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Abstract:

Background: Populations of Capsicum annuum var. glabriusculum are found in a wide portion of the Mexican territory, and it is ancestor of
many cultivated forms relevant for the Mexican diet.

Questions: What are the proportions of phenotypic and genetic variation distributed among its sampled regions, populations and within popula-
tions. How does the climate correlates to the population’s phenotypic variation.

Species: Capsicum annuum var. glabriusculum.

Study sites and years: 24 populations form three regions were sampled: Northwest, states of Sonora and Sinaloa; South: Oaxaca and Southeast
Tabasco and Yucatan, in Mexico. The experiment was performed between years 2016 to 2018.

Methods: Fruits from single plants were collected in wild populations. Plants were grown in a greenhouse. Nested ANOVAS were performed
to estimate phenotypic and genetic variance components for different spatial scales. Climate correlation was estimated through univariate and
multivariate methods.

Results: 49.8 % of phenotypic variation was detected within families, 11.1 % among families (within populations), 21.3 % among populations
and 17.6 % among regions. The genetic basis of phenotypic variation was 50.1% on average, for this genetic variation 34.2 % was found among
regions, 39.4% among populations and 26.3 % within populations. Climate factors generated different patterns of correlations for vegetative,
foliar and reproductive traits.

Conclusions: Northwest plants were shorth, with small leaves and large fruits, Southeast plants were tall, with large leaves and small fruits,
South plants developed intermediate phenotypic traits. Climate explained a large proportion of phenotypic differentiation.

Keywords: Climatic variation, phenotypic differentiation, variance components, Capsicum annuum var. glabriusculum.

Resumen

Antecedentes: Poblaciones de Capsicum annuum var. glabriusculum se encuentran en una amplia porcion del territorio mexicano y son el
ancestro de muchas formas cultivadas relevantes en la dieta del pueblo mexicano.

Preguntas: ;Cuales son las proporciones de la variacion fenotipica y genética distribuida entre las regiones muestreadas, entre poblaciones y
dentro de poblaciones? ;Como se correlaciona el clima a la variacion fenotipica de las poblaciones?

Especie: Capsicum annuum var. glabriusculum.

Sitios y Afios de Estudio: 24 poblaciones de tres regiones fueron muestreadas: Noroeste, estados de Sonora y Sinaloa; Sur: estado de Oaxaca y
Sureste: estados de Tabasco y Yucatan en México. El experimento se llevo a cabo entre 2016-2018.

Resultados: 49.8 % de la variacion fenotipica fue detectada dentro de familias, 11.1 % entre familias (dentro de poblaciones), 21.3 % entre
poblaciones y 17.6 % entre regiones. La base genética de tal variacion fenotipica fue del 50.1 % en promedio. Para esta variacion genética, 34.2
% fue hallada entre regiones, 39.4 % entre poblaciones y 26.3 % dentro de poblaciones. Los factores climaticos generaron diferentes patrones
de correlaciones para rasgos vegetativos, foliares y reproductivos.

Palabras Clave: Variacion climatica, diferenciacion fenotipica, componentes de varianza, Capsicum annuum var. glabriusculum.
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pecies with large geographical distributions frequently exhibit an elevated phenotypic variation among and
within populations, produced by two non-exclusive mechanisms: phenotypic plasticity which in short tem-
poral scale allows species to thrive in variable environmental conditions or, by adaptation via genetic dif-
ferentiation (Schlichting 1986).

The distribution of phenotypic and genetic variation in different spatial scales: regions, among and within popula-
tions depends on the species and the analyzed trait (Bucharova et al. 2017). The magnitude of genetic variation, its
spatial distribution and partitioning among and within populations is of great relevance for the maintenance, survival
and evolutionary potential of any species (Venable & Burquez 1989).

The structure of genetic variation may differ among analyzed traits, depending if these are subject to natural se-
lection or not and how selection varies spatially (Olsson & Agren 2002). Differentiation among populations can be
driven essentially by natural selection or genetic drift. Natural selection operates in populations where its individuals
present phenotypic differences and such differences are heritable and have an adaptive value. Conversely, genetic
drift produces random genetic changes, independent of selective pressures given environmental local conditions
(Schmid & Guillaume 2017).

Climate is considered a key factor that conditions the geographic distribution and phenotypic-genetic variation
of plant species, since it can act directly on physiological, growth and reproductive processes or indirectly through
ecological interactions (Shao & Halpin 1995). Several studies have demonstrated the covariation of phenotypic
traits with rainfall and temperature (Solis-Neffa 2010, Nooryazdan et al. 2013, Moles et al. 2014) and insolation
(De Frenne et al. 2013). These three environmental factors and its measures of variation correlate with latitude, in
a more or less orderly manner (De Frenne et al. 2013). Variation of climate factors is relevant since it may produce
phenotypic differentiation due to plasticity or genetic variation among populations and ultimately being subject to
selection and adaptation (Akman et al. 2020).

