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RESUMEN

Durante los ultimos 20 afos, el calculo de orden arbitrario (mejor conocido en la literatura
como cdlculo de orden fraccionario) se ha desarrollado de manera impresionante. Sin embar-
go, en México no hay grupos consolidados en el estudio y su aplicacion. El objetivo de este
trabajo es dar a conocer los origenes y el desarrollo del calculo fraccionario, con la finalidad
de motivar a los futuros investigadores a incursionar en esta area tan interesante del analisis
matematico no convencional. Finalmente, como ejemplo, se analiza el movimiento vertical
de una particula en el seno de un medio donde la resistencia es proporcional a la velocidad.

ABSTRACT

Over the last 20 years arbitrary order calculus (better known in the literature as fractional
calculus) has been developed impressively. However, in Mexico there are no solid groups
devoted to its study and applications. The objetive of this work is to present the origins and
development of fractional calculus, in order to encourage future researchers to venture into
this very interesting area of unconventional mathematical analysis. Finally, as an example, ver-
tical motion of a particle within a medium where resistance is proportional to speed is analized.

INTRODUCCION

En el estudio del calculo se aprenden algunos métodos de derivacién e integra-
cién, asi como la gran importancia que tienen estas herramientas matematicas
en la ciencia e ingenieria. Se aprende, de igual forma, que la derivacion y la
integracion son operaciones inversas una de la otra y difieren en una o varias
constantes, dependiendo del orden de la derivada. Si (d"/dx?) f(x)= D" f(x)
representa la n-ésima derivada de la funcién f (x) con respecto a x, con n=
1,2, ..., entonces I" f(x) = ff(x)dx = D" f(x) representara la n-ésima integral
o integral iterada de la misma funcion f(x). Sin embargo, los operadores
de derivacion e integracion vistos en los cursos universitarios han sido de
orden entero n=1, 2, .... Esto es lo que conocemos como cdlculo diferencial
e integral ordinario o de orden entero. Aqui surgen algunas preguntas: gpor
qué debe ser n =1, 2, 3, ...,?, gexistira la posibilidad de que sea n=1/2,
1/3,...?

El objetivo principal de este trabajo es, ademas de dar a conocer la his-
toria del calculo de orden fraccionario desde las fuentes histéricas origina-
les, completar ciertas expresiones escritas en libros y articulos cuando tratan
sobre la historia y origen del calculo de orden fraccionario. Por ejemplo,
la expresion “Asi se tiene que d"?x sera igual a x-3Jdx:x” no muestra el
razonamiento de Leibniz (1859) para establecer la derivada fraccionaria de
orden un medio de x; o bien, “La referencia a una derivada fraccionaria en un
libro de texto aparece por primera vez en 1819 en el libro del matematico
francés S. F. Lacroix (1765-1843). El libro, de casi 700 paginas, dedica dos
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paginas [...]”, que sin ver si quiera el indice del libro
de Lacroix (1819) le atribuyen la definicion de la deri-
vada de orden fraccionario un medio; otra expresion
comun es: “Euler solo menciona pero no da ejemplos
ni aplicaciones de la derivada de orden fraccionario”,
sin leer en realidad el texto completo del documento
a que se hace referencia en este mismo trabajo (Eu-
ler, 1738). Por tal motivo, se considera importante en
este trabajo dar un poco mas de informacion sobre los
documentos originales donde quedo6 escrito el pensa-
miento de Leibniz, Euler, Liouville y Riemann. Se pre-
senta, ademas, una aplicaciéon con la que se analiza el
movimiento vertical de una particula en el seno de un
medio donde la resistencia es proporcional a la velo-
cidad (Rosales, Guia, Martinez & Baleanu, 2013), con
el propésito de motivar al lector para que se inicie en el
estudio del calculo de orden fraccionario.

Breve historia del calculo fraccionario

El nacimiento del cdlculo de orden fraccionario tuvo
lugar después de la publicacion, en 1675, de un do-
cumento de G. W. Leibniz, donde aparecia el simbolo
d"y/dx" el cual se refiere a la derivada de orden nde la
funcion y respecto de x, donde n es un ntimero natu-
ral. Sin embargo, ¢tendra sentido extender los valores
de n al conjunto de los numeros racionales, irraciona-
les o complejos?

