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ABSTRACT
The present manuscript reviews the findings of 

different research studies that evaluate the use of fungal 
fermentation-assisted extraction, in solid-state fermentation 
(SSF) and submerged culture fermentation (SCF) with agro-
industrial residues as substrates, to obtain phenolic com-
pounds with possible applications as food additives. Some 
agro-industrial by-products (peels, pulps and seeds) are 
an important source of phenolic acids such as p-coumaric, 
p-hydroxybenzoic, chlorogenic, cinnamic, ferulic, gallic, 
protocatechuic, rosmarinic, syringic, and vanillic acids and 
flavonoids (apigenin, chrysin, (+)-catechin, kaempferol, myri-
cetin, quercetin, rutin, hesperetin, and naringin). In addition, 
the utilization of these by-products as substrates in SSF and 
SCF allowed obtaining phenolic compounds with antioxi-
dant and antimicrobial activities. Thus, fungal fermentation-
assisted extraction provides a potential alternative to obtain 
natural additives for meat and meat products industry. 
Keywords: Mushroom, Fermentation, Compound extraction, 
Food additives

RESUMEN
El presente manuscrito revisa los hallazgos de di-

ferentes estudios de investigación que evalúan el uso de 
la extracción-asistida por fermentación fúngica, en medio 
sólido (SSF) y cultivo sumergido (SCF) con subproductos 
agroindustriales como sustratos, para obtener compues-
tos fenólicos con posible uso como aditivos alimentarios. 
Algunos subproductos agroindustriales (pulpas, cáscaras 
y semillas) son una fuente importante de ácidos fenólicos 
como p-cumárico, p-hidroxibenzoico, clorogénico, cinámico, 
ferúlico, gálico, protocatecuico, rosmarínico, siríngico, y 
vanílico, y de flavonoides (apigenina, crisina, (+)-catequina, 
kaempferol, miricetina, quercetina, rutina, hesperetina y na-
ringina). Además, la utilización de estos subproductos como 
sustratos en SSF y SCF permitió obtener compuestos fenóli-
cos con actividad antioxidante y antimicrobiana. Por lo que, 

la extracción-asistida por fermentación fúngica proporciona 
una alternativa potencial para obtener aditivos naturales 
para la industria de la carne y productos cárnicos.
Palabras clave: Hongos, Fermentación, Extracción de com-
puestos, Aditivos alimentarios.

INTRODUCTION
Meat and meat products are considered an important 

source of many essential nutrients in the human diet, includ-
ing lipids such as fatty acids (mono- or polyunsaturated) 
and proteins rich in essential amino acids such as isoleucine, 
leucine, lysine, methionine, phenylalanine, threonine, and 
valine, which are highly susceptible to oxidation processes 
(Hammad et al., 2020). Oxidative deterioration of lipids and 
proteins, and microbial growth are considered the main 
causes of quality loss in any type of meat or meat products 
leading to organoleptic and technological changes such as 
color, odor, flavor, appearance, and texture, as well as water 
holding capacity and water loss by cooking. In addition, both 
factors promote nutrient losses and toxic compound forma-
tion (Jiang and Xiong, 2016; Aziz and Karboune, 2018). How-
ever, the uncontrolled uses of antioxidant and antimicrobial 
additives to preserve meat and meat products is a practice 
that generate negative effects on consumer health; thus, 
strict regulations for their controlled used in foods has been 
promoted (Poljsak et al., 2013; Aziz and Karboune, 2018).

In previous investigations to reduce lipid and protein 
oxidation and microbial growth in meat and meat products, 
extracts rich in phytochemicals have been obtained from 
plants, herbs, and species, and used instead of synthetic pre-
servatives (Jiang and Xiong, 2016). In addition, the reuse of 
agro-industrial by-products such as peel pomace and seeds 
offers an alternative source of additives with antioxidant and 
antimicrobial properties (Hernández-Carlos et al., 2019).

Moreover, several extraction methods have been 
developed to obtain bioactive compounds from agro-in-
dustrial by-products, such as conventional (maceration and 
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hydrodistillation extraction) and unconventional (ultrasonic, 
microwave, supercritical fluid, and enzyme extraction) meth-
ods. These extraction methods in combination with a solvent 
system of different polarities, including water, acetone, eth-
anol, methanol, hexane, and petroleum ether, improve the 
types of compounds that can be extracted (Azmir et al., 2013; 
Hernández-Carlos et al., 2019). However, biotechnological 
methods such as fungal fermentation-assisted extraction 
(SSF and SCF) has been suggested as an additional alter-
native to obtain bioactive compounds from agro-industrial 
by-products (Papaspyridi et al., 2012; Santana-Méridas et al., 
2012). In this review, a general description of the uses of fun-
gal fermentation-assisted extraction (SSF and SCF) to obtain 
phenolic compounds from agro-industrial by-products, and 
their possible applications as food additives are discussed.