In wild plant species as Capsicum annuum var. glabriusculum, components of phenotypic variation within and
among populations, as well as its genetic variation, are key elements that allow a species to confront changing envi-
ronmental adversities and expand geographically (Rice & Mack 1991, Herndndez-Verdugo et al. 2008).

Capsicum annuum var. glabriusculum plants, are climbing woody vines, herbaceous or shrubby forms. Its fruits
are small, red and pungent, consumed and dispersed by birds. Capsicum annuum var. glabriusculum is widely dis-
tributed in Mexico, its populations are found on undisturbed sites in the tropical dry forest, along roads, orchards and
abandoned crop fields (Hernandez-Verdugo, 2018).

These wild populations are regarded as a valuable genetic resource, because they constitute a genetic reservoir
with potential to mitigate the effects of environmental adversities in its cultivated forms (Herndndez-Verdugo et
al. 1998, Retes-Manjarrez et al. 2018). In the Northwest of Mexico, studies with isoenzymes (Hernandez-Verdugo
et al. 2001), RAPDs (Oyama et al. 2006) and microsatellites (Pacheco-Olvera ef al. 2012) indicated an elevated
level of genetic variation among and within populations. Lopez-Espafia et al. (2016) in uniform greenhouse condi-
tions, detected that leaf traits presented the largest amount of phenotypic variation followed by reproductive and
vegetative traits. In field conditions, Hernandez-Verdugo et al. (2012) and in a greenhouse experiment Lopez-
Espana et al. (2016), found that phenotypic variation correlated to climate factors of sampled sites in northwest
Mexico.

Hernandez-Verdugo et al. (2008) detected that the largest proportion of hierarchical phenotypic variation of Cap-
sicum annuum var. glabriusculum distributed mainly within families, then among families and finally among popula-
tions, then the main portion of genetic variation was detected within families then among families (within popula-
tions) in sampled sites of Northwest Mexico. Here we enlarge this analysis by increasing the number of populations
in the Northwest and adding populations from regions of Mexico with contrasting environmental conditions. Hence,
in this study, we analyzed the phenotypic and genetic variation of 24 populations of Capsicum annuum var. glabrius-
culum collected from three regions of Mexico in a controlled greenhouse environment. The main objectives were: 1)
estimate the levels of phenotypic and genetic variation and its hierarchical distribution among regions, among popu-
lations (nested within regions), within populations (among families) and within families, II) estimate the covariation
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of phenotypic variation produced in uniform greenhouse conditions with climate variation of the sampled sites. It is
important to recall that differences of phenotypic variation under controlled uniform conditions of a greenhouse are
mainly due to genetic differences.

Materials and methods

Vegetal Material and Sampling Sites. Ripe fruits were collected from 6 to 22 plants with a mean of 14.4 plants in
24 populations of Capsicum annuum var. glabriusculum from three regions in Mexico, distributed in a latitudinal
gradient within 15°49’ N to 29°34’ N (£ 1,600 km) and over 2,000 km longitudinally (-88°48° W to -110°07’ W). In
the Northwest region, populations were in the states of Sonora and Sinaloa, in the Southeast region in Yucatan and
Tabasco and in the state of Oaxaca for the South, along its coastal line (Figure 1). Populations were gathered in their
respective regions based on climate, geographic and environmental similarities (Table 1).

YUCATAN

20°N

I5°N ——

Figure 1. Sampling sites of Capsicum annuum var. glabriusculum populations in three regions of Mexico. Regions: Northwest (@), Southeast (m),
South (V).

Information regarding climate factors (Table 1) was obtained from the smn.conagua.mx webpage. Maximum
(TMax), mean (MAT) and minimum (TMin) temperatures are shown in °C. Temperature range (TR) was estimated
as the mean of monthly differences between maximum minus minimum temperatures. Annual rainfall (PP) is re-
corded in mm. Rainfall variability was estimated as the Precipitation Concentration Index (PCI) (Oliver 1980), that
describes rainfall seasonality based on the amount of monthly data, large values describe an elevated amount of
rainfall in fewer months. De Martonne aridity index (Al) integrates mean temperature and annual rainfall, in this
study we employed each population inverse, so each value describes higher aridity conditions. Insolation (Ins) was
measured in W x m? x d! from data available at giss.nasa.gov/model1E/ar5plots/srlicat.html. Measures of variation
for temperatures and insolation were estimated as the coefficients of variation (CV) from monthly data.

All climate factors and its measures of variation were significantly correlated to latitude, means of maximum
temperature, CVs of mean and minimum temperatures, PCI and CV of insolation correlated positively. Mean and
minimum temperatures, annual rainfall and insolation correlated negatively with latitude (Table 1).

