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El cálculo diferencial e integral fraccionario 
y sus aplicaciones
The differential and integral fractional calculus and its applications

Resumen
Durante los últimos 20 años, el cálculo de orden arbitrario (mejor conocido en la literatura 
como cálculo de orden fraccionario) se ha desarrollado de manera impresionante. Sin embar-
go, en México no hay grupos consolidados en el estudio y su aplicación. El objetivo de este 
trabajo es dar a conocer los orígenes y el desarrollo del cálculo fraccionario, con la finalidad 
de motivar a los futuros investigadores a incursionar en esta área tan interesante del análisis 
matemático no convencional. Finalmente, como ejemplo, se analiza el movimiento vertical 
de una partícula en el seno de un medio donde la resistencia es proporcional a la velocidad.

 Abstract
Over the last 20 years arbitrary order calculus (better known in the literature as fractional 
calculus) has been developed impressively. However, in Mexico there are no solid groups 
devoted to its study and applications. The objetive of this work is to present the origins and 
development of fractional calculus, in order to encourage future researchers to venture into 
this very interesting area of unconventional mathematical analysis. Finally, as an example, ver-
tical motion of a particle within a medium where resistance is proportional to speed is analized.
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Introducción

En el estudio del cálculo se aprenden algunos métodos de derivación e integra-
ción, así como la gran importancia que tienen estas herramientas matemáticas 
en la ciencia e ingeniería. Se aprende, de igual forma, que la derivación y la 
integración son operaciones inversas una de la otra y difieren en una o varias 
constantes, dependiendo del orden de la derivada. Si (dn/dxn) f x D f x( ) = ( )n  
representa la n-ésima derivada de la función f (x) con respecto a x, con n = 
1, 2, ..., entonces ∫ −I f x f x dx D f x( ) = ( ) = ( )n n  representará la n-ésima integral 
o integral iterada de la misma función f (x). Sin embargo, los operadores 
de derivación e integración vistos en los cursos universitarios han sido de 
orden entero n = 1, 2, .... Esto es lo que conocemos como cálculo diferencial 
e integral ordinario o de orden entero. Aquí surgen algunas preguntas: ¿por 
qué debe ser n = 1, 2, 3, ...,?, ¿existirá la posibilidad de que sea n = 1/2, 
1/3, ...?

El objetivo principal de este trabajo es, además de dar a conocer la his-
toria del cálculo de orden fraccionario desde las fuentes históricas origina-
les, completar ciertas expresiones escritas en libros y artículos cuando tratan 
sobre la historia y origen del cálculo de orden fraccionario. Por ejemplo, 
la expresión “Así se tiene que xd1:2  será igual a ⋅x x xd :2 ” no muestra el 
razonamiento de Leibniz (1859) para establecer la derivada fraccionaria de 
orden un medio de x; o bien, “La referencia a una derivada fraccionaria en un 
libro de texto aparece por primera vez en 1819 en el libro del matemático 
francés S. F. Lacroix (1765-1843). El libro, de casi 700 páginas, dedica dos 
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páginas […]”, que sin ver si quiera el índice del libro 
de Lacroix (1819) le atribuyen la definición de la deri-
vada de orden fraccionario un medio; otra expresión 
común es: “Euler solo menciona pero no da ejemplos 
ni aplicaciones de la derivada de orden fraccionario”, 
sin leer en realidad el texto completo del documento 
a que se hace referencia en este mismo trabajo (Eu-
ler, 1738). Por tal motivo, se considera importante en 
este trabajo dar un poco más de información sobre los 
documentos originales donde quedó escrito el pensa-
miento de Leibniz, Euler, Liouville y Riemann. Se pre-
senta, además, una aplicación con la que se analiza el 
movimiento vertical de una partícula en el seno de un 
medio donde la resistencia es proporcional a la velo-
cidad (Rosales, Guía, Martínez & Baleanu, 2013), con 
el propósito de motivar al lector para que se inicie en el 
estudio del cálculo de orden fraccionario.