Phenolic Compounds from Agro-Industrial By-Products
The definition of food losses and waste could be 

associated with a reduction in the availability of food, a de-
crease in nutritional value and a deterioration in food safety, 
involving many players in food supply chains, such as farmers 
and processors. Furthermore, food losses could occur by ac-
cidental causes (intrinsic or extrinsic factors), and food waste 
occurs for reasons of negligence (FAO, 2017). The Mexican 
normative (NOM-251-SSA1-2009) defines food residue/by-
product as ‘waste from processed raw material’. In this regard, 
the food processing industry generates large amounts of by-
products, including pomace, husks, seeds, leaves, stems, and 
wood (Peanparkdee and Iwamoto, 2019; Rico et al., 2020). In 
some cases, these by-products are treated to decrease nega-
tive environmental impact, making them a useful product 
with the added benefits of solving a problem and generating 
additional income (Rico et al., 2020).

Agro-industrial by-products are commonly disposed 
of, used on-site or used off-site or after pre-treatment. These 
can be pre-treated by physicochemical (combustion, pyroly-
sis, and gasification) or biochemical (anaerobic digestion and 
fermentation) processes, to generate biodiesel and electrici-
ty or bio-alcohol and biogas, respectively. In addition, agro-
industrial by-products can be pre-treated by bio-reduction 
to produce animal feed, and by chemical modifications, and 
by SSF and SCF to obtain bioactive compounds (Santana-
Méridas et al., 2012). Thus, agro-industrial by-products are 
considered a rich source of bioactive compounds, including 
alkaloids, terpenoids, saponins, essential amino acids and 
fatty acids, minerals, carotenoids, vitamins, polysaccharides, 
and phenolic compounds like phenolic acids, and flavonoids 
(Wijngaard et al., 2012; Azmir et al., 2013; Peanparkdee and 
Iwamoto, 2019; Rico et al., 2020). 

The major by-products of fruit processing are peel 
and seed, and in a minor proportion, pulp (Santana-Méridas 
et al., 2012). However, the extraction, identification and 
uses of phenolic compounds are widely investigated in 
commercial sectors such as the pharmaceutical, chemical, 
and food industries (Azmir et al., 2013; Santana-Méridas et 
al., 2012). In this context, table 1 compiled literature reports 

of these residues as an important source of phenolic acids, 
including peel (apple, potato, and tomato), pulp (avocado) 
and seeds (avocado, citrus, and tomato). In addition, table 2 
demonstrate that by-products also are a significant source of 
flavones, flavonols, and flavanones compounds. It has been 
reported that phenolic compounds are present ubiquitously 
in all parts of plants such as wood, leaves, roots, and fruits 
(Vermerris and Nicholson, 2008; Rico et al., 2020). In this re-
gard, these compounds are commonly trapped or bound to 
the dietary fiber of plant material, through hydrogen bonds 
between the phenol hydroxyl group (HO•) of the phenolic 
component, hydrophobic interactions, and covalent bonds 
like ester bond between phenolic acids and polysaccharides 
(Quirós-Sauceda et al., 2011).

Chemical structure plays a key role in the bioactivity 
of phenolic compounds, which have been associated with 
several key factors such as OH-group location in the benze-
ne ring, the substitution patterns by the OH-group (ortho-, 
meta-, para-, meta-tri-, vic-tri-), the presence of glycosylation, 
and double bounds in the benzene structure (Vermerris and 
Nicholson, 2008; Rico et al., 2020). However, the types of phe-
nolic compounds obtained, and their bioactivity are closely 
associated with the extraction method employed (Azmir et 
al., 2013).

Extraction Methods
Phenolic compounds are widely found as a mixture of 

different components in a solid, and for extraction that are 
dispersed in a liquid phase, which allows their separation 
from the solid phase. This process is known as liquid-solid 
extraction, and to increase the diffusion rate of the solvent 
in the solute and yields, it is necessary to dry and reduce the 
particle size of the solid or plant material (fruits, leaves, stem, 
roots, wood, flowers or seeds) (Pinelo et al., 2007; Pronyk and 
Mazza, 2009; Orphanides et al., 2013). 