Experimental Design. Seeds were treated with 1,000 ppm gibberellic acid for 24 h 30 days after fruit collection, then
put to germinate in polystyrene trays in Peat-Moss substrate. Three daughter seedlings were randomly chosen from
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each plant collected on field seven days after germination. Seedlings were transplanted to 30 L plastic bags filled
with 10 kg of alluvial soil. Bags were placed 30 cm apart, in burrows separated from each other 1.3 m. Plants were
irrigated with a drip system. Light was regulated with a mesh that allowed 50 % of direct sunlight. A total of 1038
total plants were placed and measured in a fully randomized design.

Measured Traits. The following phenotypic traits were measured seven months after transplant:
Vegetative traits.- 1) stem diameter (SD) in mm, 2) plant height (HT) in cm.

Foliar traits.- from three leaves in each plant, we estimated: 3) chlorophyll content (CLO) with a SPAD Chlorophyll
Meter, Konica-Minolta, 4) leaf length (LL) in mm, 5) leaf width (LW) in mm; from these two measurements we esti-
mated 6) leaf shape (LS) as the ratio LL/LW; 7) leaf area (LA) in cm? with a Li-Cor 3100 Leaf Area Meter, Nebraska,
United States. Measured leaves were dried at 65-70 °C for 48 h to estimate 8) specific leaf area (SLA). Leaf size traits
(LL, LW, LS and LA) are highly correlated. However, variation of LW tends to be less pronounced due to restriction
produced by the development of leaves venation network (Shi ef al. 2021). Also, Gonzalez et al. (2010) detected a
genetic background in the different pathways of leaf length and leaf width development and hence leaf shape in A4.
thaliana; so here, we advocate to explore potential genetic differentiated responses of foliar size and shape traits.

Reproductive traits.- 9) Days to flowering (FLO), 10) total number of fruits per plant (FXP). From five fruits ran-
domly chosen from each plant we measured 11) fruit length (FL) in mm, 12) fruit width (FW) in mm; from these two
traits we estimated 13) fruit shape (FS) as the ratio FL/FW. 14) fruit weight (FM) in mg, 15) number of seeds per
fruit (SN), 16) total seed weight per fruit (STM) in mg, 17) seed weight average (SMA) in mg and 18) total number
of seeds per plant (TSN).

Statistical Analysis. In species with high levels of autogamy as Capsicum annuum var. glabriusculum phenotypic
variation within families can be attributed mainly to environmental effects. Variation among families (within popula-
tions) has a genetic basis as a part of total variation among populations (Venable & Burquez 1989, Hernandez-Verdu-
go et al. 2008). To assess phenotypic and genetic variation, we performed a nested analysis of variance to determine
the distribution of the relative quantities of phenotypic variation among regions, populations within regions, families
within populations, variation within families was estimated as the residual of the ANOVA. Regions, populations and
families were considered as random factors, these analyses were executed in JMP v. 11 (JMP®). A one-way ANOVA
was performed to determine differences among regions. To evaluate phenotypic differentiation among traits we esti-
mated the coefficient of variation (CV) for the measured traits. The dimensionless character of CV allows for an easy
comparison of the magnitude of phenotypic variation among types of traits, regions and populations.

In order to discern the phenotypic differentiation of traits among regions and populations simultaneously, we
executed analyses of principal components and hierarchical clustering. These procedures were performed on SPSS
v. 22 (IBM®).

Climate Data. A multivariate analysis was performed to differentiate climate at regional and population levels.
Then, a univariate approach was executed to detect patterns of covariation between climate factors and phenotypic
variation. Finally, we executed a linear regression analysis between principal components 1 of climate factors and
phenotypic variation.

Results

The nested analysis of variance showed that in average, 17.6 % of phenotypic variation was distributed among regions,
21.3 % among populations, 11.1 % among families (within populations) and 49.8 % within families (Table 2). Among
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Table 2. Percentages of phenotypic variation of Capsicum annuum var. glabriusculum estimated among regions (V, ), among popula-
tions (V,,), among families (V, ) and within families (V) as residuals, measured in 24 populations from three regions in Mexico. Total
genetic variation (T,,) = V, . +V, +V, .. Genetic variation among regions (G,
(Gyp) = V'V V. 7V, - Genetic variation among families (G,) =V, /V, . +V, +V, .