Breve historia del cálculo fraccionario
El nacimiento del cálculo de orden fraccionario tuvo 
lugar después de la publicación, en 1675, de un do-
cumento de G. W. Leibniz, donde aparecía el símbolo 
dny/dxn, el cual se refiere a la derivada de orden n de la 
función y respecto de x, donde n es un número natu-
ral. Sin embargo, ¿tendrá sentido extender los valores 
de n al conjunto de los números racionales, irraciona-
les o complejos?

G. W. Leibniz (1646-1716), al responder a una car-
ta de G. F. Antoine, marqués de l’Hôpital (1641-1704), 
cuestiona sobre qué sucedería si n fuera 1/2. El 30 de 
septiembre de 1695 contesta de manera intuitiva: “esto 
conduciría aparentemente a una paradoja de la cual 
algún día serán extraídas consecuencias muy útiles” 
(Leibniz, 1859). En esta misma carta, Leibniz da una 
aproximación a lo que podría ser una derivada fraccio-
naria, poniendo como ejemplo la derivada 1/2 de x. 
El razonamiento de Leibniz es el siguiente: “Sea dada 
la ordenada x en progresión geométrica de modo que 
si se tiene una constante bd  sea dx = x bd  : a, o (sus-
tituyendo a por la unidad) dx = x bd , ahora ddx será 
βx d

2⋅ y d3x será β⋅x= d
3⋅  etcétera y βx xd = de e

. Y de esta 
forma el exponente diferencial es cambiado por ex-
ponente potencia reemplazando dx : x por bd  se ten-
drá ⋅x x x xd = d :e e ⋅ . Así se tiene que d1:2x será igual a 
⋅x x xd :2 ” (Leibniz, 1859)1.

En notación actual, la definición que propone Leibniz 
para la derivada de orden fraccionario de x está dada por: 

,                                                                    (1)

y para el caso particular e = 1/2 se tendrá:

.                                                                    

Sin embargo, la primera referencia a una derivada 
fraccionaria aparece, por primera vez, en un artículo es-
crito por Leonhard Euler (1707-1783) entre 1729-1730 
y publicado en 1738, donde aplica su fórmula de in-
terpolación del factorial entre números enteros positi-
vos para dar una definición de la derivada de orden 
fraccionario. El razonamiento de Euler es el siguiente: 
se trata de investigar la relación entre dn(ze) y dzn con 
dz constante. Supone primero que n es un entero y 
si n = 1, ez e–1 = [1·2·3...e/1·2·3...(e –1)]z e–1, si n = 2, 
e(e –1)z e–2 = [1·2·3...e/1·2·3...(e –2)]z e–2, si n = 3, e(e 
–1)(e –2)z e–3=[1·2·3...e/1·2·3...(e –3)] z e–3, en general, 
dnze/dzn = [1·2·3...e/1·2·3...(e –n)]z e–n. Pero 1·2·3...e 
= ∫ −x xd ( l )ee y 1·2·3...(e-n) = ∫ − −x xd ( l )e ne–n, por lo tanto: 

∫
∫

−

−
−

−
z z z

x x

x x
d ( ) = d

d ( l )

d ( l )
n e e n n

e

e n

                                   

                                           ,                                     (2)

donde los límites de integración son x = 0 como límite 
inferior y x = 1 como límite superior. En (2) deberá ac-
tualizarse la simbología ln para 1. Después de Andrien-
Marie Legendre (1752-1833) se usa la notación Γ +e( 1) 
para la integral del numerador y Γ − +e n( 1) para la in-
tegral del denominador.