Furthermore, several methods are frequently em-
ployed to obtained phenolic compounds, including rustic 
methods (extraction by cooking, percolation, and infusion), 
conventional methods (extraction by maceration, Soxhlet, 
and hydrodistillation) and unconventional methods, inclu-
ding enzymes-assisted extraction, microwave-assisted ex-
traction, pressurized liquid-assisted extraction, supercritical 
fluids-assisted extraction, and ultrasound-assisted extraction 
(Wijngaard et al., 2012; Azmir et al., 2013). However, the 
solvent type, solvent-solid ratio, number of extractions, 
pH, temperature, time, vacuum and fermentation process, 
among other conditions used, influences phenolic yields 
(Spigno et al., 2007; Ramírez-Rojo et al., 2018).

Fungal Culture Fermentation
SSF involves the fermentation of solids or semi-solids 

in the absence of water, where the substrate used to be the 
source of moisture to support microbial growth (Pandey, 
2003; Castañeda-Casasola et al., 2018), while in SCF, microor-
ganisms grow submerged with an excess of water and limi-
ted oxygen (Castañeda-Casasola et al., 2018). In this context, 
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Table 1. Basic structure of phenolic acids identified in some agro-industrial by-products.
Tabla 1. Estructura básica de ácidos fenólicos identificados en algunos subproductos agroindustriales.

Basic structure

Phenolic acids identified

Compound R1 R2 R3 -COOH Source Reference

p-coumaric acid H OH H * Potato peel Onyeneho and Hettiarachchy (1993)

Apple peel Łata et al. (2009)

Tomato peel and seed Valdez-Morales et al. (2014)

p-hydroxybenzoic acid OH H H * Potato peel Onyeneho and Hettiarachchy (1993)

Avocado peel, pulp and seed Rodríguez-Carpena et al. (2011)

Citrus seed Moulehi et al. (2012)

Caffeic acid OH OH H * Potato peel Onyeneho and Hettiarachchy (1993)

Apple peel Łata et al. (2009)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Chlorogenic acid OH OH H Esterified Potato peel Onyeneho and Hettiarachchy (1993)

Apple peel Łata et al. (2009)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Cinnamic acid H H H * Potato peel Onyeneho and Hettiarachchy (1993)

Tomato peel and seed Valdez-Morales et al. (2014)

Ferulic acid OCH3 OH H * Potato peel Onyeneho and Hettiarachchy (1993)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Gallic acid OH OH OH * Potato peel Onyeneho and Hettiarachchy (1993)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Protocatechuic acid H OH OH * Potato peel Onyeneho and Hettiarachchy (1993)

Rosmarinic acid OH OH H Esterified Citrus seed Moulehi et al. (2012)

Syringic acid OCH3 OH OCH3 * Potato peel Onyeneho and Hettiarachchy (1993)

Citrus seed Moulehi et al. (2012)

Vanillic acid H OH OCH3 * Potato peel Onyeneho and Hettiarachchy (1993)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)
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Table 2. Basic structure of flavonoids identified in some agro-industrial by-products.
Tabla 2. Estructura básica de algunos flavonoides identificados en subproductos agroindustriales.

Basic structure of flavonoids

Flavonoids identified

Compound R3 R5 R7 R2’ R3’ R4’ R5’ C2-C3 Source Reference

Flavones

Apigenin H OH OH H H OH H + Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Chrysin H OH OH H H H H + Apple peel Balasuriya and Rupasinghe (2012)

Flavanols

(+) catechin OH OH OH H H OH OH - Apple peel Łata et al. (2009)

Avocado peel, pulp and seed Rodríguez-Carpena et al. (2011)

Citrus seed Moulehi et al. (2012)

Kaempferol OH OH OH H H OH H + Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Myricetin OH OH OH H OH OH OH + Tomato peel and seed Valdez-Morales et al. (2014)

Quercetin OH OH OH H OH OH H + Apple peel Łata et al. (2009)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Rutin Gly OH OH H OH OH H + Apple peel Łata et al. (2009)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

Flavanones

Hesperetin H OH OH H OH OCH3 H - Citrus seed Moulehi et al. (2012)

Naringin H OH OH H H OH H - Apple peel Balasuriya and Rupasinghe (2012)

Citrus seed Moulehi et al. (2012)

Tomato peel and seed Valdez-Morales et al. (2014)

(+) double; (-) single. 

fungal mycelia is widely produced in SSF using substrates 
such as grains, sawdust or wood from different plant species 
(Yang and Liau, 1998). Nevertheless, it has been reported 
that SCF improves potential advantage than SSF, because 
inoculums can be uniformly dispersed in the substrate, and 
the time and/or harvest speed are reduced (Yang and Liau, 
1998; Xu and Zhu, 2011; Xu et al., 2015). 