)=V, /V TV, TV, Genetic variation among populations

Trait \Y vV \/ A\ T G G, G

AR AP AF WF GV VR VP VF
Stem diameter 10.0%* 6.7**  4.1ns 792 20.8 481 322 197
Plant height 7.4%* 6.3%* 8.2%% 782 219 338 288 374
Chlorophyll content 27.0%* 7.0%%  153*%F 507 494 546 144 31.0
Leaf length 41.7%* 6.0%* 9.2¥* 431 569 733 105 16.2
Leaf width 7.2ns  12.4%*  15.0%* 653 346 209 358 433
Leaf shape 44 3%* 6.7%%* 7.4%¥* 415 584 759 115 127
Leaf area 15.6* 11.6*¥* 12.4** 605 396 394 293 313
Specific leaf area 23.6%* 9.0%* 12.1*%* 553 447 528 20.1 27.1
Days to flowering 79.0%* 9.1%%* 9.7%% 22 978 80.8 93 99
Number of fruits x plant 1.6ns 82.0%¥* 10.5*¥* 59 941 1.7 871 112
Fruit length 4.2% 32.6%*  11.6** 516 484 87 674 240
Fruit width 6.9% 16.5** 10.8** 65.8 342 202 482 316
Fruit shape 25.6%*%  34.2%% 7.2%¥* 330 67.0 382 51.0 10.7
Fruit weight 6.3* 59%%  149%* 729 27.1 232 21.8 550
Number of seeds x fruit 34ns 26.5%* 11.5** 588 414 82 64.0 278
Seed weight x fruit 72ns 18.1*%* 154*%* 593 40.7 17.7 445 378
Seed weight mean 63ns 16.8¥* 103** 66.7 334 189 503 3038
Number of seeds x plant 0.0ns 76.5%* 152** 83 917 0.00 83.4 16.6
Average 17.6 21.3 11.1 49.8 50.1 342 394 263

*P <0.05, ** P<0.01, ns = non-significant

regions, all phenotypic traits showed statistical differences, with the exceptions of leaf width, number of seeds per
fruit, seed weight per fruit and number of seeds per plant. Differences of the amount of phenotypic variation among
regions oscillated between 0 % in the number of seeds per plant to 79 % in days to flowering.

Among populations, all traits showed significant differences (Table 2). The relative amount of phenotypic varia-
tion occurred within 5.9 % in fruit weight to 82.0 % in number of fruits per plant and 76.5 % in number of seeds per
plant. Among families (within populations), all traits with the exceptions of stem diameter showed significant differ-
ences Seed weight per fruit, chlorophyll content number of seeds per plant, leaf width and fruit weight showed the
highest values in phenotypic variation, stem diameter was the lowest value. Variation within families was elevated
for most traits, only days to flowering, number of fruits per plant and number of seeds per plant displayed values
below 10 %. Variation within families oscillated from 33 % in fruit shape to 79 % in stem diameter.

From the total phenotypic variation estimated, 50.1 % presented a genetic basis; from this, 34.2 % was distributed
among regions, 39.4 % among populations and 26.3 % within populations. Days to flowering, number of fruits per
plant and number of seeds per plant showed total genetic values above 90 %, whilst stem diameter and plant height
showed values below 22 %; genetic variance among regions was highest for days to flowering, leaf shape and leaf
length and lowest for number of fruits per plant. Genetic variance among populations was elevated for number of
fruits and seeds per plant and the lowest values were shown by leaf length and days to flowering. In genetic variation
within populations (among families), the values for fruit weight were the highest (55 %) and days to flowering the
lowest (9.9 %) (Table 2).
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Phenotypic Differentiation among Regions. The one-way ANOVA for regions indicated that all traits were different
regionally (Table 3). Northwest region presented elevated values for specific leaf area, fruit width and weight, num-
ber of seeds per fruit, seed weight per fruit and seed weight mean. Southeast region showed the highest values for
stem diameter, chlorophyll content, leaf length, width, shape area and most elongated fruits. In the south, the highest
means of plant height, days to flowering, number of fruits per plant and number of seeds per plant occurred; contrast-
ingly, also the lowest value for seed weight mean. A MANOVA test for regions showed significant differences: £
2036 = 122.77, P <0.0005; Wilks A = 0.099. There were no differences in the amount of phenotypic variation among
regions depicted by CVs and a non-parametric ANOVA: Xz@ =0.177, P <0.916. Reproductive traits were more vari-

able than vegetative and foliar traits.

Table 3. Means of phenotypic traits and CVs of Capsicum annuum var. glabriusculum from three regions of Mexico, superscripts denote

Tukey test mean differences (P <0.05)a>b>c.