Es posible realizar algunas operaciones algebrai-
cas con (2) para comparar la definición de la derivada 
de una función potencia con definiciones más recien-
tes y, a la vez, para hacer notar la diferencia con la 
definición propuesta por Leibniz (1859). La ecuación 
dada por (2) tambien puede ser escrita como:

–

–

–

–
––                                      ,                                          (3)

equivalente a escribir:

Γ +
Γ − +

−z

z

e

e n
z

d

d
=

( 1)

( 1)

n e

n

e n .                                                 (4)

1 “Car soyent les ordenées x en progression Geometrique en sorte que prenant une constante db soit dx = xdb: a, ou (prenant a pour l’unité) dx = xdb, alors ddx 
sera x ·db2, et d3x sera = x ·db3 etc. et dex = xdbe. Et par cette adresse l‘exposant differentiel est changé en exposant potentiel et remettant dx : x pour db, il aura  
dex = dx : xe·x .  Ainsi il s’ensuit que d1:2x sera egal à x    dx : x 2 ”.
x d 2β⋅

x d 2β⋅
x d 2β⋅ x d 2β⋅
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Multiplicando numerador y denominador de (4) por 
n( ) 0Γ − ≠  se obtiene:

z

z

e n

e n

x

n

z

n
e nB

d

d
=

( 1) ( )

( 1) ( )
=

( )
( 1, )

n e

n

e n e nΓ + Γ −
Γ − + Γ − Γ −

+ −
− −

,            (5)

donde e n n eB B( 1, ) = ( , 1)+ − − +  es la función beta, de-
finida por: 

e n n e
n e

e n
t t tB B( 1, ) = ( , 1) =

( ) ( 1)

( 1)
= (1 ) de n

0

1
1∫+ − − + Γ − Γ +

Γ − +
−+

−
− − 

                                        e n n e
n e

e n
t t tB B( 1, ) = ( , 1) =

( ) ( 1)

( 1)
= (1 ) de n

0

1
1∫+ − − + Γ − Γ +

Γ − +
−+

−
− − .               (6)

Sustituyendo (6) en (5) y haciendo zt = u se obtiene:

z

z n

u

z u
u

d

d
=

1

( ) ( )
d

n e

n

z e

n0 1∫Γ − −+

−

+
.                                     (7)

Si n no es un entero, entonces (7) es la fórmula de 
Euler (1738) para una derivada fraccionaria de una 
función potencia, y quedaría como sigue:

x

x

u

x u
u

d

d
=

1

( ) ( )
d

x

0 1∫αΓ − −

α β

α

β

α+

−

+
.                                   (8)

La existencia de la derivada fraccionaria de orden a 
está determinada por la convergencia de la integral en 
(8). Euler (1738) también da un ejemplo para e = 1 y 
n = 1/2  y obtiene, en la simbología actual:

d1/2 z
x x

x x
z z

z z

A
d =

ln d

ln d
d =

d1

2 ∫
∫
−

−
,                                (9)

donde A es el área de un círculo de diámetro igual a 
la unidad. También se puede utilizar la ecuación (4) 
para obtener: 

.

Para finalizar, Euler (1738) propone la siguiente 
ecuación diferencial fraccionaria para determinar la 
forma de la curva dada por la ecuación:

yd1/2y z z yd = d
1

2 ,                                                          (10)

la curva buscada se obtiene de la siguiente manera:

y
z z

A
z y y

z z

A
z y

A
z c

y
y z cAy A

d
= d

d
= d

1
ln =

1
ln =2 2→ → − → −

            y
z z

A
z y y

z z

A
z y

A
z c

y
y z cAy A

d
= d

d
= d

1
ln =

1
ln =2 2→ → − → − .                          (11)

En el libro de S. F. Lacroix mencionado antes se in-
cluye el artículo publicado por Euler, en el cual se de-
fine la derivada de orden fraccionario de una función 
potencia. Así, pues, se puede decir que a Euler se le 
debe la primera fórmula para la derivada fraccionaria de 
una función potencia.

