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RESUMEN

La estimacion precisa de la precipitacion es crucial para comprender el ciclo hidroldgico, sus aplicaciones
en la planificacion especifica de cuencas y la prediccion de eventos extremos. La geoestadistica multivariada
aprovecha las variables correlacionadas, como la elevacion del terreno y la distancia a la costa, para reducir
la incertidumbre de la estimacion. Sin embargo, las distintas caracteristicas de las estaciones humeda y seca
exigen enfoques de estimacion particulares. La estimacion precisa de la precipitacion plantea un desafio en
la vasta y diversa cuenca del rio Santiago (SRB) a lo largo de la costa oeste de México. Este estudio evalud
las estimaciones de precipitacion para las estaciones seca y himeda utilizando kriging ordinario y cokriging
ordinario con la altitud y la distancia a la costa como variables auxiliares. La evaluacion de las métricas de
error revelo resultados superiores al incorporar la distancia a la costa como una covariable en el mes humedo
de julio, especialmente después de la transformacion logaritmica, lo que arrojé una mejora del 17 % en el
error estandarizado promedio en comparacidn con el enfoque univariado. Por el contrario, se lograron resul-
tados Optimos para el mes seco (febrero) usando kriging ordinario excluyendo valores atipicos, reduciendo
efectivamente el error cuadratico promedio.

ABSTRACT

Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in ba-
sin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables,
such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct
characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation es-
timation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast.
This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary
cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed
superior results incorporating shoreline distance as a covariable in the wet month of July, especially after
logarithmic transformation, yielding a 17% improvement in average standardized error compared to the
univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary
kriging excluding outliers’ values, effectively reducing the average squared error.

Keywords: seasonal changes, kriging, cokriging, gridded rain, relief variability, shoreline distance,
topographic elevation.
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1. Introduction

Precipitation estimates are crucial in comprehending
the hydrological cycle within specific basins or re-
gions. Their significance spans diverse applications,
from facilitating design and planning to predicting
outlier events like droughts and floods. Gridded rain
gauge estimates have recently witnessed increased
demand due to their ability to account for spatial and
temporal rainfall distributions. These data primarily
serve as inputs for hydrological models integrated
with Geographic Information Systems (GIS).

Estimating precipitation in regions with intricate
physioclimatic characteristics presents significant
challenges due to its spatial and temporal variabil-
ity. Waylen et al. (1996) employed geostatistics to
analyze precipitation estimates and investigate their
response to the El Nifio phenomenon in the complex
terrain of Costa Rica. They discovered that the com-
plexity of precipitation estimation arises from distinct
generating mechanisms, topographical influences,
oceanic factors, and the lag period considered. Sim-
ilarly, Holawe and Dutter (1999) explored complex
climate patterns in Austria’s mountainous regions on
a seasonal scale, gaining valuable insights by com-
paring the results of simulated wet and dry periods.

Sideris et al. (2020) introduced NowPrecip, a
precipitation nowcasting system that operates at
various temporal scales by utilizing radar data and
an optical flow algorithm based on geostatistics
known as NowTrack. They successfully applied this
system in the mountainous regions of Switzerland.
On a seasonal scale, Portalés et al. (2010) conducted
a comparative analysis of univariate and multivariate
estimation methods in Valencia, Spain, to develop
models for different seasonal periods. Given the
geographical heterogeneity, they concluded that no
single estimation method suits all scenarios. Notably,
seasonal events like heavy rainfall during the wet
season significantly impact interpolation, as Giarno
et al. (2020) demonstrated.

Meanwhile, Vischel et al. (2009) demonstrated the
sensitivity of hydrological systems to precipitation
intensity and spatial patterns. Their study explored
interannual variability resulting from changes in the
precipitation regime over a decadal timeframe, leading
to fluctuations in runoff. Notably, runoff estimation
showed a significant difference, with kriging yield-
ing 25% lower estimates than those obtained with

conditional point simulations. It is widely known that
kriging/cokriging type estimates tend to smooth out the
data, while simulations, on the other hand, accurately
reproduce the variability of the data. However, it has
been recognized that estimation and simulation ap-
proaches are optimal for criteria that typically conflict
with each other (Goovaerts, 2000a). The estimation
objective is to minimize the local error variance, while
the simulation objective is to reproduce global statis-
tics such as the histogram or semivariogram. On the
other hand, according to Webster and Oliver (2007),
simulations are not recommended if the main purpose
is estimation because the variance of a simulated value
is larger than that of a kriged value.

Multivariate geostatistics have proven valuable in
dealing with complex climates and terrains. Methods
like cokriging (CK) or kriging with external drift
(KED) have demonstrated the ability to incorporate
secondary information effectively. Notably, when
estimating precipitation, incorporating information
such as topographic elevation as a covariate has
shown promising results, mainly when there is a
strong correlation with terrain elevation (Hevesi et
al., 1992; Martinez-Cob, 1995; Holawe and Dutter,
1999; Diodato, 2005; Murthy and Abbaiah, 2007;
Putthividhya and Tanaka, 2012; Kumari et al., 2017).