Traits Northwest Southeast South Average CV
Stem diameter 7.4°(27.6) 8.7 (29.4) 7.8°(23.7) 26.9
Plant height 81.3*(27.3) 89.1°(26.2) 93.7* (20.1) 24.5
Chlorophyll content 37.4¢(13.9) 44.4* (15.8) 42.6° (14.0) 14.6
Leaf length 58.1°(25.5) 83.1°(32.8) 58.8°(27.7) 28.7
Leaf width 38.9°(26.0) 43.32(33.5) 37.8°(29.8) 29.8
Leaf shape 1.5(13.5) 1.92 (18.8) 1.6° (17.8) 16.7
Leaf area 11.3°(49.3) 14.6% (62.2) 9.6°(48.2) 53.2
Specific leaf area 304.9* (30.4) 210.6° (29.6) 217.3°(33.4) 31.1
Days to flowering 172.9¢(7.18) 193.7° (4.12) 217.3*(3.93) 5.08
Number of fruits x plant 37.1°(67.4) 23.8°(53.6) 49.4*(71.7) 66.2
Fruit length 6.4°(23.4) 7.6 (22.2) 6.9°(41.2) 28.9
Fruit width 5.77*(20.3) 5.1¢(17.4) 5.2%(16.1) 17.9
Fruit shape 1.1¢(14.3) 1.5 (22.8) 1.3*(34.0) 23.7
Fruit weight 63.5" (56.0) 50.2° (41.2) 46.8°(56.4) 51.2
Number of seeds x fruit 9.6*(57.7) 7.6°(60.0) 7.8"(58.0) 58.6
Seed weight x fruit 33.8%(56.3) 26.4*(55.1) 24.1°(49.3) 53.6
Seed weight mean 3.7°(29.2) 3.7*(23.8) 3.2°(25.4) 26.1
Number of seeds x plant 182.2°(69.4) 119.30° (53.4) 246.9* (77.8) 66.9
Average CV 34.15 33.44 36.36

The multivariate analysis denoted that the first four components above 80 % of total variation (Table 4). Principal
component 1 (PC1), defined 41.3 % and was determined by days to flowering, chlorophyll content, plant height,
fruit shape, leaf length and width with positive sign; by fruit and seed traits and specific leaf area negatively. PC2
explained 16.3 % of total variation, defined positively by leaf traits, stem diameter and plant height, negatively by
fruit, seed traits and specific leaf area. PC3 explained 12.8 % of variation, determined in its positive side by fruit,
seed traits, negatively by specific leaf area and seed weight mean. PC4, illustrated 11.5 % of variation, in its positive
sector we found fruit length and shape, chlorophyll content, stem diameter, days to flowering and plant height. In the
negative sector the main loading was specific leaf area.

Each region and its populations were differentiated in the bidimensional multivariate space of principal compo-
nents 1 and 2 (Figure 2). In the positive section of PC1 the populations of the Southeast and South regions were
found, associated to elevated values of late flowering, plant height, chlorophyll content, large leaves and elongated
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fruits and leaves; in the negative section we found the Northwestern populations, associated to large means of fruit
weight and width, seed weight per fruit and specific leaf area. In PC2, the positive section clustered Southeast-
ern populations with the exception of Temax (14), linked to large vegetative and foliar traits, the negative section
grouped South and Northwest populations, correlated to large means of reproductive traits.

PC2 16.12%

PC1 41.80%

Figure 2. Phenotypic differentiation of 24 populations of Capsicum annuum var. glabriusculum from three regions in Mexico in the bidimensional space

of principal components 1 and 2. Northwest (@), Southeast (m), South (V). Populations listed as in Table 1.

The dendrogram differentiated regions and its populations within two large clusters (Figure 3). The first cluster (1)
was divided in two groups, the first group (1A) included all Northwest populations and Calderdn (20) from the South;
in the second group (1B), Majagual (22), Zaachila (23) and La Parcela (24) from South region were assembled. The
second large cluster (2) is also divided in two groups; the first group (2A), included 5 populations of the Southeast,
the second group (2B) is composed by Temax (14) and Cerro Colorado (21) from the South region.
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Figure 3. Dendrogram of phenotypic traits means of 24 populations of Capsicum annuum var. glabriusculum from three regions in Mexico. Northwest
(®), Southeast (m), South (V). Populations listed as in Table 1.
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Table 4. Results of principal component analysis of phenotypic traits of Capsicum annuum var. glabriusculum of 24 populations from
three regions in Mexico. Loads above 0.300 in boldface.

PC1 PC2 PC3 PC4

% of variance 41.3 16.3 12.8 11.5

% of accumulated variance - 57.6 70.4 81.9

Stem diameter 0.297 0.830 0.046 0.451
Plant height 0.591 0.545 0.182 0.353
Chlorophyll content 0.737 0.419 0.276 0.649
Leaf length 0.393 0.849 -0.103 0.539
Leaf width 0.285 0.909  -0.045 -0.076
Leaf shape 0.354 0.508 -0.076 0.819
Leaf area 0.276 0.924  -0.180 0.143
Specific leaf area -0.435 -0.353 -0.413 -0.641
Days to flowering 0.780 0.079 0.240 0.492
Number of fruits x plant -0.187  -0.223 0.905 -0.207
Fruit length 0.010 0.066  -0.119 0.855
Fruit width -0.891 -0.167 0.056 -0.158
Fruit shape 0.465 0.143  -0.105 0.883
Fruit weight -0.974 -0.236  -0.066 -0.236
Number of seeds x fruit -0.745 -0.492 0.376 -0.187
Seed weight x fruit -0.913  -0.308 0.250 -0.236
Seed weight mean -0.212 -0.611  -0.433 -0.196
Number of seeds x plant -0.176 -0.218 0.913 -0.187