En 1822, en su libro Théorie Analytique de la Cha-
leour (1822), Jean-Baptiste Joseph Fourier (1768-1830) 
indica que diferenciales e integrales de orden arbitrario 
i pueden ser obtenidas a partir de la ecuación:

–—— ,                       (12)

y observando que la i-ésima derivada de la función co-
seno difiere sólo en el signo y en el factor pi, se obtiene:

,    (13)

donde i puede ser cualquier cantidad: positiva o nega-
tiva. Así, pues, Fourier (1822) presenta una fórmula 
general para la derivación e integración fraccionaria. 
Una función tendrá derivada o integral fraccionaria si 
las integrales impropias convergen. Sin embargo, no 
presenta ejemplos de aplicación ni desarrolla un tra-
tado completo sobre el cálculo integro-diferencial de 
orden fraccionario. Indica, además, en el mismo libro, 
que sus resultados sobre las derivadas e integrales de 
orden fraccionario ya los había publicado con anterio-
ridad en una “Mémoire sur les vibrations des surfaces 
élastiques, lu à la séance de l’Académie des Sciences, 
le 6 juin 1816 (art. VI, § 10 et 11, et art. VII, § 13 et § 
14)” (Fourier, 1822).

Una de las primeras aplicaciones a la física es 
proporcionada por Niels Henrik Abel (1802-1829). El 
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problema consiste en encontrar la forma de la curva 
sobre un plano vertical, tal que un objeto, al deslizarse 
sin fricción sobre ella, llegue al final de su recorri-
do en un tiempo que sea independiente del lugar 
en que comience el movimiento. Si el tiempo de caída es 
una constante conocida, la ecuación integral de Abel 
(1839a) tiene la forma:

K =
x

0

(x – t)1/2f (t)dt.                                              (14)

En realidad, Abel estudió ecuaciones integrales 
con núcleos de la forma x t( )- a (Abel, 1839b), siendo 
la ecuación (14) un caso particular cuando =1/2a . 
Para determinar la función desconocida f (x ) en (14), 
Abel (1839a) escribió la parte derecha de (14) como:

f (x )

dx

d
-

� ____
____

.                                                         (15)

Después, tomando la derivada 1/2 en ambos lados 
de la ecuación obtuvo:

f (x )

dx

�
____

k = ,                                                       (16)

ya que los operadores fraccionarios (derivadas e inte-
grales con ciertas condiciones sobre f ) satisfacen la 
propiedad D1/2D –1/2 f = D 0  f = f. Entonces, calculando 
la derivada de orden 1/2 de la constante k en (16) 
se determina la función f (x ). Este resultado de Abel 
(1839a) se considera un gran logro para el desarrollo 
posterior del cálculo de orden fraccionario. Es impor-
tante hacer notar que la derivada de orden fraccionario 
de una constante no siempre es cero.

Derivada fraccionaria de Liouville

Joseph Liouville (1832) hace referencia, en Mémoire sur 
questions de Geométrie et de Mécanique…, a los traba-
jos de Euler, Laplace, Fourier y al libro de cálculo de 
Lacroix; también hace referencia a la cuarta carta 
de Leibniz a Wallis (Leibniz, 1832), aunque se basa más 
en los trabajos de Laplace (1812) y Fourier (1822) para 
hacer su desarrollo del cálculo integro-diferencial de or-
den fraccionario. Liouville (1832) parte de la derivada de 
orden entero de la función exponencial, esto es: 

x
e a e

d

d
=

m

m

ax m ax ,                                                      (17)

donde indica que m puede ser cualquier número real 
o complejo, positivo (indicando la derivación) o nega-
tivo (indicando la integración). Partiendo, pues, de esta 
definición de la derivada, y suponiendo que una función 
y se puede desarrollar en una serie de exponenciales, 
establece una fórmula general para la derivada. Primero 
desarrolla y en serie de exponenciales:

y A e=
i

i

m
i
xå ,                                                             (18)

y deriva término a término esta serie para obtener:

d y

dx
= ∑Aimi e

m x

i

i .                                                       (19)