G. W. Leibniz (1646-1716), al responder a una car-
ta de G. F. Antoine, marqués de ’'Hopital (1641-1704),
cuestiona sobre qué sucederia si n fuera 1/2. El 30 de
septiembre de 1695 contesta de manera intuitiva: “esto
conduciria aparentemente a una paradoja de la cual
algin dia seran extraidas consecuencias muy utiles”
(Leibniz, 1859). En esta misma carta, Leibniz da una
aproximacion a lo que podria ser una derivada fraccio-
naria, poniendo como ejemplo la derivada 1/2 de x.
El razonamiento de Leibniz es el siguiente: “Sea dada
la ordenada x en progresién geométrica de modo que
si se tiene una constante dg sea dx = xdg : a, o (sus-
t1tuyendo a por la umdad) dx = xdg, ahora ddx sera
X - dﬂ y dx sera = x- dﬁ etcéteray d°x = xdf". Y de esta
forma el exponente diferencial es cambiado por ex-
ponente potencia reemplazando dx : x por dj se ten-
dra d°x =dx: x -x. Asi se tiene que d!2x sera igual a
x-3dx : x” (Leibniz, 1859)!.

En notacion actual, la definicion que propone Leibniz
para la derivada de orden fraccionario de x esta dada por:
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d*x
dx®

= x"e, (1)

y para el caso particular e = 1/2 se tendra:

a2y s
x .

dxl/Q

Sin embargo, la primera referencia a una derivada
fraccionaria aparece, por primera vez, en un articulo es-
crito por Leonhard Euler (1707-1783) entre 1729-1730
y publicado en 1738, donde aplica su férmula de in-
terpolacion del factorial entre niimeros enteros positi-
vos para dar una definiciéon de la derivada de orden
fraccionario. El razonamiento de Euler es el siguiente:
se trata de investigar la relacion entre d"(z°) y dz" con
dz constante. Supone primero que n es un entero y
sin=1, ez = [123¢e/123 (e 1)z, sin = 2,
ele 1)z ©% = [1-2:3--¢/1-2:3-+(e —2)]z %, si n = 3, ele
-1)(e 2)z “°=[1-2:3--¢/1-2:3-+(e =3)] z %, en general,
d"z°/dz"= [1-2:3---e/1:2:3::(e —n)]z “". Pero 1:2:3---e

= fdx(flx)ey 1:2:3++(e-n) = fdx(—lx)e'", por lo tanto:
dx(—1x)°
e Tle f

d*(z¢) =
=) fdx( 1x)° ™

(2)

donde los limites de integracién son x = O como limite
inferior y x = 1 como limite superior. En (2) debera ac-
tualizarse la simbologia In para 1. Después de Andrien-
Marie Legendre (1752-1833) se usa la notacién I'(e + 1)
para la integral del numerador y I'(e — n + 1) para la in-
tegral del denominador.

Es posible realizar algunas operaciones algebrai-
cas con (2) para comparar la definicion de la derivada
de una funcién potencia con definiciones mas recien-
tes y, a la vez, para hacer notar la diferencia con la
definicién propuesta por Leibniz (1859). La ecuacion
dada por (2) tambien puede ser escrita como:

[hefies

A S ®)
= el

equivalente a escribir:

d"z°¢
dz"

= F F(e+1) ZE*TL . (4)
(e—n+1)

' “Car soyent les ordenées x en progression Geometrique en sorte que prenant une constante d 3 soit dx = xd 3: a, ou (prenant a pour I'unité) d.x = xd 3, alors ddx

sera x -d3°, et d®xsera = x -d3° etc. et d°x
d°x = dx : x*x. Ainsi il s'ensuit que d'2x sera egal a x- Jdx: x’
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Multiplicando numerador y denominador de (4) por
I'(—n) = O se obtiene:

d'z® _Te+1)(-n) x*" _ 2"
dz" T'le—n+1) I'(-n) I'(-n)

Ble+1,-n), ()
donde B(e+1,—n)=B(—n,e+1) es la funciéon beta, de-
finida por:

I(-n)T(e +1)

Be+1,—n)=B(-n,e+1)= e —_ni1)

- fl te(1—1)"dt. (6)
ot
Sustituyendo (6) en (5) y haciendo zt = u se obtiene:

d'z® _ 1 fz u du.
dz" T[(-n)Jo" (z—u)"

(7)

Si n no es un entero, entonces (7) es la formula de
Euler (1738) para una derivada fraccionaria de una
funcién potencia, y quedaria como sigue:

a3 x ]
d'x” _ 1 f u du ()
dx®  D(=a)Yo" (x —u)"

La existencia de la derivada fraccionaria de orden «
esta determinada por la convergencia de la integral en
(8). Euler (1738) también da un ejemplo para e= 1y
n=1/2 y obtiene, en la simbologia actual:

\Jzdz = @, 9)
A

f —In xdx

f\/—lnxdx

donde A es el area de un circulo de diametro igual a
la unidad. También se puede utilizar la ecuacion (4)
para obtener:

di?2z =

di/2z _ I‘(1+1] 112 _ ZL/2 _ Zi/2 _ Zi2
dz2 T(1—2+1) r(l] = Ja
2 4

Para finalizar, Euler (1738) propone la siguiente
ecuacion diferencial fraccionaria para determinar la
forma de la curva dada por la ecuacion:
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yd'?z = z\/dy, (10)

la curva buscada se obtiene de la siguiente manera:

zdz zdz 1
1/— = zd 2272 =224 —Inz
Yy A y—Uy A Yy— A

=c—l—>ylnz=cAy—A. (11)
y

En el libro de S. F. Lacroix mencionado antes se in-
cluye el articulo publicado por Euler, en el cual se de-
fine la derivada de orden fraccionario de una funcién
potencia. Asi, pues, se puede decir que a Euler se le
debe la primera férmula para la derivada fraccionaria de
una funcién potencia.

En 1822, en su libro Théorie Analytique de la Cha-
leour (1822), Jean-Baptiste Joseph Fourier (1768-1830)
indica que diferenciales e integrales de orden arbitrario
i pueden ser obtenidas a partir de la ecuacion:

£ =~ [ o costpx - padp, (12)

y observando que la i-ésima derivada de la funcién co-
seno difiere sélo en el signo y en el factor p, se obtiene:

%[f(x]Fi if(a)dajipfcos(px—paﬂg)dp, (13)

donde i puede ser cualquier cantidad: positiva o nega-
tiva. Asi, pues, Fourier (1822) presenta una formula
general para la derivacién e integracion fraccionaria.
Una funcién tendra derivada o integral fraccionaria si
las integrales impropias convergen. Sin embargo, no
presenta ejemplos de aplicacion ni desarrolla un tra-
tado completo sobre el calculo integro-diferencial de
orden fraccionario. Indica, ademas, en el mismo libro,
que sus resultados sobre las derivadas e integrales de
orden fraccionario ya los habia publicado con anterio-
ridad en una “Mémoire sur les vibrations des surfaces
élastiques, lu a la séance de ’Académie des Sciences,
le 6 juin 1816 (art. VI, § 10 et 11, et art. VII, § 13 et §
14)” (Fourier, 1822).

Una de las primeras aplicaciones a la fisica es
proporcionada por Niels Henrik Abel (1802-1829). El
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problema consiste en encontrar la forma de la curva
sobre un plano vertical, tal que un objeto, al deslizarse
sin friccion sobre ella, llegue al final de su recorri-
do en un tiempo que sea independiente del lugar
en que comience el movimiento. Si el tiempo de caida es
una constante conocida, la ecuacién integral de Abel
(1839a) tiene la forma:

K=ﬁ‘(

En realidad, Abel estudié ecuaciones integrales
con nucleos de la forma (x —t)* (Abel, 1839b), siendo
la ecuacion (14) un caso particular cuando a=1/2.
Para determinar la funcién desconocida f(x) en (14),
Abel (1839a) escribié la parte derecha de (14) como:

( d_1/2
T

x—t)"2f(Hdt. (14)