Climate Variation. The principal component analysis explains in its first two components over 78 % of the total
climatic variation (Table 5). PC1 defined 66.9 % of variation and was built in its positive side by CVs of insolation,
temperatures, aridity index, means of maximum temperature, temperature range and PCI; in its negative side we

Table 5. Results of principal component analysis of climate factor of Capsicum annuum var. glabriusculum of 24 populations from three

regions in Mexico. Loads above 0.300 in boldface.

PC1 PC2
% of variance 66.97 11.42
% of accumulated variance - 78.39
Maximum temperature 0.689 -0.166
Maximum temperature CV 0.672 0.024
Mean temperature -0.874 0.529
Mean temperature CV 0.940 -0.534
Minimum temperature -0.902 0.476
Minimum temperature CV 0.792 -0.476
Temperature range 0.756 -0.545
Annual rainfall -0.594 0.940
Precipitation Concentration Index 0.377 -0.834
Aridity Index 0.652 -0.834
Insolation -0.949 0.606
Insolation CV 0.945 -0.603
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found, means of insolation, rainfall, minimum and mean temperatures. PC2 above 11 % of variation, here positive
loadings were means of rainfall, insolation and temperatures; negative loadings were PCI, aridity index, temperature
range, CVs of insolation, mean and minimum temperatures.

Regions and populations were differentiated in the bi-dimensional space of principal components 1 and 2 (Figure
4). The positive sector of PC1 aggregated all the Northwest populations minus El Roble (13) and included Temax
(14) from the Southeast region, this sector was associated to means of maximum temperature, temperature range,
PCI, aridity index and CVs of insolation and temperatures. In the negative sector of PC1, the populations of the
Southeast and South regions were clustered, defined by means of insolation, rainfall and minimum temperature.
PC2 assembled in the positive side the Southeast populations plus Calderon (20) and Zaachila (23) from the South,
correlated to means of temperatures, rainfall and insolation. In the negative sector we found Northwest populations
besides Cerro Colorado (21), Majagual (22) and La Parcela (24) from the south, linked to temperature range, PCI,
aridity index, temperature and insolation CVs.
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Figure 4. Climate differentiation of 24 populations of Capsicum annuum var. glabriusculum from three regions in Mexico in the bidimensional space of
principal components 1 and 2. Northwest (®), Southeast (m), South (V). Populations listed as in Table 1.

The analysis of linear regressions between climate factors and phenotypic means (Table 6) showed that PCI was
the climate factor that generated the most elevated number of significant correlations with phenotypic means. On the
contrary, CV of maximum temperature only produced one significant result. By traits, chlorophyll content, specific
leaf area and days to flowering were the traits that developed the largest number of significant results; contrastingly,
fruits per plant, seed mean weight and number of seeds per plant did not generate any significant result.

The analysis of regression between principal components 1 of climate factors and phenotypic variation (Figure 5),
explained above 40 % of the covariation, with high statistical significance (P < 0.001).

Discussion

Distribution of Phenotypic and Genetic Variation. Since plants in this experiment were grown in controlled condi-
tions in a greenhouse, phenotypic differences among regions and populations are due to genetic differentiation. The
pattern of phenotypic variation found here matches the results of Yoko et al. (2020) in Geum triflorum. Specifically
for Capsicum annuum var. glabriusculum, results are similar to those of Hernandez-Verdugo et al. (2008) where the
largest portion of phenotypic variation is found within families. Here, phenotypic distribution within families can be
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attributed mainly to environmental variation; however, since C. annuum var. glabriusculum plants are not genetically
identical (clones), differences among individuals within a family cannot be separated from the effects of environmen-
tal variation (Hernandez-Verdugo et al. 2008).