A la expresión (19) se le conoce como la primera 
definición de derivada fraccionaria de Liouville. En la 
misma memoria, Liouville (1832) da dos ejemplos, que 
algunos historiadores han llamado como la segunda 
definición de Liouville. El primer ejemplo es para la 
función y = 1/x, en tanto que el segundo es una gene-
ralización del primero y = 1/xn, esto es:

d .                                                         (20)

Es importante notar que (20) no es más que la 
transformada de Laplace (1812) de la función escalón 
unitario en la que se ha cambiado s por x. Partiendo 
de (20), Liouville (1832) utiliza la fórmula para la deri-
vada de orden fraccionario y obtiene:

d
d

d

µ

µ µµ
µ

µ

1
––

–
x1+µ

x
x

= =(   1) e
(   1) (  +1)Γ

.                  (21)

Para el segundo ejemplo, define:

1 1 1

xn
=

(n) 
n

Γ
,                                            (22)

d
d

d

µ

µ+n
µ

µ

µ

1

–
–

x n +µ

x
x

= =(   1) e
(   1) (n+µ)

——
1 / (n) Γ

(n) Γ
Γn

.   (23)

A continuación, Liouville (1832) da una expresión 
para la integral fraccionaria de una función arbitraria, 
pero con restricciones:

d

d

µ

µ

µ

µ

1

–x
x= =d µ(x ) 

Γ(µ) 

φ
(x ) (x  +       ) φ φ

(     1)
d ,      (24)

donde µ > 0 y si φ (·) A e( ) =
m

mx∑⋅  y m debe ser menor que 
cero o si es de la forma m = –p m p q= 1− + − , p debe ser 
mayor que cero. Al final de cuentas lo que se trata es de 
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cuidar la convergencia de la integral impropia de la 
derecha en (24), que se logra cuando el integrando se 
anula en a =−∞, de acuerdo con Liouville (1832).

Para obtener la derivada de φ(x), Liouville (1832) 
hace µ = n – p, donde n es el menor entero positivo ma-
yor que µ, con lo que obtiene:

d d

d

µ

µ p

1

–x d nx
=

(x ) 

Γ(p) 

φ
(x  +       ) 

(     1)
d

n
pφ .              (25)

Liouville (1832) ha llegado a la misma conclusión a 
la que había llegado Fourier (1822) dieciséis años an-
tes: la derivada de orden fraccionario es una integral 
definida, esto conducirá, como se verá más adelante, 
a un nuevo punto de partida en la definición de la deri-
vada de orden fraccionario. Liouville (1832), en la misma 
memoria, aplica la fórmula para resolver varios proble-
mas de eletrodinámica, geometría y mecánica. 

Antes de continuar con este nuevo enfoque que trata 
a la derivada de orden fraccionario como una integral, se-
guiremos al enfoque propuesto por Grünwald-Létnikov.

Derivada fraccionaria de Grünwald-Létnikov

Anton Karl Grünwald (1838-1920), en 1867, y Aleksey 
Vasilievich Létnikov (1837-1888), en 1868, proponen 
la definición de la derivada fraccionaria, partiendo de la 
definición básica de la derivada de orden entero; esto es:

,

        ,

        =   

f
f x

(n) (x ) = lím
h    0 h n

h ∑0 ≤ ≤m
m

n – –(     1) ( m   n)
n
m [ [+
–,              (26)

donde

n
mnm

n

m n m

n

m n m
=

!

!( )!
=

( 1)

( 1) ( 1)
( )

−
Γ +

Γ + Γ − +
.

