sites and
among life stages within sites, we estimated genetic diversity parameters for all individuals of each life stage without
discriminating against sites. Genetic diversity estimates showed similar values among cohorts, where the expected
heterozygosity (uHe) ranged from 0.66 to 0.69, effective number of alleles (Ae) from 2.88 to 3.37, allelic richness
(Ar) from 5 to 5.39, and private allelic richness (Par) from 0.38 to 0.61. The overall F, obtained with GENALEX
was 0.019 £+ 0.003. The highest genetic diversity was found in saplings and seedlings relative to adults, although
these differences were not statistically significant (Table 1). Inbreeding coefficients were low for all life stages, and
without statistically significant differences (Table 1). Results from the IMM analysis in INEST suggested null al-
leles had an important effect on the estimation of the inbreeding coefficient as observed by the lower values of the
Deviation Information Criterion (DIC) observed for the nfb model when compared to their fb model. The inbreeding
coefficient Fi adjusted for the presence of null alleles was stronger for adults followed by saplings, although values
were low (Table 2).

Fine-scale genetic structure. The overall correlogram from SPAGEDI that includes the four life stages per site revealed
a statistically significant pattern of FSGS for site S2 (Sp =0.0119, P <0.05) and S3 (Sp = 0.0071, P < 0.05) at the first
distance class (50 m), but the Sp and Fij were stronger for S2. In contrast, no statistically significant pattern of FSGS
was found for S1 (Sp =0.0011, P > 0.05; Figure 2). The FSGS statistics for the overall sites and each life stage within
sites are shown in Table 3. We could not analyze seedlings of site S1 and adults of S2 due to the low sample size. For
site, S1 all life stages showed extremely low values of Fij and Sp (negative and close to zero) (Figure 3). For the S2
site, we found a statistically significant FSGS only for seedlings up to the second distance class (100 m, P < 0.05)
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Table 1. Genetic diversity parameters for four life stages of Magnolia iltisiana. Abbreviations: n sample size, Ho observed, uHe unbi-
ased heterozygosity, 4e effective number of alleles, 4r rarefied allelic richness, Par private allelic richness, F inbreeding coefficient,

and Confidence Intervals (CI), F fixation index. ns indicates no statistically significant differences among life stages P > 0.05.

Life stage n Ho uHe Ae Ar Par F,(CD F
Adults 12 0.655 0.655 2.876 5 0.46 -0.048 (-0.21, 0.21) -0.048
Juveniles 40  0.659 0.685  3.369 537  0.61 0.041 (-0.06, 0.11) 0.041
Saplings 98  0.666 0.691  3.509 516  0.38 0.034 (-0.02, 0.08) 0.034
Seedlings 61  0.630 0.686  3.502 5.39 0.56 0.092 (0.02, 0.15) 0.092
Total 211 0.654™ 0.689™ 3.507™ 9.84™ 984  (0.042™ 0.030m

Table 2. Corrected for null alleles inbreeding coefficients in four life stages of Magnolia iltisiana. Abbreviation: n sample size, Fi un-
biased inbreeding coefficient robust to null alleles, HPDI 95 % highest posterior density interval, DIC deviation information criterion
for the nfb and fb models.

Life stage n Fi HPDI DIC

nfb fb
All 211 0.0069 0-0.0182 7,330.961 7,389.099
Adults 12 0.0178 0-0.0616  379.621 380.566
Juveniles 40 0.0153 0-0.0493 1,396.480 1,407.545
Saplings 98 0.0174 0-0.0474 3,348.048 3,357.532
Seedlings 61 0.0122 0-0.0382 2,140.874 2,171.387

(Figure 4). For the S3, statistically significant FSGS was observed only for saplings up to the first distance class (50 m,
P <0.05) (Figure 5). The highest value of the Sp was observed for seedlings in S2 followed by saplings in S3.

As a result of the resampling analysis, the mean resampled Sp value for site S2 was similar (0.0128 £ 0.008) to
the observed one (0.0119) while 73.2 % of the cases were statistically significant. For site S3, also the mean Sp value
(0.0075 £ 0.005) was similar to the real value (0.0071) but only statistically significant in 46 % of the cases. For both
permutation scenarios, the proportions of Sp values similar to the conserved S1 site (0.001) were very low (< 5 %;
Supplementary material, Figure S3).