From the total phenotypic variation observed, 50.1 % had a genetic basis, pointing that Capsicum annuum var.
glabriusculum traits possess a large genetic basis to cope with environmental variability. Here, the amount of total
genetic variation is larger to the amount described by Hernandez-Verdugo et al. (2008); traits as days to flowering,
number of fruits per plant and number of seeds per plant showed in average values above 90 % of genetic variance,
hence these traits could respond rapidly to natural selective pressures (Venable & Burquez, 1989). Among popula-
tions, fruits and seeds traits, linked directly to fitness as number of fruits per plant and number of seeds per fruit,
showed the highest means of genetic variance, suggesting that particular local selective pressures produce a great
amount of the differentiation of these traits (Rice & Mack, 1991, Hernandez-Verdugo et al. 2008). Within popula-
tions (among families), over half of the analyzed traits surpassed 25 % of genetic variation, including reproductive
traits associated to fitness. However, the amount of genetic variation within families in our study is lower, our results
do not match the proportions of genetic variation among-and-within populations described by diverse molecular
methods Hernandez-Verdugo et al. (2001), Oyama et al. (2006) and Pacheco-Olvera et al. (2012). The discrepan-
cies found in the distribution pattern of genetic variance, may be due to the fact that we performed our analysis in a
broader fashion, including regions and a greater number of populations with contrasting environmental conditions.
Also, we also performed our analysis in a larger number of traits.

Differentiation among Regions and Populations. Our study outcome matches the previous results described by
Hernandez-Verdugo (2018) in Northwestern Mexico for phenotypic traits measured in greenhouse-controlled envi-
ronments and with molecular markers. These results also coincide with studies of isoenzymes by Hamrick & Godt
(1997), RAPDs by Bussell (1999) and phenotypic markers by Rice & Mack (1991), who described that highly selfing
species (as C. annuum var. glabriusculum) showed significant differences among its populations.

Univariate and multivariate analysis on quantitative traits, allowed us to clarify the phenotypic differentiation.
Capsicum annuum var. glabriusculum plants of the Northwest region showed small vegetative and foliar traits, high
specific leaf area, obtuse leaves, large and spherical fruits with large amounts of seeds and seed weight per fruit.
Plants of the Southeast region displayed large vegetative and foliar traits, elongated leaves, low specific leaf area,
smaller elongated fruits with few seeds. South region plants produced intermediate trait means in chlorophyll con-
tent, specific leaf area, leaf shape, fruit length, width and shape; lowest values for leaf area and seed mean weight;
but conversely the largest means for delayed flowering, fruits per plant and number of seeds per plant. Also, South
trait means are intermediate within the regional trait variation spectra in the following way, sharing mean phenotypic
values with the Northwest region for stem diameter, leaf length and width; with the Southeast region for plant height,
fruit weight, seed number per fruit and seed weight per fruit. Values of phenotypic variation above 20 % were also
detected for different species of Capsicum by Ornelas et al. (2021).

The pattern of phenotypic differentiation described above, concurs with the results of Snow & Whigham (1989)
in Tipularia discolor, where vegetative growth is negatively correlated to reproductive effort. Our result suggests
that natural selection acts independently in the different regions regarding vegetative, foliar and reproductive traits.
This pattern of differentiated allocation of resources strategies in each region, could constitute a potential limitation
to reach an optimum phenotype in Capsicum annuum var. glabriusculum (Scheiner & Berrigan, 1998).

Climate and Phenotypic Covariation. Given the nature of regional climate and phenotypic differentiation, the analy-
sis of regressions between climate factors with phenotypic means showed that vegetative and foliar size and shape
traits plus fruit shape correlated positively to means of temperature, rainfall and insolation and negatively to climate
measures of variation. Inversely, specific leaf area and reproductive traits associated positively to measures of cli-
mate variation. Multivariate analysis of phenotypic traits and climate factors drew a complete picture of its covaria-
tion, depicting that larger reproductive traits, earlier flowering, specific leaf area and smaller plants of Capsicum an-
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Figure 5. Regression analysis between principal components of climate (independent variable) and principal component phenotypic variation
(dependent variable) of Capsicum annuum var. glabriusculm populations from regions Northwest (@), Southeast (m), South (V) in Mexico.

Populations listed as in Table 1.

nuum var. glabriusculum are found in the arid, seasonal and more variable climates of the Northwestern edge of the
sampled environmental continuum. In a humid and less variable climate of the Southeast region, we detected larger
plants, large elongated leaves, reduced specific leaf area and small reproductive mean traits; Southern regions plants
showed intermediate phenotypic mean traits in an intermediate climate scenario.

In our study, stem diameter and plant height correlated negatively to latitude, this pattern coincides with one de-
scribed by Li et al. (1998) in Arabidopsis thaliana and Olsson & Agren (2002) in Lythrum salicaria and specifically
in Capsicum annuum var. glabriusculum by Lopez-Espaiia et al. (2016). In foliar traits, the behavior of chlorophyll
content matches the pattern depicted by Li et al. (2018) who pointed a negative correlation of chlorophyll amount
and latitude. The pattern of leaf size is similar to the results of Wright ez al. (2017), where larger leaves were found
in more humid sites. Specific leaf area presented larger values in populations with arid, seasonal and variable envi-
ronments from the Northwest region, this pattern suggests a conservative vegetative growth strategy for Capsicum
annuum var. glabriusculum in the studied transect. According to Xie et al. (2012), high means of specific leaf area
explain smaller plant sizes in Gossypium, an analogous pattern detected here.