Moreover, fungal mycelia production during the 
fermentation process varies extensively, depending on the 

species of fungus and environmental or culture conditions 
used (temperature, initial pH, surface-aeration, aeration 
rate, rotating speed, and stimulatory agents, among others), 
which consequently affect phytochemical extraction from 
the substrate (Yang and Liau, 1998; Xu and Zhu, 2011; Xu et 
al., 2015).

Phenolic Compounds Extraction by Fungal Fermentation
In relation to the aforementioned, the use of agro-in-
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dustrial by-products as substrates in combination with 
fungal fermentation-assisted extraction (SSF and SCF), are 
considered an alternative method for the extraction of 
phytochemicals, including triterpenoids, polysaccharides, 
and phenolic compounds, which could be obtained through 
agro-industrial by-products (Xu and Zhu, 2011; Xu et al., 
2014; Xu et al., 2015; Dey et al., 2016).

In this context, the extraction of phenolic compounds 
and triterpenoids from citrus peel like pomelo, lemon, 
orange, and tangerine, through SCF (25 °C at 100 rpm, 28 
d) with Antrodia cinnamomea has been reported (Ma et al., 
2014). Also, polysaccharide and triterpenoid extraction from 
citrus peels, including pomelo, lemon, orange, and grape-
fruit, using SCF (25 °C at 100 rpm, 28 d) with A. cinnamomea 

was also demonstrated (Yang et al., 2012). Xu and Zhu (2011), 
reported the extraction of phenolic compounds with anti-
oxidant properties (DPPH• and hydroxyl scavenging activity) 
from ground corn stover by SCF (28 °C at 150 rpm, 12 d) us-
ing Inonotus obliquus. In addition, Vattem and Shetty (2002) 
demonstrated the extraction of phenolic compounds such as 
ellagic acid, resveratrol and rosmarinic acid with antioxidant 
properties (antiradical DPPH• and β-carotene antioxidant 
protection factor) from cranberry pomace by SSF (28 °C, 16 
d) using Rhizopus oligosporus.

Additionally, table 3 compile literature reports 
focused on the extraction of phenolic compounds with an-
tioxidant and antibacterial properties, from agro-industrial 
by-products using fungal fermentation-assisted extraction 

Table 3. Obtaining phenolic compounds from agro-industrial by-products through fungal fermentation-assisted extraction.
Tabla 3. Obtención de compuestos fenólicos de subproductos agroindustriales mediante extracción-asistida por fermentación fúngica.

Substrate Fungi Fermentation Relevant results Reference

Black rice bran Aspergillus awam-
ori and Aspergillus 

oryzae

SSF ‘Fungal fermentation effect on phenolic compounds’
▼ Total phenolic and anthocyanin content, in the order A. awamori > A. oryzae
▲ Total phenolic content obtained by decomposing anthocyanin content 
▲ Protocatechuic, OH-benzoic, vanillic, caffeic, p-coumaric and ferulic acids

‘Fungal fermentation effect on bioactivity’
▲ DPPH• radical-scavenging activity

Shin et al. 
(2019)

Peanut press cake Aspergillus 
awamori

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic, flavonoid and tannin content

‘Fungal fermentation effect on bioactivity’
▲ ABTS•+ and DPPH• radical-scavenging activity
▲ Metal chelating activity

Sadh et al. 
(2018)

Rice bran extract Aspergillus oryzae 
and Rhizopus 

oryzae

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Ferulic, caffeic, and protocatechuic acids, by A. oryzae
▲ Sinapic, vanillic, caffeic, syringic, protocatechuic, and 4-hydroxybenzoic 

acids, by R. oryzae

‘Fungal fermentation effect on bioactivity’
▲ FRAP, by both fungi
● DPPH• radical-scavenging activity

Razak et al. 
(2017)

Corncob, pea 
pod, rice straw, 
sugarcane ba-
gasse, and wheat 
straw

Aspergillus terreus 
and Penicillium 

citrinum

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic content, by both fungi

‘Fungal fermentation effect on bioactivity’
▲DPPH• and NO• radical-scavenging activity, by both fungi
▲ Fe2+ scavenging activity, by both fungi
▲ FRAP, by both fungi

Chandra and 
Arora (2016)

Plum fruit Aspergillus niger 
and Rhizopus 

oligosporus

SSF Plum pomace

‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic and flavonoid content, in a similar manner for both fungi
▲ Chlorogenic acid, isoquercetin, and rutin
▼ neochlorogenic acid, isorhamnetin-3-galactoside, Isorha-3-gluc, isorhamne-

tin-3-glucoside, cyaniding-3-glucoside, and cyaniding-3-rutinoside
● Quercetin-3-galactoside