Although the outcomes generally favor ordinary
cokriging (OCK) (Viola et al., 2010), its implemen-
tation can be challenging as it requires fitting a linear
coregionalization model (LCM). Using a bivariate
data set (precipitation-covariate), LCM requires two
direct variograms and one cross variogram, which
must be positive definite. Some methods to prove this
can be found in Wackernagel (1998) and are used by
applications such as ArcGIS-Geostatistical Analyst
(Johnston et al., 2001), where cross variograms are
calculated through cross covariances in the coregion-
alization models. In this way, the software adapts
these models by allowing a spatial shift between
variables, adding two parameters to describe the
shift in the x- and y-coordinate. On the other hand,
studies such as Hevesi et al. (1992) and Huang and Hu
(2009) conclude that OCK variants give better results
than kriging as long as the precipitation-covariable
correlation is good (> 0.7).

The spatial variability in precipitation patterns is in-
fluenced by various environmental descriptors, encom-
passing both complex terrain and other contributing
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factors. Researchers such as Goovaerts (2000b) and
Subyani and al-Dakheel (2009) suggest incorporat-
ing additional secondary variables to enhance the
precision of cokriging estimates. Volkmann et al.
(2010) have also employed CK and KED alongside
radar data as a covariable. Among the various factors
explored for their correlation with precipitation, two
significant ones are the distance to the shoreline and
the topography.

The proximity to coastlines plays a crucial role in
precipitation patterns. Ogino et al. (2016) identified
distinct precipitation peaks near the coast, gradually
diminishing over approximately 300 km on both
sides of the coastline. Similarly, Buttafuoco and
Luca (2020) conducted a study in the coastal chain
of southern Italy, revealing higher precipitation levels
near the shoreline, particularly at higher elevations.
Hayward and Clarke (2009) observed a greater vari-
ability in precipitation per kilometer near the coast,
with certain seasons exerting notable influence in
regression models.

Topography also significantly impacts precip-
itation distribution. Johansson and Chen (2003)
delved into the relationship between precipitation,
topography, and wind flow in Sweden, as represent-
ed by geostrophic air humidity from the shoreline.
The results showcased increased variation in the
windward zone of the mountain range due to pres-
sure changes with wind speed, while coastal regions
experienced rising air, gradually diminishing in
mountain valleys.

In a comparative study, Majani et al. (2007)
compared KED with ordinary kriging (OK) using
topographic elevation, slope, wind, and shoreline
distance as covariates. The researchers found that
topographic elevation emerged as the most effective
covariate, as precipitation correlations with the other
variables remained relatively small (< 0.5).

Meanwhile, Cunha et al. (2013) evaluated OCK
with topographic elevation and shoreline distance
data in Espirito Santo, Brazil, and compared it with
OK. The results slightly favored OCK interpolation
with topographic elevation, only marginally outper-
forming shoreline distance.

Spatial distributed pluviometric data is one of
the main inputs for hydrological models; therefore,
reducing geostatistical estimation error uncertainty
is vital to enhance the accuracy of model simulations

and projections. The Santiago River basin (SRB)
covers a large part of the west coast of Mexico
with a wide diversity in relief and climates, which
makes pluvial precipitation estimation a challenging
problem (Avila-Carrasco et al., 2016). This study
compares the effectiveness of univariate or multi-
variate geostatistics with shoreline distance or terrain
elevation as secondary variables to reduce precipi-
tation estimate error uncertainty. The precipitation
estimates are generated for characteristic dry and
humid months using OK and OCK. Additionally,
the rainfall-covariable correlation and logarithmic
transformation benefits are explored for both cases.

2. Data and methodology

2.1 Study area

The SRB is located in the western central region of
Mexico, encompassing an area of approximately
76274 km? with a perimeter spanning 1923.5 km.
This basin extends across seven Mexican states, in-
cluding northern Jalisco, southern Zacatecas, Aguas-
calientes, and eastern Nayarit, as well as smaller por-
tions of Durango, San Luis Potosi, and Guanajuato
(Fig. 1). The SRB culminates in an outflow into the
Pacific Ocean near the town of San Blas, Nayarit. Its
highest topographical point reaches an elevation of
3130 m above sea level (masl).

Within the Hydrological Region VIII Lerma-San-
tiago, the SRB is renowned for its remarkable cli-
matic and biomass diversity. This basin is further
partitioned into two distinct hydrological subregions:
Rio Alto Santiago and Rio Bajo Santiago. The to-
pography traverses an array of elevations, spanning
from sea level along the Pacific coast to the towering
heights 0of 4500 masl in mountainous regions such as
the Nevado de Toluca in the State of Mexico and the
Nevado de Colima in the state of Jalisco.

Land use within this basin exhibits a range of
patterns, with forests occupying 32% of the territory,
agricultural areas comprising 27%, jungles constitut-
ing 18%, and grasslands and thickets encompassing
14%. The remaining land is distributed among veg-
etation zones (7%), urban areas, and wetlands (1%).