Capsicum annuum var. glabriusculum plants from Northwest Mexico, flowered earlier, coinciding with the results
of Del Pozo et al. (2000) with Medicago polymorpha, where populations in arid sites presented an earlier flowering
due to an induced shorter reproductive season given an irregular rainfall season, higher maximum temperature, larger
variation of insolation and temperatures. In reference to fruit size variation, in the Southeast and South regions, with
a larger mean of annual rainfall and more constant temperatures we detected smaller fruits but more elongated, a
similar result described by Sinnott-Armstrong et al. (2018).

Previous studies as those of Jonas & Geber (1999) in Clarkia unguiculata, Hall et al. (2007) for Populus
tremuloides, Nooryazdan et al. (2010) for Helianthus and Lopez-Espaiia et al. (2016) for C. annuum var. gla-
brisuculum, where genotypes were collected on field conditions then grown in greenhouse-controlled conditions,
when regressed with climate factors of their populations of origin developed clinal trends (monotonic increas-
ing or decreasing trends). These authors indicated that clinal trends can point an adaptive value of regressed
traits due to population differentiation driven by local selective pressures that act orderly along the analyzed
environmental gradient. Here, we detected that over half of the analyzed traits correlated significantly with at
least seven climate factors; this suggest that in the analyzed environmental gradient climate factors can explain
a good portion of the phenotypic-genetic variance detected, which in turn might have and adaptive value for the
described traits.
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We also detected traits that did not show statistical significance in its linear regressions with climate variation,
some of these traits were directly associated to fitness, as number of fruits per plant and number of seeds per plant.
However, they showed marked phenotypic and genetic differentiation. These patterns of phenotypic differentiation
may indicate that other factors distinct from climate may drive phenotypic-genetic differentiation among Capsicum
annuum. annuum var. glabriusculum populations, these could include specific biotic factors (Pan ef al. 2012) or the
particular interplay between biotic and abiotic factors in each population (Hulshof et al. 2013), which eventually
might produce particular selection regimes (non-clinal) and lead populations to a local optimum. Other possibility
could be genetic drift, since it causes random changes, independent from local selection conditions (Schmid & Guil-
laume 2017).

However, the results found here may be taken conservatively since produced phenotypic traits were generated
upon F1 generation plants, where the expression of recessive alleles (i. e. phenotypic traits) might be hidden by
dominant homozygosity. Nevertheless, the large genetic reservoir depicted here among and within populations of
Capsicum annuum var. glabriusculum might constitute a potential solution to environmental deterioration if habitat
fragmentation does not cut off genetic flow or the rate of environmental change exceeds the wild populations capac-
ity to evolve. So, the detected genetic variation of Capsicum annuum var. glabriusculum is of paramount relevance
for its inherent value as a natural genetic resource and as a foundation in the conservation, management and restora-
tion of its populations (Bucharova et al. 2017).

In the climate change scenario, considering the significance of the covariance between the environmental and phe-
notypic variation of traits linked to fitness, it suggests that Capsicum annuum var. glabriusculum populations could
be affected in different proportions by temperature increase and rising irregularities in rainfall patterns. As a potential
example, days to flowering could advance its onset in response to increasing temperatures, generating asynchronies
with subsequent phenological stages (Parmesan 2006). van Dijk and Hautekéete (2014), found evidence of genetic
changes for an earlier flowering in Beta vulgaris, produced probably by rapid micro-evolutionary changes or due to
genetic flow through adjacent populations. In recent decades, climate change has been demonstrated as a result of
human activities, it has already changed distribution and abundance of species (Hu et al. 2010) and this trend will go
on (Anderson et al. 2009).

The current study illustrated that sampled populations of Capsicum annuum var. glabriusculum from the three
regions showed a wide phenotypic differentiation and genetic variation. Overall, reproductive traits showed the larg-
est phenotypic variation. A considerable amount of genetic variation preceded the phenotypic variation, most of it
occurred among populations, but genetic variation among regions and within populations were also considerable.
Amounts of phenotypic and genetic variation varied among traits.

Climate variation explained significantly a large proportion of the phenotypic differentiation across the sampled
range. Contrasting patterns in allocation of resources were detected. A shorter and irregular reproductive season due
to aridity and marked seasonality in the Northwest region may induce a conservative vegetative and foliar growth;
occurring the opposite in the southeast region. South populations developed intermediate mean phenotypic traits.
These responses had a strong genetic base, which in turn can provide Capsicum annuum var. glabrisuculum popula-
tions a solid support to cope with increasing environmental heterogeneity in the face of climate change and other
risks of habitat deterioration. However, genetic differentiation among regions and populations may delineate stan-
dards of management of this valuable natural genetic resource.
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