‘Fungal fermentation effect on bioactivity’
▲ DPPH• radical-scavenging activity, in a similar manner for both fungi

Waste from plum brandy production

‘Fungal fermentation effect on phenolic compounds’
▲ Total phenolic and flavonoid content, in a similar manner for both fungi
▲ Neochlorogenic acid, chlorogenic acid, isoquercitrin, quercetin-3-galacto-

side, and rutin
▼ Isorhamnetin-3-galactoside
● Isorhamnetin-3-glucoside, and cyaniding-3-glucoside and cyaniding-3-ruti-

noside

‘Fungal fermentation effect on bioactivity’
▲ DPPH• radical-scavenging activity, in a similar manner for both fungi

Dulf et al. 
(2016)
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Substrate Fungi Fermentation Relevant results Reference

Apple pomace Rhizopus oryzae SSF and SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Fumaric acid production, by both culture methods

Das et al. 
(2015)

Orchid Fusarium avenace-
um and Fusarium 

oxysporum

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic content

‘Fungal fermentation effect on bioactivity’
▲ DPPH• and ABTS•+ radical-scavenging activity, as well as reducing power
▲ Inhibition of Staphylococcus aureus and Bacillus subtilis growth

Dong et al. 
(2015)

Peanut shell Inonotus obliquus SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Phenolic compounds such as epigallocatechin-3-gallate, epicatechin-3-gallate, 

phelligridin G, davallialactone, and inoscavin B
▼ Phenolic acid, including gallic and ferulic acids

‘Fungal fermentation effect on bioactivity’
▲ DPPH• and •OH radical-scavenging activity

Xu et al. 
(2014)

Algae Candida utilis SCF ‘Fungal fermentation effect on bioactivity’
▲ Inhibition of methicillin-resistant Staphylococcus aureus 

Eom et al. 
(2013)

Herbal residues Aspergillus oryzae SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Gallic acid formation

‘Fungal fermentation effect on bioactivity’
▲ DPPH• radical-scavenging activity and reducing power

▲ Inhibition of Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and 
Escherichia coli

Wen et al. 
(2013)

Sugarcane ba-
gasse

Inonotus obliquus SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Phenolic compounds such as epicatechin-3-gallate, epigallocatechin-3-gallate, 

and phelligridin G

‘Fungal fermentation effect on bioactivity’
▲ DPPH• and •OH radical-scavenging activity

Zhu and Xu 
(2013)

Coffee silver-
skin and coffee 
grounds

Aspergillus ustus, 
Aspergillus niger, 

Neurospora crassa, 
and Penicillium 
purpurogenum

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic content

Machado et 
al. (2012)

Pineapple and 
guava

Rhizopus oligos-
porus

SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Total phenolic content 

‘Fungal fermentation effect on bioactivity’
▼ DPPH• radical-scavenging activity

Sousa and 
Correia (2012)

Corn cob Yarrowia lipolytica SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Ferulic acid production

Huang et al. 
(2011)

Cashew husk Aspergillus oryzae SSF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Gallic acid production

Lokeshwari 
and Reddy 

(2010)

Citrus peel Cordyceps sinensis SCF ▲ Total phenolic and flavonoids content
▲ ABTS•+ radical-scavenging activity 

Choi et al. 
(2010)

Wheat bran Agrocybe chaxin-
gu, Auricularia 
auricula-judae, 

Cordyceps militaris, 
Hericium erina-

ceus, and Pleurotus 
ostreatus

SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Ferulic acid production, in the order H. erinaceus > P. ostreatus > C. militaris 

Xie et al. 2010

Valonia acorns 
extract

Aspergillus oryzae 
and Trichoderma 

reesei

SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Ellagic acid production, in the order A. oryzae > T. reesei

Huang et al. 
(2007)

Shrimp and crab 
shell powder

Monascus purpu-
reus

SCF ‘Fungal fermentation effect on bioactivity’
▲ Antimicrobial effect against Bacillus subtilis, Bacillus cereus, Pseudomonas aeru-

ginosa, Staphylococcus aureus and Escherichia coli

Wang et al. 
(2002)

Tannic acid Aspergillus 
awamori

SCF ‘Fungal fermentation effect on phenolic compounds’ 
▲ Gallic acid production

Seth and 
Chand (2000)

(▲), significant increase with respect to the control group; (▼), significant reduction with respect to the control group; (●), without significant differences 
with respect to the control group.
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(SSF and SCF). Mycelial growth during fungal fermentation 
depends on the nutrient supply (nitrogen, phosphorus and 
carbon) and any type of energy source or substrate, as well 
as substrate digestibility, which are essential for extraction of 
bioactive secondary metabolites (Hölker et al., 2004). 