Discussion

Investigating the fine-scale genetic structure of forest trees is relevant for the management of forest ecosystems
(Smith et al. 2018), as it can provide information on regeneration dynamics and gene dispersal (Kalisz et al. 2001,
Barluenga et al. 2011). Most FSGS studies in plants have focused on the effects of mating system, dispersal vectors,
plant density, and life form (Vekemans & Hardy 2004, Gelmi-Candusso et al. 2017), while less information exists on
the role of extrinsic factors, such as selective logging of which empirical evidence has shown mixed patterns (Takeu-
chi et al. 2004, Cloutier et al. 2007, Duminil et al. 2016).
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Figure 2. Spatial autocorrelograms based on kinship (£7j) coefficients in Magnolia iltisiana in an (A) conserved site (S1), and two regeneration sites (B
and C) with a history of selective logging (S2 and S3). Dashed lines represent the 95 % CI.
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Figure 3. Spatial autocorrelograms based on kinship (F7ij) coefficients in three life stages for Magnolia iltisiana in the conserved site (S1): (A) adults, (B)
juveniles, (C) and saplings. Dashed lines represent the 95 % CI.

Our study of M. iltisiana found no evidence of FSGS in the site without a history of selective logging (S1,
Sp = 0.001), whereas significant FSGS was detected in regeneration sites following selective logging, of which S2
showed the strongest FSGS (S2: Sp = 0.0119 vs. S3: Sp = 0.0071). When separating the analyses among life stages
per site, we observed significant FSGS in seedlings in S2 (Sp = 0.022) and saplings in S3 (Sp = 0.008) at the second
(100 m) and the first distance classes (50 m) respectively, but no significant patterns in juveniles and adults. A decline
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in the strength of FSGS across life stages in regeneration sites has been reported in the conifer P, jezoensis (Kitamura
et al. 2018) and in the intensively logged tropical tree S. macrophylla (Alcala et al. 2015). However, our resampling
analysis suggests that sample size may influence the power of the test to detect significant FSGS patterns as could be
the case for the conserved site S1. From the permutation tests, we observed that the average resampled values of the
Sp statistic for both regeneration sites (S2: Sp = 0.022 and S3: Sp = 0.008) were very close to the observed values, but
only the 73 % and 46 % of the cases were significant, respectively. Our study of FSGS in a vulnerable tree species
faces the limitation of sampling, which can be critical in FSGS analysis (Vekemans & Hardy 2004, Hein ef al. 2021).
We were unable to include another “conserved” site with a larger number of M. iltisiana individuals within similar
ecological conditions (e.g., humidity, altitude range, slope exposure, and within the LJSS), and although we collected
almost all M. iltisiana individuals for site S1, its sample size was half of the samples of site S2 and a third of S3.

Table 3. FSGS statistics for four life stages of Magnolia iltisiana in three sampled sites: conserved (S1) and regeneration sites after
selective logging (S2 and S3). Abbreviations: n sample size, b, regression slope, F, , mean kinship coefficient for the smallest distance
class, Sp statistic. Numbers highlighted in black are statistically significant: *P <0.01, **P <0.001. Note. Statistics for adults of S2 were

not included due to the low sample size (n = 2).

Site n b, Fm Sp

S1 34 -0.0011 0.0059 0.0011
S2 77 -0.0118**  0.0117 0.0119
S3 100 -0.0071**  0.0044 0.0071

Cohort by site

S1: Adults 10 -0.0028 -0.0019 0.0028
S1: Juveniles 6 -0.0303 0.0453 0.0318
S1: Saplings 13 -0.0023 0.0055 0.0023
S1: Seedlings 5 -0.1037 0.0234 -0.0212
S2: Juveniles 10 -0.0047 0.0135 0.0047
S2: Saplings 26 -0.0021 -0.0032 0.0021
S2: Seedlings 39 -0.0209**  0.0292 0.0215
S3: Juveniles 24 0.0083 -0.0091 -0.0082
S3: Saplings 59 -0.0081* 0.0083 0.0081
S3: Seedlings 17 -0.0134 0.0093 0.0135