(19)
-1/2
dx

Después, tomando la derivada 1/2 en ambos lados
de la ecuacién obtuvo:

172

(16)
1/2
dx

ya que los operadores fraccionarios (derivadas e inte-
grales con ciertas condiciones sobre f) satisfacen la
propiedad D'/2D-1/2 f= D° f= f. Entonces, calculando
la derivada de orden 1/2 de la constante k en (16)
se determina la funciéon f(x). Este resultado de Abel
(1839a) se considera un gran logro para el desarrollo
posterior del calculo de orden fraccionario. Es impor-
tante hacer notar que la derivada de orden fraccionario
de una constante no siempre es cero.

Derivada fraccionaria de Liouville

Joseph Liouville (1832) hace referencia, en Mémoire sur
questions de Geométrie et de Mécanique..., a los traba-
jos de Euler, Laplace, Fourier y al libro de calculo de
Lacroix; también hace referencia a la cuarta carta
de Leibniz a Wallis (Leibniz, 1832), aunque se basa mas
en los trabajos de Laplace (1812) y Fourier (1822) para
hacer su desarrollo del calculo integro-diferencial de or-
den fraccionario. Liouville (1832) parte de la derivada de
orden entero de la funcién exponencial, esto es:

d" .
e
dx™

m _ax

=a"e™ (17)
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donde indica que m puede ser cualquier nimero real
o complejo, positivo (indicando la derivacién) o nega-
tivo (indicando la integracién). Partiendo, pues, de esta
definicién de la derivada, y suponiendo que una funcién
y se puede desarrollar en una serie de exponenciales,
establece una formula general para la derivada. Primero
desarrolla y en serie de exponenciales:

y=> Ae",

y deriva término a término esta serie para obtener:

dy _ ZAm i
dx*

(18)

(19)

A la expresion (19) se le conoce como la primera
definicién de derivada fraccionaria de Liouville. En la
misma memoria, Liouville (1832) da dos ejemplos, que
algunos historiadores han llamado como la segunda
definicion de Liouville. El primer ejemplo es para la
funciéon y = 1/x, en tanto que el segundo es una gene-
ralizacion del primero y = 1/x", esto es:

1 0
—= f e ““da.
x 0

Es importante notar que (20) no es mas que la
transformada de Laplace (1812) de la funcién escalén
unitario en la que se ha cambiado s por x. Partiendo
de (20), Liouville (1832) utiliza la férmula para la deri-
vada de orden fraccionario y obtiene:

(20)

@l
oo — 1
X =f (_1)#e—axauda= ( 1) F(:u+1) (21)
dx* 0 xtru
Para el segundo ejemplo, define:
1.1 “e o da, (22)
x* T(n)
@l
x f ( 1 u —arx y+n—1d /F( ( 1) r(n+:u) (23)
dx* I'(n)xn*

A continuacién, Liouville (1832) da una expresiéon
para la integral fraccionaria de una funciéon arbitraria,
pero con restricciones:

d"¢(x) _

¥
x)dx" =
el K

x + o' da, (24
o) o e (24)
donde >0y si¢()= A ™y m debe ser menor que
cero o si es de la forma m = -p + gv~1, p debe ser
mayor que cero. Al final de cuentas lo que se trata es de
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cuidar la convergencia de la integral impropia de la
derecha en (24), que se logra cuando el integrando se
anula en oo, de acuerdo con Liouville (1832).

Para obtener la derivada de ¢(x), Liouville (1832)
hace u=n-p, donde n es el menor entero positivo ma-
yor que u, con lo que obtiene:

(- l)pF(p f

Liouville (1832) ha llegado a la misma conclusion a
la que habia llegado Fourier (1822) dieciséis anos an-
tes: la derivada de orden fraccionario es una integral
definida, esto conducira, como se vera mas adelante,
a un nuevo punto de partida en la definicion de la deri-
vada de orden fraccionario. Liouville (1832), en la misma
memoria, aplica la formula para resolver varios proble-
mas de eletrodinamica, geometria y mecanica.

d“g(x) _
dx*

[ p(x + o)) der. (25)

d n

Antes de continuar con este nuevo enfoque que trata
ala derivada de orden fraccionario como una integral, se-
guiremos al enfoque propuesto por Grinwald-Létnikov.