Likewise, an increase in enzyme production (lipases, 
xylanase, pectinase, proteases, cellulolytic, and ligninolytic 
enzymes) during fungal fermentation has been demon-
strated (Hölker et al., 2004; Sadh et al., 2018). The enzymatic 
hydrolysis produced during fungal fermentation increase 
the extraction of phenolic compounds, such as p-coumaric, 
caffeic, chlorogenic, ferulic, protocatechuic, sinapic, syringic, 
and vanillic acids, quercetin, and rutin. Also, improve antioxi-
dant activity like antiradical (DPPH• and ABTS•+ activity), che-
lating metal properties, ferric reducing antioxidant power, 
and nitric oxide chelating properties. As well as antimicrobial 
activity by microbial growth and foodborne pathogens re-
duction (Hölker et al., 2004; Das et al., 2015; Dong et al., 2015; 
Dulf et al., 2016; Razak et al., 2017; Sadh et al., 2018; Shin et 
al., 2019). Thus, the enzymatic hydrolysis produced during 
fungal fermentation appears to be an attractive strategy to 
extract phenolic compounds with potential uses as food 
additives (Papaspyridi et al., 2012).

Phenolic Compounds as Possible Meat and Meat Product 
Additives

The NOM-213-SSA1-2002 define a ‘food additive’ as 
‘those substances, which added directly to food and beverages 
during their elaboration, provide or intensify aroma, color, 
and flavor, to improve stability and conservation’. Also, the 
FDA (2008) indicate that a ‘Food Additive’ is ‘any substance 
that when use directly or indirectly, become a component 
or otherwise affect the characteristics of any food, including 
any substance intended for use in packaging, production, 
manufacturing, processing, preparation, treatment, 
transportation or storage of food; and including any source 
of radiation intended for such use’. The Codex Alimentarius 
(2017) defined it as ‘any substance that, regardless of its 
nutritional value, is intentionally added to a food in controlled 
quantities for technological purposes’.

Moreover, in the meat and meat products industry, ad-
ditives are widely employed for preservative purposes (i.e., as 
antioxidants and antimicrobials). An antioxidant additive, is 
defined as a ‘substance added to foods to prevent the oxygen 

present in the air from causing undesirable changes in flavor 
and color’ (USDA, 2015). In another context, an antimicrobial 
additive, is defined as ‘a substance that meets the definition 
of food additive and is used to control microorganisms such 
as bacteria, viruses, fungi, among others, in food or food 
contact items’ (FDA, 2008).

The following is a list of additives commonly used in 
meat and meat products as preservatives are: ɑ-tocopherol 
(E307), acetic acid (E260), ascorbic acid (E300), citric acid 
(E330), erythorbic acid (E315), fumaric acid (E297), lactic 
acid (E270), sorbic acid (E200), tartaric acid (E334), sodium 
ascorbate (E301), calcium ascorbate (E302), sodium benzoate 
(E211), butylhydroxyanisole (E320), and butylhydroxytolu-
ene (E321). Also, calcium carbonate (E170i), sodium citrate 
(E330), potassium citrate (E332), tricalcium citrate (E333iii), 
trisodium citrate (E331iii), isopropyl citrate (E384), sodium 
diacetate (E262ii), sodium erythorbate (E316), ethyl lauroyl 
arginate (E243), propyl gallate (E310), nitrite/sodium nitrate 
(E250 and E252), tert-butylhydroquinone (E319), potassium 
sorbate (E202), among others (NOM-122-SSA1-1994; FDA, 
2004; European Commission, 2014; FAO, 2018). The preserva-
tive compounds mentioned above have phenolic groups in 
their structure, which in phenolic compounds (phenolic acid 
and flavonoids) are widely associated with their antioxidant 
and antimicrobial activity (Sova, 2012).

Moreover, extensive research has demonstrated that 
lipid oxidation and microbial growth, are the main factors 
involved in the quality loss of raw and cooked meat products. 
These factors lead to the formation of some compounds that 
affect sensory attributes, including changes in texture, odor, 
flavor, and color, which consequently have an adverse effect 
on meat acceptability and meat purchase intention (Faust-
mant et al., 2010; Aziz and Karboune, 2018). Therefore, there 
have been efforts to obtain antioxidant and antimicrobial 
compounds from natural sources, including agro-industrial 
by-products (Faustmant et al., 2010; Jiang and Xiong, 2016). 