Haciendo algunas operaciones aritméticas se llega 
a las siguientes fórmulas de la derivada fraccionaria 
de Grünwald-Létnikov:

,     (27)

f
x

lím
n    

∑
m=0

mn

– –( 
( n

n
+– ––

a
x – ax – m

–(     1)
( m + 1)  m + 1)

1)
Γ Γ

Γ
.     (28)

Las fórmulas (27) y (28) son muy útilies en el cál-
culo numérico de la derivada de orden fraccionario; 
en estas fórmulas a < x es el punto desde donde se 
calculará la derivada correspondiente al punto x.

Otro punto de partida para definir la derivada de or-
den fraccionario fue propuesto por Liouville (1832), quien, 
partiendo de la integral del orden fraccionario, obtiene:

d

dx
dt

x
xf

f
J

–

––

(
(

x(

(
(

(( (= =– – –
1

1Γ
x

a – t

(t(f
,                     (29)

donde a < x. La ecuación se puede obtener de (8) ha-
ciendo u f t= ( )b , sustituyendo a por –a y u por t. Ahora 
bien, si n –1 < a < n se puede hacer a = n –v, entonces 
se tiene: 

d

dx dx
dtd

t

x f
J –

(

n(

(

xf ( (
(= =– – 1n

n n + 1dx

d–– –
n

n

v
x

Γ (

a– x( –

(t(f
. (30)

La derivada fraccionaria está definida, en este caso, 
si la integral converge, debido a que, según se vio al 
inicio de esta sección, Liouville (1832) desarrolla f (t ) 
en una serie de exponenciales. La integral en (30) con-
verge si a =−∞, las partes reales de las potencias de e 
son mayores que cero y x > 0.

Derivada fraccionaria de Riemann

Bernhard Riemann (1826-1866), en un manuscrito 
del 14 de enero de 1898, en su época de estudiante y 
publicado en forma póstuma, propone:

d

dx dx
dtd

t

x f
J

–

(

n(

(

xf ( (
(= =– – 1n

n n + 1dx

d–– –
n

n

v
x

Γ (

k– x( –

(t(f
.     (31)

Para la fórmula (31), Riemann (1898) desarrolla 
f (t ) en una serie de potencias, por lo que el límite infe-
rior en este caso es k = 0. A la ecuación:
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.                 (32)

Se le llama fórmula para la derivada de orden 
fraccionario de Riemann-Liouville, para c = 0 y para 
c =−∞, respectivamente.

Derivada fraccionaria de Caputo

En 1969, el físico matemático italiano Michele Caputo 
dio una nueva definición de derivada de orden fraccio-
nario que permitía interpretar físicamente las condicio-
nes iniciales de los cada vez más numerosos problemas 
aplicados que se estaban estudiando. Caputo (1969) 
definió la derivada fraccionaria como:

C D f (t( = =
d t

t
d

d

( (f
– ( (

– –
n(

1

Γ (– ( (–

t

0

f

(n

t

(

–n + 1η
ηη
,                 (33)

donde n – 1 < a < n y f (n) es una derivada ordinaria. La 
relación entre ambas definiciones (32) y (33) de la de-
rivada de orden fraccionario está dada por: 

RL D C Df f
tk(t( f (t(= =∑

k =0

n

– k (0+)
k!

.                        (34)

Se puede notar que la definición de la derivada 
de orden fraccionario propuesta por Michele Caputo 
(1969) es más restrictiva que la de Riemann-Liouville, 
ya que en el primer caso la función debe ser derivable, lo 
que no requiere la segunda definición. 

La transformada de Laplace de la derivada fraccio-
naria de Riemann-Liouville (32) y de Caputo (33) están 
dadas por las expresiones: 

L RL D f f(t( = F( (– k
– 1

s ss ∑
n

––  1k( (

(0)
k =0

,                         (35)

L C D f f(t( = F( (–
– 1

s ss ∑
n

––  1k ( (

(0)
k =0

k
0 t

,                          (36)

donde F(s) es la transformada de Laplace de f (t). Obser-
ve que la expresión (35) contiene condiciones iniciales 
fraccionarias, lo cual tiene dificultades de interpretación 
en la aplicación a problemas físicos, mientras que la 
expresión (36) tiene condiciones iniciales ordinarias, es 

decir, no fraccionarias, ya que f (k)(0) son derivadas ordi-
narias (k = 1, 2, 3,...). Ésta es una de las razones por las 
cuales en los problemas de aplicación se usa frecuen-
temente la derivada fraccionaria de Caputo (1969) (36).