The SRB’s average surface runoff is about
7849 hm? yr!, with an annual water availability of
6287 hm? yr !. The basin has 47 overexploited aqui-
fers, leading to a deficit of 216 hm®. Groundwater
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Fig. 1. The Santiago River basin (SRB) and the available rain gauge network.

recharge is 1803 hm? yr!, yet the exploitation index
averages 0.60.

The basin houses approximately 7459 130 people
across 11081 localities within 123 municipalities.
With a population density of 103 people per km?,
urban centers like Guadalajara, Aguascalientes, and
Tepic house around 87% of the population.

Economically, the 2008 Gross Domestic Product
(GDP) amounted to 552466411 MXN (at 2003
prices), equivalent to 6.5% of the national GDP.
The tertiary sector played a pivotal role, constituting
23.74% of the total GDP of the hydrological region
in 2008 (CONAGUA, 2014).

In the northeastern expanse of Lake Chapala, the
Poncitlan dam governs the discharge of the principal
collector within the SRB. The Santiago River tra-
verses the states of Jalisco, Zacatecas, and Nayarit,
journeying 524 km before flowing into the Pacific
Ocean. Navigable only by small boats in Nayarit,
the Santiago River is punctuated by significant trib-
utaries, including the Verde, Juchipila, Bolafios, and
Huaynamota rivers. Several reservoirs within the

basin primarily serve irrigation and power generation
purposes (Gomez-Balandra et al., 2012).

Per the National Water Commission of Mexico
(CONAGUA, 2014), the basin’s climate exhibits
arid conditions in the northern sector, while a hu-
mid climate characterizes the central region, tran-
sitioning into hot and humid conditions along the
coast. The annual average precipitation stands at
822 mm year !, with a notable concentration of 80%
occurring between June and September. The basin
experiences an average annual temperature of 19 °C
and an evaporation rate of 1831 mm.

2.2 Main characteristics of the rainfall variability
in the Santiago River basin

The SRB can be categorized into three distinct
physio-climatic regions based on its seasonal pre-
cipitation patterns, as Méndez-Gonzalez et al. (2008)
outlined. The first region occupies the northern
segment of the basin, extending across the Mexican
plateau and encompassing the elevated zones (Fig. 2).
This is the most arid region, which witnesses the
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Fig. 2. Correlations between (a) February’s precipitation and shoreline distance, (b) July’s precipitation and
shoreline distance, (c) February’s precipitation and topographic elevation, and (d) July’s precipitation and topo-

graphic elevation.

lowest annual average rainfall, measuring 446 mm.
The second region occupies the basin’s central
expanse, which is predominantly characterized by
the topographic elements of the “Sierra Madre Oc-
cidental” mountain range. Here, the average annual
precipitation stands at 748 mm. The third region is
along the coastal regions of Jalisco and Nayarit in the
central sector of the Mexican Pacific. It experiences
the highest humidity levels among the three, with an
average annual rainfall of 1008 mm.

The SRB is situated in the tropical zone of the
northern hemisphere, specifically south of the Tropic
of Cancer. The trade winds and mid-latitude phenom-
ena brought about by oceanic anticyclones dominate
this area. Rainfalls occur between May and October,
mostly during summer and autumn, which constitute
70% of the yearly rainfall. July receives the highest
amount of rainfall, and heat waves are frequent

between July and August. Cyclonic disturbances af-
fect the SRB during summer, when the Intertropical
Convergence Zone (ITCZ) moves northward. The
cyclonic season lasts from June to November, with
September and October being the strongest months,
accounting for more than half of the yearly rainfall.
Winter sees the subtropical high-pressure belt, trade
winds moving south, and westerly winds becoming
more prevalent. Vortexes and cyclonic depressions
occur over the plateau and mountainous regions of the
SRB, as they intercept the westerly winds character-
istic of mid-latitudes, which bring cold temperatures.

2.3 Rainfall and covariables data

There are 287 meteorological stations in the SRB,
with record periods dating back to 1927 and ending
in 2010. Only stations that meet specific criteria were
selected to ensure consistency in the information
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collected. Firstly, stations with record periods that
start from 1980 or later were chosen. Secondly,
only stations with record periods of at least 30 years
were considered. Lastly, stations with missing data
exceeding 15% of the total monitored data during
that period were excluded (CONAGUA, 2014). After
applying these criteria, a network of 100 stations with
homogenized recording periods ranging from 1980
to 2009 was obtained. The daily data collected over
30 years, equivalent to 10950 days, was subjected to
frequency analysis as a part of the data exploration.
This CONAGUA data is freely available through the
Climate Computing Project (CLICOM, 2023). Rain
gauge spatial locations, CLICOM-ID, and elevations
are shown in Figure 1.