Table 4 shows the possible uses of phenolic com-
pounds, obtained by SSF and SCF using agro-industrial resi-
dues as substrate, including as meat and meat product addi-
tives. In this context, it has been demonstrated that phenolic 
compounds and flavonoids can preserve raw and cooked 
meat and meat products from different species (beef, camel, 
chicken, and pork), against undesirable changes caused by 
lipid oxidation and microbial growth during refrigerated 

Table 4. Uses of phenolic compounds as additives for meat and meat products.
Tabla 4. Usos de compuestos fenólicos como aditivos para carne y productos cárnicos.

As an antioxidant additive

Phenolic compounds Conditions Relevant results References

Flavonoids: catechin

Phenolic acids: tannic, caffeic, 
and gallic

Product: Minced camel 
meat
Storage: 4 °C for 9 days
Addition level: 200 ppm

▲ Inhibition of lipid oxidation (catechin 72.7%, as well as tannic 95.5%, 
caffeic 80%, and gallic acids 70% approximately)

▲ Red color, 1 point in sensory score for all phenolic compounds

Maqsoo et al. (2015)

Phenolic acids: caffeic, t-cin-
namic, p-coumaric, ferulic, gallic, 
p-hydroxybenzoic, gentisic, 
sinapic, and syringic

Product: Beef 
Storage: 4 °C for 6 days
Addition level: 0.05 
mmol/kg

▲ Inhibition of lipid oxidation precooked beef in the order sinapic acid 
> caffeic acid > ferulic acid > gentisic acid > syringic acid > t-cinnamic 
acid > p-coumaric acid > p-hydroxybenzoic acid

Brettonnet et al. 
(2010)
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Phenolic compounds Conditions Relevant results References

Flavonoids: quercetin and rutin Product: beef patties
Storage: 2 °C for 11 days
Addition level: 1 and 
5 mM

▼ L* values in concentration dependence (quercetin 1.9%; rutin 3.0%)
▼ C values in concentration dependence (quercetin 12.3%; rutin 16.6%)
▲ h values in concentration dependence (quercetin 8.9%; rutin 16.4%)
▲ Inhibition of metmyoglobin formation in concentration dependence  

(quercetin 47.0% approximately; rutin 66.0% approximately)
▲ Inhibition of lipid oxidation in concentration dependence (quercetin 

14.3%)
▼ Inhibition of lipid oxidation (rutin -23.8%)

Bekhit et al. (2004)

Flavonoids: quercetin Product: cook-chill 
chicken
Storage: 5 °C for 5 days
Addition level: 1.6% and 
3.0%

▲ Inhibition of lipid oxidation (83.9% and 97.3% in concentration 
dependence)

Karastogiannidou 
(1999)

Flavonoids: (-)-epicatechin 
(EC), (-)-epigallocatechin (EGC), 
(-)-epicatechin gallate (ECG), 
and (-)-epigallocatechin gallate 
(EGCG)

Product: ground white 
muscle of mackerel 
Storage: cooked at 75 
°C, 4 °C for 7 days
Addition level: EC and 
EGC (200 mg/kg). ECG 
and EGCG (300 mg/kg)

▲ Inhibition of lipid oxidation (EC 40.5%; EGC, ECG, and EGCG 65.5%) He and Shahidi 
(1997)

Flavonoids: kaempferol, morin, 
myricetin, naringenin, naringin, 
quercetin, and rutin

Phenolic acids: gallic, caffeic, 
coumaric, ferulic, syringic, 
vanillic, sinapic, chlorogenic, 
and tannic 

Product: cooked ground 
pork
Storage: 4 °C for 4 weeks
Addition level: 30 and 
200 ppm

▲ Inhibition of lipid oxidation in concentration dependence

Kaempferol (95.3%), morin (96.4%), myricetin (98.7%), naringenin 
(3.3%), naringin (2.3%), quercetin (98.9%), rutin (33.0%), as well as 
gallic (73.5%), caffeic (69.3%), coumaric (54.3%), ferulic (56.6%), syrin-
gic (55.3%), vanillic (23.6%), sinapic (38.5%), chlorogenic (35.0%), and 
tannic (98.9%) acids

Shahidi et al. (1993)

Flavonoids: kaempferol, morin, 
myricetin, naringenin, naringin, 
quercetin, and rutin

Phenolic acids: ellagic, gallic, 
vanillic, syringic, and tannic 

Product: pork model 
system, cooked at 75 °C
Storage: 4 °C for 3 weeks
Addition level: 200 ppm