Existen, actualmente, dos aplicaciones principales 
del cálculo de orden fraccionario: aplicaciones al con-
trol y aplicaciones de modelado matemático. Esta últi-
ma aplicación incluye el análisis, simulación, diseño, 
etcétera. Cuando se habla de modelado matemático se 
incluyen, preferentemente, aquellos fenómenos cuyos 
modelos de orden entero no satisfacen los datos expe-
rimentales, por ejemplo fenómenos de difusión anó-
mala: sub-difusión y super-difusión, viscoelasticidad, 
superconductividad, cáncer, etcétera. 

En este punto surgen algunos cuestionamientos: 
¿cuál es la interpretación física de una derivada y/o 
integral fraccionaria?, ¿por qué hay diferentes defini-
ciones de derivada e integral fraccionaria? En el cálcu-
lo ordinario, estas preguntas están bien claras y tienen 
una interpretación muy elegante geométrica y físi-
camente. Sin embargo, en el caso del cálculo fraccio-
nario aún estas preguntas no están completamente 
resueltas, así que hay mucho trabajo por hacer. En la 
siguiente sección damos un ejemplo sencillo y detalla-
do de aplicación del cálculo fraccionario.

Movimiento vertical en un campo gravitacional
Se analizará, como un ejemplo de aplicación del cálcu-
lo fraccionario, el caso de una partícula en movimiento 
vertical en el seno de un medio, donde la resistencia es 
proporcional a la velocidad. Supóngase que una par-
tícula se lanza hacia abajo con una velocidad inicial v0 
desde una altura h en un campo gravitacional constante. 
La ecuación de movimiento es entonces (Thornston & 
Marion, 2004):

m
v

t
mg mkv

v

t
kv g

d

d
=

d

d
=− − → + − ,                       (37)

donde k es una constante positiva responsable de la 
fuerza de resistencia con unidades de segundos in-
versos, s–1, y –mkv representa una fuerza dirigida ha-
cia arriba, ya que tomamos z y v z=  positivos en ese 
sentido, y el movimiento se dirige hacia abajo; o sea v 
< 0 de forma que –mkv > 0. Si la condición inicial se 
considera v(0) = v0, donde v0 es la velocidad inicial del 
cuerpo cayendo, la solución es:

= + +vv e
k
g

k
g(t )

0
kt–– – – .                                              (38)
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Dado que v = dz/dt se integra una vez más, tomando 
en cuenta la condición inicial z(0) = h, como resultado 
se obtiene:

= ++ vz t eh
k
g

k
1 1(t )

0
kt––– – –

k
g– .                                          (39)

La expresión (38) indica que a medida que el tiempo 
crece t( )→∞ , la velocidad se va aproximando al valor 
v t g k( ) /→− , la cual es llamada velocidad final o velo-
cidad terminal vf .  Por otro lado, se ve en la ecuación 
(37) que cuando en ella se hace v g k= /- , se consigue 
el mismo resultado, pues entonces la fuerza se anula 
y desaparece la aceleración. Cuando el módulo de la 
velocidad inicial sea mayor que el de la velocidad final, 
el cuerpo comenzará a moverse perdiendo velocidad y 
v tenderá hacia el valor de la velocidad final desde el 
sentido contrario.