The quality of data was improved by applying
exploratory data analysis. This involved analyzing
mean precipitation for monthly and annual data dis-
tribution and checking descriptive statistics, kurtosis,
and skewness values. Stationarity and consistency
were also checked. Outliers were identified and
removed, and data transformation was done to meet
requirements. The result was a precipitation set of
89 stations scattered throughout the SRB. Table 1
shows statistics for selected monthly and annual
periods. The dry month statistics are close to normal
distribution statistics, but the wet months show sig-
nificant variation with larger kurtosis and skewness

J. R. Avila-Carrasco et al.

values. This is likely because the dry season has less
precipitation than the wet season.

Covariable data were available over all the SRB
surface. Terrain elevation was provided by the digital
elevation model from the Continuo de Elevaciones
Mexicano (CEM 3.0). The metadata can be down-
loaded at the INEGI website (INEGI, 2024). The data
used for the SRB surface was in a grid format of 15
x 15 m resolution. On the other hand, for shoreline
distance, gridded information was generated for the
entire study area surface. A 500 x 500 m grid was
generated by getting the shoreline distance to all grid
cells using the ArcGIS near (analyst) tool.

3. Geostatistical modeling

Estimates derived from univariate OK and bivariate
OCK were compared. The geostatistical approach
employed for analyzing each variable encompasses
three essential stages: exploratory data analysis,
structural analysis, and prediction.

3.1 Exploratory analysis

The exploratory analysis clarifies data characteris-
tics using standard statistical methods. It is vital for
all statistical analyses, especially for geostatistics,
to ensure data is not affected by distributional or
spatial outliers. Inspecting data is the first step in

Table I. Exploratory analysis of data for 89 rain gauge stations.

Period Mean  Minimum Maximum Median Kurtosis  Skewness Variance Standard
(mm) (mm) (mm) (mm) (mm?)  deviation (mm)

January 19.91 11.00 37.56 19.28 5.04 1.12 28.85 5.37
February 11.05 2.30 17.48 10.96 3.81 —0.18 7.36 2.71
March 2.79 0.75 8.50 2.76 8.02 1.39 1.37 1.17
April 5.48 0.96 17.38 5.34 5.41 0.96 7.47 2.76
May 18.69 5.92 29.17 18.74 3.36 -0.42 22.07 4.72
June 105.09 48.72 208.33 92.35 3.11 1.00 1471.49 38.50
July 167.09 55.78 368.96 149.77 4.53 1.16 3704.12 61.11
August 145.24 76.69 468.15 133.61 13.58 2.71 4260.49 65.44
September  106.01 52.47 380.78 94.19 17.75 3.37 2496.69 50.04
October 40.22 24.05 149.96 36.29 23.88 4.14 309.92 17.63
November 9.74 4.71 25.19 9.06 8.74 1.75 9.59 3.10
December 10.21 4.76 21.78 9.59 4.70 1.37 12.91 3.60
Monthly 53.46 28.79 129.84 48.72 7.61 1.81 325.04 18.08
Annual 641.53 345.44  1558.09  584.70 7.61 1.81 46806.19 216.97
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its preliminary exploration to make decisions for
addressing any issues with it. This is done by dis-
playing data using histograms, box plots, and scatter
diagrams and computing summary statistics (Chilés
and Delfiner, 2012).

The sample distribution should be trend-free
and exhibit homogenous spatial distribution. When
using the OK variance to evaluate local estimate
error uncertainty, it is important that the sample
distribution is normal-shaped (Heuvelink and Pe-
besma, 2001). Also, skewed distributions can lead
to unstable estimates and less certain inferences
(Webster and Oliver, 2007). One way to address this
issue is by transforming the measured values to a
new scale where the distribution resembles a normal
distribution. The physics of the environment might
determine what transformation would be appropriate;
logarithmic transformations are the most common in
Earth sciences.

3.2 Structural analysis

The objective of the structural analysis is to character-
ize the spatial structure of a regionalized variable. It is
the process of estimating and modeling the function
that describes the spatial correlation of the variables
involved, commonly called the variogram. The re-
liability of geostatistical estimation depends on the
variogram. Univariate kriging spatially estimates a
property using known values obtained at neighboring
or nearby positions. The function that describes the
spatial continuity of the variable is the experimental
variogram:

N(h)

> [2(x) ~z(x;+1)] "

where Z(x; + h) and Z(x;) are the values of the vari-
ables at the points x; + h and x;, respectively. N(h)
is the number of data pairs separated by a distance h
which in general is a vector. The experimental var-
iogram is fitted with a theoretical variogram model.
There are several theoretical variogram models; the
most common are spherical, exponential, and Gauss-
ian. The components of a variogram model are the
sill, the range, and the nugget.

If two regionalized variables Z,; (x;) and Z; (X;)
are considered, the cross semivariance moment
estimator function is given by the cross-variogram.