Derivada fraccionaria de Griinwald-Létnikov

Anton Karl Grunwald (1838-1920), en 1867, y Aleksey
Vasilievich Létnikov (1837-1888), en 1868, proponen
la definicion de la derivada fraccionaria, partiendo de la
definicion basica de la derivada de orden entero; esto es:

f'(x)=1hi£13f(x+]:l)_f(X)’
f"(x)=1h]‘.£13f(x+]:l)_f(X)
_ . fx+2n)—-2f(x+h)+ f(x)
B h? ’

> penen 17 () £ + (m—rin]

£ = lim (26)
h—0 h"
donde
nl _ I'(n+1)

n)- )
(m) mi(n—m)! Tim+1)(n—m+1)
Haciendo algunas operaciones aritméticas se llega
a las siguientes formulas de la derivada fraccionaria
de Grunwald-Létnikov:
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x—a

& DT+

“f(x)—hgé *“mZOF(m+1)P(a_m+1)f(x—mh), (27)
Do f(x)=

[ n & )T+ x—a
] o mz_(;l"(m+1)f‘(a—m+1)f|x_m (28)

Las formulas (27) y (28) son muy utilies en el cal-
culo numérico de la derivada de orden fraccionario;
en estas formulas a < x es el punto desde donde se
calculara la derivada correspondiente al punto x.

Otro punto de partida para definir la derivada de or-
den fraccionario fue propuesto por Liouville (1832), quien,
partiendo de la integral del orden fraccionario, obtiene:

A0 2 o pg = _SO g 29)
dx™ (0!) a (x—t)™
donde a < x. La ecuacion se puede obtener de (8) ha-
ciendo u” = f(t), sustituyendo a por —ay u por t. Ahora
bien, si n—1 < a < n se puede hacer a = n —v, entonces
se tiene:

df(x) _ _d*
dx* dx"

(o)

)ll n+l

J’f(x) = dt. (30)

dx F(n AJa (x—

La derivada fraccionaria esta definida, en este caso,
si la integral converge, debido a que, segiin se vio al
inicio de esta seccién, Liouville (1832) desarrolla f(t)
en una serie de exponenciales. La integral en (30) con-
verge sia = —oo, las partes reales de las potencias de e
son mayores que ceroy x > 0.

Derivada fraccionaria de Riemann

Bernhard Riemann (1826-1866), en un manuscrito
del 14 de enero de 1898, en su época de estudiante y
publicado en forma péstuma, propone:

f(®)

dx" T(n— o)J k(x—¢)* ™!

dflx) _ d" ., a1 "
—_ S — J [
dx” dx" Fx)

(31)

Para la formula (31), Riemann (1898) desarrolla
f(t) en una serie de potencias, por lo que el limite infe-
rior en este caso es k= 0. A la ecuacién:
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d"f(x) _

= Jf()

RLDaf( )

dx" F(n a)Je (x— t)”‘ el (32)

Se le llama formula para la derivada de orden
fraccionario de Riemann-Liouville, para ¢ = 0 y para
= —o00, respectivamente.

Derivada fraccionaria de Caputo

En 1969, el fisico matematico italiano Michele Caputo
dio una nueva definiciéon de derivada de orden fraccio-
nario que permitia interpretar fisicamente las condicio-
nes iniciales de los cada vez mas numerosos problemas
aplicados que se estaban estudiando. Caputo (1969)
defini6 la derivada fraccionaria como:

afy) _ 1
dt* TI(n—o)

AR
0 (t _ n)oﬁrﬁl

‘Df(t)= dn, (33)

donde n-1 < @< ny f™es una derivada ordinaria. La
relacion entre ambas definiciones (32) y (33) de la de-
rivada de orden fraccionario esta dada por:

£l = zlli—fk(o+))=CDaf(t).

k=0

" pe (34)

Se puede notar que la definicién de la derivada
de orden fraccionario propuesta por Michele Caputo
(1969) es mas restrictiva que la de Riemann-Liouville,
ya que en el primer caso la funcion debe ser derivable, lo
que no requiere la segunda definicion.