Ahora se analizará el problema anterior desde el 
punto de vista del cálculo fraccionario. Para ello se ha-
rán algunas modificaciones, como se muestra en (40), 
antes de pasar a la ecuación diferencial de orden frac-
cionario, a partir de (37). Estas modificaciones consisten 
en normalizar las variable v y t tomando como base de 
normalización –g/k y 1/k para la velocidad y el tiempo, 
respectivamente, de forma que dividiendo v entre –g/k :

d

d
g

g
kv

kv

[kt]
+ –

–
= 1

γ

γ –
–
– .                                                  (40)

Esta ecuación diferencial se puede escribir también 
en función de una nueva variable dependiente y adi-
mensional, representada por u, mientras que la varia-
ble temporal, adimensional, independiente es kt=t . Se 
tiene, entonces:

u
u

d

d
=1

τ
+

γ

γ
.                                                                (41)

En esta ecuación diferencial de orden fraccionario, 
las variables u y t son adimensionales.

Aplicando la transformada de Laplace (Podlubny, 
1999; Samko, Kilbas & Marichev, 1993) con la condi-
ción u(0) = u0 y 0) = –v (0)k/g, obtenemos:

s U s u s U s
s

( ) ( ) =
1

0
1− +g g− .                                           (42)

Resolviendo respecto a U(s) resulta: 

U s
u s

s s s
( ) =

1

1

( 1)
0

1

+
+

+

g

g g

−

.                                           (43)

Ahora, aplicando la transformada inversa de Lapla-
ce (Podlubny, 1999; Samko, Kilbas & Marichev, 1993) 
se tiene:

1 E (( γEγ
γ

γ
γ )) ( γ )= + – –– τττ uu

0
,                                  (44)

donde se han usado las fórmulas (Monje, Chen, Vina-
gre, Xue & Feliu-Batle, 2010)
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Volviendo a las variables v(t) y t se tiene:
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Ahora, suponiendo que:
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U s s W s s w( ) =
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β β− ,                  (48)

donde

t = kt, w = – , w
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Sustituyendo U (s) de (48) en (43) y resolviendo para 
W(s) se tiene:
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.                           (49)

Finalmente, se aplica la transformada inversa de 
Laplace (1812) a (49) y se realizan las operaciones ne-
cesarias para volver a las variables, t y z.
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z(t )= h
g(kt)
k g

E
Γ( + 1)

1 1– ––– – (kt)– +
kv0

γ
γ

, +12 ,          (50)

donde 0 < , 1β γ £ . 

Si en (50) se dan valores de 1 a b y g, se recupera (39).

Si en (50) se hace =β γ, se obtiene: 

z(t )= h E
1
– –– (kt)++ v0

γ
γ

g(kt)γ

k kΓ( + 1)γ2 k
g
–   1–{ {

.                  (51)

Hoy en día, el cálculo fraccionario se ha aplicado en 
diferentes áreas de las ciencias e ingenierías, física, 
biología, química, geología, teoría de control, elec-
tromagnetismo, eléctrica, circuitos eléctricos, proce-
samiento de imágenes y señales, óptica, etcétera, y 
existen excelentes libros que tratan sobre su reciente 
desarrollo y aplicaciones como son: Baleanu, Günvec 
& Tenreiro (2010), Diethelm (2010), Duarte (2011), 
Mainardi (2010) y Tarasov (2010),

Conclusión
En este trabajo se han presentado las distintas defi-
niciones de la derivada e integral de orden fracciona-
rio. Estas diferentes definiciones existen por no haber 
un concenso generalizado sobre qué son la derivada 
e integral de orden fraccionario de una función; es 
decir, no hay una interpretación física y geométri-
ca consistente sobre ellas. Sin embargo, los modelos 
descritos por ecuaciones diferenciales de orden frac-
cionario, con las propiedades de no localidad y me-
moria, representan en forma más adecuada sistemas 
complejos heterogéneos que los modelos de orden en-
tero, como se muestra en el ejemplo presentado para 
el movimiento vertical en un campo gravitatorio.
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