1 Ni‘:j
yvle(h)z
AN 5 )

|71 (3 1) = 2,1 ()| [Z2a0 ) = Z,a(x,) |

A linear coregionalization model (LCM) assumes
that all simple variograms (Eq. [1]) and crossed
variograms (Eq. [2]) can be expressed as a linear
combination of theoretical models (Isaaks and Sri-
vastava, 1989). For the case of considering only two
variables, the equations are:

rvi(h) = agr(h) + ... + a,,7,,(h)
yVIVZ(h) = 50]/0(h) + ...+ 5m7/m(h)

3.3 Model validation

The leave-one-out cross-validation technique was
used, which consists of removing one data location
and then predicting the associated data using the data
in the rest of the locations (Chilés and Delfiner, 2012).
The primary use of this analysis is to compare the
predicted value with the observed one to provide a
rigorous evaluation of a model’s predictive accuracy.
The method is applied automatically in ArcGIS Geo-
statistical Analyst (Johnston et al., 2001). Through the
Python tool, the result object contains an entity class
(shapefile: line, point, or polygon) and a cross-valida-
tion result, including the statistics in Table II.

3.4 Ordinary kriging estimator

OK is the most used geostatistical interpolation
technique. It is the best unbiased linear estimator
because it is based on the minimization of the
error variance; it is linear because the estimates
are weighted linear combinations of the available
information; and it is unbiased because it focuses
on obtaining an average residual error equal to zero
(Isaaks and Srivastava, 1989). The principle of
kriging is to estimate the value of a random variable
Z. at one or more unmonitored sites or over large
blocks, based on more or less scattered data samples
such as Z(x1), Z(x2),... Z(Xy), at points Xy, Xa,... Xy,
which can be distributed in two or three dimensions
(Webster and Oliver, 2007). The OK theory assumes
that the mean is unknown, in such a way that for
point estimates the estimate Z at some given position
X¢ is given by the following equation:
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Table II. Summary of prediction error metrics used in cross-validation (Johnston et al., 2001).

Mean error (ME*): the average difference between the
measured and predicted values.

_ 2L 2x)-2(x)]

" 4)

ME

Root mean square error (RMSE): it indicates the precision
of the model to predict the measured values; the smaller
this error, the better.

RMSE = \J 2 [Q(X;)_Z(Xi)]z .

Average standard error (ASE): the average of the prediction
standard errors.

Z:‘l:l o*(x;)

ASE = 7 ©)

Mean standardized error (MSE): the average of the
standardized errors. This value should be close to 0.

Z:;l {[%(Xz) - Z(Xz’)]/"(xi)}

" (7)

MSE =

Root-Mean-Square Standardized Error (RMSSE): its value
should be close to one of the valid prediction standard
errors.

RMSSE >1, the variance in the predictions is underestimated.
RMSSE <1, the variance in the prediction is overestimated.

RMSSE = JZL {[%(Xi) ~2(x;)|/o(x,) }2

" ®)

* 7(x;) are predicted values, Z(x;) are measured values, o(x;) is the standard deviation of predicted values, and # is the

total data values.

n
2(x0)=Y. 4,Z(x,) ©)
i=1
where A; are the weights that must add up to one to
ensure that the estimate is not biased. The local vari-
ance of the data within the limits of an ellipsoid is
used for the estimation, which is of great help in the
case where there are few measurement sites; however,
the local variance may not reflect these local changes.
In OK, the variance is minimized using an external
linear parameter known as the Lagrange multiplier
(1), which minimizes the error and makes the analysis
unbiased. In matrix form, this is expressed as follows:

r(x0x)) 7(%0%) - r(x0x) ][] (%)
}/(XZ,XI) y(xz’xz) }/(XZ’XN) 11|14, y(xz’xo)

s S . . 1 E = : (10)
y(xN’xl) y(xN’xz) }/(XN’XN) 1 Ay ]/(XN,XO)

1 (R T || Kt B

3.5 Ordinary cokriging estimator
The OCK method extends the principles of kriging
to accommodate multivariate estimation. It facilitates

the prediction of a target variable at a given location
by leveraging spatial relationships with neighboring
auxiliary or secondary variables that exhibit spatial
correlation with the primary variable of interest and
offer supplementary information that enhances the
accuracy of predictions. In practical applications,
OCK is particularly beneficial in areas where data on
the primary variable are sparse or unevenly distrib-
uted, whereas the auxiliary variables are extensively
monitored. One of the most important difficulties of
this method is that there are few standard models
for cross-covariances or covariograms. A common
approach is the linear coregionalization model.
However, it is important noticing that cokriging will
not always improve the corresponding OK estimate.
According to Isaaks and Srivastava (1989), if the
primary and secondary variables exist at all data
locations and the auto and cross-variograms are
proportional to the same basic model, the cokriging
estimates will be identical to those of OK. Conse-
quently, if the variogram models demonstrate a high
degree of similarity in shape and the primary variable
is adequately sampled, the utility of cokriging in
improving estimates diminishes.
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According to Webster and Oliver (2007), assum-
ing that there are [ = 1, 2,..., V' secondary variables
and the primary variable is denoted as u, then the
cokriging predictor for block B, Z, (B) can be ex-
pressed as a linear sum:

A 14 wl
Z,(B)= Y * dyz(x;)