La transformada de Laplace de la derivada fraccio-
naria de Riemann-Liouville (32) y de Caputo (33) estan
dadas por las expresiones:

L

“pefe)] = s7Fls) - 3 s Pt o), 35)
k=0

LEDe o] = s°Fis)- s “l0), (36)

donde F(s) es la transformada de Laplace de f(¢). Obser-
ve que la expresion (35) contiene condiciones iniciales
fraccionarias, lo cual tiene dificultades de interpretacion
en la aplicacion a problemas fisicos, mientras que la
expresion (36) tiene condiciones iniciales ordinarias, es
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decir, no fraccionarias, ya que f®(0) son derivadas ordi-
narias (k= 1, 2, 3,...). Esta es una de las razones por las
cuales en los problemas de aplicacion se usa frecuen-
temente la derivada fraccionaria de Caputo (1969) (36).

Existen, actualmente, dos aplicaciones principales
del calculo de orden fraccionario: aplicaciones al con-
trol y aplicaciones de modelado matematico. Esta ulti-
ma aplicacién incluye el analisis, simulacién, diseno,
etcétera. Cuando se habla de modelado matematico se
incluyen, preferentemente, aquellos fenémenos cuyos
modelos de orden entero no satisfacen los datos expe-
rimentales, por ejemplo fenémenos de difusion ano-
mala: sub-difusion y super-difusion, viscoelasticidad,
superconductividad, cancer, etcétera.

En este punto surgen algunos cuestionamientos:
¢cudl es la interpretacion fisica de una derivada y/o
integral fraccionaria?, ¢por qué hay diferentes defini-
ciones de derivada e integral fraccionaria? En el calcu-
lo ordinario, estas preguntas estan bien claras y tienen
una interpretacion muy elegante geométrica y fisi-
camente. Sin embargo, en el caso del calculo fraccio-
nario aun estas preguntas no estan completamente
resueltas, asi que hay mucho trabajo por hacer. En la
siguiente seccion damos un ejemplo sencillo y detalla-
do de aplicacion del calculo fraccionario.

Movimiento vertical en un campo gravitacional

Se analizara, como un ejemplo de aplicacion del calcu-
lo fraccionario, el caso de una particula en movimiento
vertical en el seno de un medio, donde la resistencia es
proporcional a la velocidad. Sup6éngase que una par-
ticula se lanza hacia abajo con una velocidad inicial v,
desde una altura h en un campo gravitacional constante.
La ecuacién de movimiento es entonces (Thornston &
Marion, 2004):

mﬂ=—mg—mkv —

o (387)

dv
—+kv=-—g,
dt g

donde k es una constante positiva responsable de la
fuerza de resistencia con unidades de segundos in-
versos, s™, y -mkv representa una fuerza dirigida ha-
cia arriba, ya que tomamos zy v = Z positivos en ese
sentido, y el movimiento se dirige hacia abajo; o sea v
< 0 de forma que —mkv > 0. Si la condicién inicial se
considera v(0) = v,, donde v, es la velocidad inicial del
cuerpo cayendo, la solucién es:

U(t)=—=}% + (38)

v, + 9 |en
° k
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Dado que v = dz/dt se integra una vez mas, tomando
en cuenta la condicién inicial z0) = h, como resultado
se obtiene:

z(t)=h—%t+% (39)

=

g
U, +=

La expresion (38) indica que a medida que el tiempo
crece (t — o), la velocidad se va aproximando al valor
u(t) — —g / k, la cual es llamada velocidad final o velo-
cidad terminal v . Por otro lado, se ve en la ecuacion
(37) que cuando en ella se hace v = —g / k, se consigue
el mismo resultado, pues entonces la fuerza se anula
y desaparece la aceleracion. Cuando el modulo de la
velocidad inicial sea mayor que el de la velocidad final,
el cuerpo comenzara a moverse perdiendo velocidad y
v tendera hacia el valor de la velocidad final desde el
sentido contrario.