Selective logging, which usually targets old mature trees with large diameters, can impact species composition, rela-
tive abundance, and age structure in forest ecosystems (Bonnell ez al. 2011, Baraloto et al. 2012, Toledo-Aceves et al.
2021). For our three sites, it was evident that species composition, population density, and age structure differed between
the conserved and regeneration sites, which reflect their demographic history. Of these, population density is a well-
known factor influencing the strength of FSGS (Vekemans & Hardy 2004) and may reflect the lack of significant FSGS
at site S1. Our results are likely attributed to demographic thinning, which is a relevant ecological process reported to
change the strength and spatial extent of FSGS across life stages in forest trees (Chung et al. 2003, Ueno et al. 2002).
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Figure 4. Spatial autocorrelograms based on kinship (Fij) coefficients in three life stages for Magnolia iltisiana in a regeneration site S2 after selective
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Figure 5 Spatial autocorrelograms based on kinship (Fij) coefficients in three life stages for Magnolia iltisiana in a regeneration site S3 after selective
logging (S3): (A) juveniles, (B) saplings and (C) seedlings. Dashed lines represent the 95 % CI.

Gene flow does not appear to be restricted within the LJSS as we detected no genetic structure, and genetic diver-
sity was not found to be lower in any life stages. However, knowledge of seed dispersal vector behavior is needed to
better understand their contribution to patterns of fine-scale genetic structure in plants (Gelmi-Candusso et al. 2017).
The inbreeding coefficient was overall low, though the highest values were observed for seedlings and adults, de-
pending on whether it was corrected for the presence of null alleles. Our results imply that selective logging has had
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no effect on the genetic diversity of M. iltisiana. Our estimates of genetic diversity for M. iltisiana in the LJSS (uHe
= 0.69) were higher than the values reported for a small population of M. iltisiana in Michoacan with microsatellite
loci (uHe = 0.50) (Rico & Gutiérrez-Becerril 2019), where the species is currently declining due to habitat loss. In
comparison with other genetic studies in neotropical Magnolia based on microsatellites, our estimates are higher
than Magnolia pacifica A. Vazquez (Muiliz-Castro et al. 2020), and M. tamaulipana A. Vazquez (Garcia-Montes et
al. 2022), but similar to those reported for large populations of M. pedrazae A. Vazquez (Rico & Gutiérrez-Becerril
2019), M. schiedeana Schltdl. (Rico et al. 2023), five species of Magnolia sect. Talauma sensu Figlar and Nooteboom
(M. decastroi A. Vazquez, M. lopezobradorii A. Vazquez, M. mexicana DC., M. sinacacolinii A. Vazquez and M.
zoquepopolucae A. Vazquez; Aldaba-Nufiez et al. 2021), M. lacandonica A. Vazquez, and five Caribbean Magnolia
species (M. cubensis subsp. acunae and M. cubensis subsp. cubensis Imkhan, M. hamorii Howard, M. portoricensis
Bello and M. splendens Urb.) (Veltjen et al. 2019, Rodriguez et al. 2021). The genetic diversity observed for M.
iltisiana in LJSS results from high levels of historical and/or contemporary gene flow by pollen and seed dispersal,
a large effective population size, and the outcrossing mating system (Budd ez al. 2015, Rico & Gutiérrez-Becerril
2019, Veltjen et al. 2019, Hernandez et al. 2020).

In conclusion, our study does not suggest an effect of selective logging on genetic diversity on the contrasted
conditions and FSGS pattern only in the earlier stages of the regeneration sites after selective logging in M. iltisiana.
It is necessary to conduct more research by sampling more sites under different anthropogenic habitat conditions
to obtain more conclusive results. The conservation of M. iltisiana within the Biosphere Reserve is highly relevant
for the species conservation and management in the long term as this is the region where the largest population of
M. iltisiana persists. Ex-situ management strategies aiming at propagating M. iltisiana in nurseries for restoration
purposes should collect seeds at a minimum distance of 100 m to avoid the effects of inbreeding. More FSGS studies
on other vulnerable TMCEF forest species, while also considering the limitation of sample size, would be needed to
further understand regeneration dynamics in sites with a history or under current selective logging events.

Supplementary material

Supplemental data for this article can be accessed here: https://doi.org/10.17129/botsci.3254
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