I=1 i=1

(an

where the subscript i refers to the sites, of which
there are n; where the variable z; has been measured.
Furthermore, the estimation variance is minimized
by solution of the kriging system (Eq. [12]). In both
cases weights A;; must satisfy Eq. (13) conditions

v o
Z *Z /1i171v<xi’ Xj) +y, = }_’uv<Xj, B) (12)
I=1 i=1

i” _[1I=u

ST 01# u (13)

forallv=1,2;...,Vandallj=1,2,...;n, The
quantity y (X;, X;) is the (cross-)semivariance be-
tween variables / and V at sites i and j, separated by
the vector x; x;; Vuy (x;, B) is the average cross-semi-
variance between a site j and the block B; and v, is
the Lagrange multiplier for the vth variable. But if
I=voru=vthe semivariances are the autosemivari-
ances. Egs. (12) and (13) give the weights A that are
inserted in Eq. (11) to estimate Z,(B). The estimation
variance is given by

\%4 ny
o2B)=Y *y /11.,71V<xj, B>+1//v ~7uB:B) (14
=1 i=l

where y,, (B, B) is the integral of y,,(h) over B, i.e.,
the within-block variance of u.

Cokriging equations also can be represented in
matrix form. For two variables u and v, let I',,, de-
note a matrix of semivariances and cross-semivari-
ances between sampling points in a neighborhood.
If n, and n, represent places in which variables u
and v were measured, the order of the matrix is
n, % n,. In the same way, additional I'y,, T',,, T,
matrices are generated and included, while b, and
b,, represent the vectors of autosemivariances for
variable u and cross-semivariances respectively.
In this way, the system of equations in its matrix
form is shown as:

[ Ay,
1o ’1214
10 2
P T :1(:) Anyu Pu.u
r,, TIw 01 | _ b (15)
01 Ay, L
01 /1: M 0
11...100...000 nyv
00..011...100 Y
- v

Eq. (15) is further simplified as ., = G™'b, where G
is the augmented I" matrix, A is the vector of weights
and Lagrange multipliers, and b is the right-hand
vector. The I matrix, and the A and b vectors are
not shown in this work; please refer to Webster and
Oliver (2007) for the full description.

4. Results

This section begins with an analysis of the variables
correlation followed by the exploratory and structural
analyses, culminating with the presentation of rainfall
estimate results.

4.1 Correlation analysis

The correlation analysis was conducted to support
the use of covariates in the estimation with OCK.
Estimates of precipitation for a dry month (February)
and a wet month (July) were evaluated to represent
the wet and dry seasons. Data from 89 rain gauges
with records from 1980-2010 were used to obtain
these estimates. Figure 2 displays scatter plots of
precipitation recorded for February and July against
secondary variables: shoreline distance (Fig. 2a, b)
or topographic elevation (Fig. 2¢, d). Simple linear
regression models were fitted using precipitation as
the explained variable and covariables as explanatory
variables. The coefficient of determination (R?) was
used to measure how well the data fit the relationship
between the variables analyzed. This coefficient ex-
plains the extent to which one factor’s variability can
be attributed to its relationship with another related
factor. In the linear case, the square root of the co-
efficient of determination matches with the Pearson
correlation coefficient (r), thus measuring the linear
dependence between the variables.
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Alternatively, the Pearson coefficient also mea-
sures the linear relation between two variables; it
varies from —1 to +1. Negative values mean that one
variable increases while the other decreases, then the
fitted line presents a negative slope. A value between
+ 0.5 and £1 is considered a strong correlation. In this
case study, a strong correlation is observed for the
month of July using both covariates (see Table III).
According to Isaaks and Srivastava (1989), a good
correlation coefficient may be affected by extreme
pairs, resulting in a strong correlation that does not
reflect the poor correlation of the other pairs. Alter-
natively, the Spearman coefficient is a non-parametric
test that uses data ranges instead of the original data
and is interpreted similarly to the Pearson coefficient.
Significant differences between Pearson and Spearman
coefficients may provide valuable clues to the nature
of the relationship between the two variables. In the
results presented in Table II1, this is evident when the
terrain elevation is used as covariable in both months.

4.2 Exploratory analysis

The selection of final observed data points for esti-
mating rainfall in February and July was informed by
these exploratory analyses. Figure 3 illustrates fre-
quency histograms and boxplots depicting precipita-
tion data for February and July. In February (Fig. 3a),
the distribution of precipitation appears nearly
normal, while a discernible positive bias is evident
for July (Fig. 3b). This discrepancy is reflected in a
significant difference in the mean precipitation values
between the two months. To enhance the normality
of the data and mitigate bias in variogram estimation,
distributional outliers (values that fall outside boxplot
whiskers) were removed from the February dataset,
resulting in the retention of 77 rain gauges for anal-
ysis (Fig. 3a, c). Additionally, July data underwent
transformation using the natural logarithm function
(Fig. 3d). The transformed data distribution closely
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approximates normality, as corroborated by Table I'V.
Also, the data statistics were thoroughly exam-
ined. In February, after the removal of outliers, the
data from 77 rain gauges exhibited statistics indica-
tive of a closer approximation to a normal distribu-
tion. Notably, the kurtosis approached its optimum
value of 3, while the mean and median values exhib-
ited greater proximity (refer to Table IV). Similarly,
in July, the application of logarithmic transformation
yielded statistics that aligned more closely with the
desired parameters, as evidenced by Table I'V.