Ahora se analizara el problema anterior desde el
punto de vista del calculo fraccionario. Para ello se ha-
ran algunas modificaciones, como se muestra en (40),
antes de pasar a la ecuaciéon diferencial de orden frac-
cionario, a partir de (37). Estas modificaciones consisten
en normalizar las variable vy ¢t tomando como base de
normalizacién —g/ky 1/k para la velocidad y el tiempo,
respectivamente, de forma que dividiendo v entre —g/k :

ol kv
L9, | kvl_yq, (40)
ket g

Esta ecuacion diferencial se puede escribir también
en funcién de una nueva variable dependiente y adi-
mensional, representada por u, mientras que la varia-
ble temporal, adimensional, independiente es 7 = kt. Se
tiene, entonces:

d'u

dr”

(41)

En esta ecuacion diferencial de orden fraccionario,
las variables u y 7 son adimensionales.

Aplicando la transformada de Laplace (Podlubny,
1999; Samko, Kilbas & Marichev, 1993) con la condi-
cion u(0) = u, y 0) = -v(0)k/g, obtenemos:

st +U(s)=l.
s

s'U(s)— (42)
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Resolviendo respecto a U(s) resulta:

-1
u,s 1

Uls) = Y

(43)

s’ +1

Ahora, aplicando la transformada inversa de Lapla-
ce (Podlubny, 1999; Samko, Kilbas & Marichev, 1993)
se tiene:

ur)=w B (") + [1- E (-], (44)

donde se han usado las férmulas (Monje, Chen, Vina-
gre, Xue & Feliu-Batle, 2010)

o

S

7| —=——|=E (~at), (45)
s(s” + a) “
-1 ¢ \=1-E (~at%). (46)
s(s* +a) “
Volviendo a las variables uv(f) y t se tiene:
ot)=— L +| D+ y, |E (- (t))
k k
— g + Q + U i( l)n (kt)ﬂ"f
k |k = I'(ny +1). (47)
Ahora, suponiendo que:
B
u(r) = —  U(s)=s"W(s)—s""'w(0), (48)
donde
2 2 K> 2
okt we - KT 0 KO Kz KR
g g g
k
u, =——"u,

Sustituyendo U(s) de (48) en (43) y resolviendo para
W(s) se tiene:

w s 1 s
— 0]
W(s)=—+u, ; T .
s s"+1 s s"+1

(49)

Finalmente, se aplica la transformada inversa de
Laplace (1812) a (49) y se realizan las operaciones ne-
cesarias para volver a las variables, ty z.
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_p gty 1 [ Ky, e
z(t)=h K2 TG+1) (1+ g )E«,M[ (kt)], (50)

donde 0 < 3,7 <1.

Si en (50) se dan valores de 1 a 8y 7, se recupera (39).

Si en (50) se hace 3 =, se obtiene:

{1—121 [—(kt)”]}.

Hoy en dia, el calculo fraccionario se ha aplicado en
diferentes areas de las ciencias e ingenierias, fisica,
biologia, quimica, geologia, teoria de control, elec-
tromagnetismo, eléctrica, circuitos eléctricos, proce-
samiento de imagenes y senales, Optica, etcétera, y
existen excelentes libros que tratan sobre su reciente
desarrollo y aplicaciones como son: Baleanu, Guinvec
& Tenreiro (2010), Diethelm (2010), Duarte (2011),
Mainardi (2010) y Tarasov (2010),

Z(t)= h—g(iktﬁ + 1
K°T(N+1) Kk

vyt 9

P (51)

CONCLUSION

En este trabajo se han presentado las distintas defi-
niciones de la derivada e integral de orden fracciona-
rio. Estas diferentes definiciones existen por no haber
un concenso generalizado sobre qué son la derivada
e integral de orden fraccionario de una funcion; es
decir, no hay una interpretacion fisica y geomeétri-
ca consistente sobre ellas. Sin embargo, los modelos
descritos por ecuaciones diferenciales de orden frac-
cionario, con las propiedades de no localidad y me-
moria, representan en forma mas adecuada sistemas
complejos heterogéneos que los modelos de orden en-
tero, como se muestra en el ejemplo presentado para
el movimiento vertical en un campo gravitatorio.
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