▲ Inhibition of lipid oxidation

Kaempferol (41%), morin (30%), myricetin (1.0%), naringenin (4.7%), 
naringin (4.7%), quercetin (97%), and rutin (28.4%), as well as ellagic 
(99.0%), gallic (44.7%), vanillic (21.3%), syringic (39.6%), and tannic 
(57.0%) acids

Shahidi et al. (1992)

As an antimicrobial additive

Phenolic compounds Conditions Relevant results References

Flavonoids: catechin

Phenolic acids: tannic, caffeic, 
and gallic 

Product: Minced camel 
meat
Storage: 4 °C for 9 days
Addition level: 200 ppm

▲ Inhibition of mesophilic bacteria count, 1 log approximately (catechin 
and tannic acids)

▲ Inhibition of psychrotrophic bacteria count, 1 log approximately (cate-
chin, tannic, and gallic acids)

Maqsoo et al. (2015)

Flavonoids: rutin

Phenolic acids: caffeic acid and 
p-coumaric 

Product: chicken soup
Storage: 4 and 25 °C 
for 48 h
Addition level: 0.2 mg/
mL

▲ Inhibition of Staphylococcus aureus growth (100% by all phenolic 
compounds)

Stojković et al. 
(2013)

Phenolic acids: benzoic Product: Raw and 
cooked chicken meat
Storage: 4 and 20 °C for 
14 days
Addition level: 5000 
ppm

▲ Inhibition of Listeria monocytogenes and growth in raw and cooked 
meat (1.2 and 3.5 log, respectively)

▲ Inhibition of Salmonella typhimurium and growth in raw and cooked 
meat (1.2 log by both)

Ravichandran et al. 
(2011)

Flavonoids: Mixture of querce-
tin and rutin

Phenolic acids: 
Mixture of gallic and caffeic

Mixture of gallic and protocat-
echuic 

Product: meat model 
system
Storage: 4 °C for 24 h 
days
Addition level: 100 and 
200 mg

▲ Inhibition of Listeria monocytogenes growth in concentration depen-
dence (mixture quercetin and rutin 6.7 log; mixture gallic and caffeic 
acids 6.3 log; mixture gallic and protocatechuic acids 3.7 log)

Rodríguez-Vaquero 
et al. (2011)

Phenolic acids: carvacrol and 
thymol 

Product: bovine meat 
stake
Storage: 7 °C for 96 h
Addition level: <1 µL/mL

▲ Inhibition of Staphylococcus aureus growth of carvacrol and thymol in 
combination with organic acids (lactic and acetic)

De Oliviera et al. 
(2010)

Flavonoids: Mixture of querce-
tin and rutin

Phenolic acids: 
Mixture of gallic and caffeic 

Mixture of gallic and protocat-
echuic

Product: meat model 
system
Storage: 20 °C for 14 
days
Addition level: 100 and 
200 mg

▲ Concentration- and temperature-dependent inhibition of Escherichia 
coli growth (mixture of quercetin and rutin 100%; mixture of gallic and 
caffeic acids 100%; mixture of gallic and protocatechuic acids 50% 
approximately)

Rodríguez-Vaquero 
et al. (2010)

(▲), significant increase with respect to the control group; (▼), significant reduction with respect to the control group.
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storage (Stojković et al., 2013; Maqsoo et al., 2015). Further-
more, phenolic compounds can act through two pathways: 
(1) by breaking chain reactions triggered by free radicals, 
which implies hydrogen atom transfer (HAT), then electron 
transfer followed by a proton transfer mechanism (SET-PT) 
and sequential proton-loss electron-transfer (SPLET), and 
(2) by reducing metals such as copper (Cu2+) and iron (Fe3+) 
(Marković et al., 2012). Additionally, phenolic compounds 
can act against nucleic acid and protein synthesis and alter 
the components of cellular membranes (Cushnie and Lamb, 
2005).

CONCLUSION
The agro-industrial by-products are an important 

source of phenolic compounds, including phenolic acids and 
flavonoids. The uses of agro-industrial residues as substrates 
(seeds, pulps, and peels) during fungal fermentation-assisted 
extraction (SSF and SCF), can be used as an alternative or 
complementary strategy to obtain phenolic compounds like 
rustic, conventional and unconventional extraction methods. 
These compounds could be use as antioxidant and antimi-
crobial additives to extend the shelf life of raw and cooked 
meat and meat products from different species (beef, camel, 
chicken, and pork) during refrigerated storage.
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