Both covariables, terrain elevation, and shoreline
distance were available for the entire SRB area, so we
selected a grid of observed data points with a separa-
tion of 25.69 km for both February and July. Figure 4
shows the selected observed data points used for es-
timation in February and July. Distributional outliers
detected in February appear in red color, while in
blue the 77 rain gauges selected for variogram fitting.
While for the month of July, all 89 gauges, red and
blue, were selected.

During the data exploration process, global
trends were identified using the ArcGIS Geostatisti-
cal Analyst Trend Analysis (Johnston et al., 2021).
These trends and directional influences refer to the
deterministic components of a surface that a math-
ematical formula can represent. This work used a
second-order polynomial equation to approximate the
valley surface topography. The trend was removed
from the measured points, and the analysis was done
for the residuals. It was added back in before mak-
ing predictions. Directional variograms were also
examined using ArcGIS-Spatial Analyst. However,
no significant variations were found, presenting just
omnidirectional variograms.

4.3 Structural analysis
In this work, ArcGIS 10.5 was used to test the
best-fitted theoretical variogram model to the dry

Table I11. Correlation coefficients R%, Pearson, and Spearman.

Co-variables R? Pearson ~ Spearman
February-shoreline distance  0.036 —-0.191 -0.122
February-terrain elevation ~ 0.0022 0.046 0.078
July-shoreline distance 0.77 -0.877 —0.859
July-terrain elevation 0.67 —-0.823 —0.765
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Fig. 3. Frequency histograms for observed precipitation data values of (a) precipitation
data for February, (b) precipitation data for July, (¢) 77 rain gauges in February removing
outliers, and (d) natural logarithm of precipitation data for July.

Table IV. Data distribution statistics for July and February and their respective
transformed values.

Statistics July Log February February
(July) (77 rain gauges)

Minimum 55.77 4.02 2.3 7.52
Maximum 368.96 591 17.47 15.13
Mean 167.09 5.05 11.05 11.20
Standard deviation ~ 61.10 0.34 2.71 1.79
Skewness 1.16 0.16 -0.18 0.37
Kurtosis 4.53 3.11 3.81 2.70
Ist quartile 121.35 4.79 9.66 10.01
Median 149.77 5.00 10.96 11
3rd quartile 204.12 5.31 2.59 12.31

n 89 &9 89 77
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Fig. 4. Selected observed data points used for estimation
in February and July.

and humid months data. The best-fit variogram
parameters are calculated automatically; then a
theoretical variogram is selected based on the
cross-validation statistics summary results. To en-
hance the variogram fitting modification to input
data may include outliers removal, logarithmic
transformations, and second-degree polynomial
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trend removal. During the structural analysis of July,
logarithmically transformed data was used for better
estimations, as highlighted in the exploratory data
analysis. The parameter values of the cross vario-
grams for the OCK are summarized in Table V. The
acronyms for the different cases are explained in the
table's footnote. For example, LSDTR-LP indicates
the covariance of the logarithm of the shoreline
distance with a second-order trend removal and the
logarithm of precipitation. Tables VI and VII follow
the same logic. A smaller nugget was observed when
the distance to the shoreline was introduced as a
secondary variable. When selecting the best option
for the bivariate cases for topographic elevation,
higher values were noted for the nugget and partial
sill despite the use of the same Gaussian model, lag
size, and range. Note that for the coregionalization
model parameters at bivariate cases, nugget is absent
because cokriging uses variogram for autocorrela-
tion and covariance to express cross-correlation
(Johnston et al., 2001). The last two lines in Table V
provide a comparison between the univariate cases
using transformed and untransformed data, with the
spherical model being the best fit. Of course, this
comparison of bivariate and univariate results was

Table V. Variogram/covariogram parameters used for precipitation data of July.

Model Component Nugget Partial sill Range
(mm?) (mm?) (m)
LP-LP 0.012 0.507
Gaussian LSDTR-LSDTR 0.004 0.101 470345.967
LSDTR-LP — 0.001
LPTR-LPTR 0.010 0.006
LETR-LETR 0.043 0.164 93712.086
Gaussian LETR-LPTR- —0.006
LPTR-LPTR- 0.010 0.006
LSDTR-LSD2TR 0.001 0.026 136213.480
Gaussian LSD2TR-LP2TR- —0.001
LP2TR-LP2T- 0.009 0.006 93590.645
Gaussian SD2TR-SD2TR 3469373.166  40168869.765
SD2TR-LP2TR- -23.129
Spherical P-P 0.000 291.764 13851.708
Spherical LP-LP 0.000 0.018 14983.725

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic transformation, TR:

second-order trend removal.
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Table VI. Variogram/covariance parameters used for precipitation data of February.

Model Component Nugget Partial sill Range
(mm’) (mm’) (m)
89P-89P 3.650 9.155
Spherical LSD-LSD 0 1.191234 450824.069
LSD-89P — —-0.103
89P-89P 3.643 9.158
Spherical LE-LE 0 1.713708558 450824.069
LE-89P — —-0.038
77P-77P 2.185 2.007
Gaussian LE-LE 0.0486 0.590 198160.691
LE-77P — —-0.072
77P-77P 2.194 2.099
Gaussian LSD-LSD 0.00041 0.411 207581.259
LSD-72P — —0.165
Spherical 89P-89P 2.762 7.888 262337.295
Gaussian 77P-77P 2.139 2.022 187925.888

751

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic
transformation, TR: second-order trend removal.

generated by using the same dataset in the application
of the respective methods.

Table VI shows the structural variogram parameters
for February for the bivariate and univariate cases. In
most cases, the nugget is large in comparison to the
partial sill, which suggests a small spatial dependence
of the data. The ratio of the nugget effect to the sill
is often referred to as the relative nugget effect and is
usually quoted in percentages. For the main variable,
when 89 data point values are used, the nugget is
36% of the partial sill; this percentage is increased to
63 % when 77 data points are used (with the outlier

values removed). The exploratory analysis of the
second variable (not shown) yielded better results
after logarithmic transformation, which is why only
the logarithmically transformed second variable is
presented in Table VI. The models used in the kriging
interpolations are shown in the last two lines.

4.4 Rainfall estimations

Regarding the estimation of rainfall for July, the most
accurate results for cross-validation errors are shown in
Table VII. Both OCK and OK showed similar results
for the root mean squared error (RMSE). However,

Table VII. Cross-validation results for precipitation of July using OCK and OK

Stadigraph Ordinary cokriging Ordinary Kriging
LP-LSDTR  LPTR-LETR LPTR-LSDTR LPTR-SDTR P LP
ME (mm) —-0.84 -0.003 -0.32 -0.07 1.12 -0.08
RMSE (mm) 20.22 20.27 20.44 20.09 23.45 22.83
MSE (-) -0.061 -0.013 -0.025 -0.015 0.04 0.01
RMSSE (-) 1.09 1.17 1.16 1.17 1.32 1.03
ASE (mm) 21.64 19.60 19.59 19.57 17.04 23.31

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic transformation, TR: second-

order trend removal.
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the univariate OK led to significant underestimation
of estimated error variances, particularly in the case
of shoreline distance. This is reflected in the average
standard error (ASE) of 17.04 in the OK estimation
with precipitation data, which was the lowest in com-
parison with the other cases, conversely to RMSE,
which was the biggest (23.45). The best estimates
were obtained with OCK by applying a logarithmic
transformation to precipitation. This was observed for
LPTR-SDTR (see Table VII), where shoreline distance
data was used without transformation. The best values
for the Root-mean-square standardized error (RMSSE)
and ASE were 20.09 and 19.57, respectively, which

were slightly superior to the results obtained using
topographic elevation (LPTR-LETR) of 20.27 and
19.60, respectively. When comparing the results of
transformed precipitation and shoreline distance data
(LPTR-LSDTR), stadigraph values were also similar
to those of the topographic elevation case, with a slight
improvement in error metrics; however, the mean error
(ME) was higher.

Figure 5 compares the three best July precipitation
estimates and their standard errors for OK and OCK
using shoreline distance and topographic elevation
as covariates. The figures show the same classes for
easy comparison.
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Fig. 5. (a and b) Precipitation estimates and corresponding error maps in July; (c and d) OCK precipitation-topographic
elevation (LPTR-LETR) and OCK precipitation-shoreline (LPTR-LSDTR), and (e and f) OCK (LPTR-SDTR) (OCK:
ordinary cokriging; L: logarithmic transformation; P: precipitation; TR: second order trend removal; E: topographic

elevation; SD: shoreline distance).
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The OCK estimates were very similar and had
smoother contours, revealing a precipitation gradient
with the highest values on the west shore. The most
significant differences were in the standard error map
using the terrain elevation and the shoreline distance
(Fig. 5b, d, f).

When comparing the standard error maps for
OCK, the estimates of LPTR-LETR and LPTR-SDTR
look quite similar (Fig. 5b, f, respectively). However,
LPTR-LSDTR had the highest error expansion near
the coast and provided the best result.

All 89 rain gauges were used for the February
precipitation estimations, keeping the 77 fitted data
variogram parameters. Table VIII displays the three
estimation methods’ cross-validation outcomes for
precipitation in February. The results indicate that
using covariables in OCK resulted in higher RM-
SEs than univariate OK estimates using the fitted
variogram parameters on 77 data. When comparing
the errors between 89 and 77 data values, the latter
option delivered better results in both bivariate and
univariate cases. Despite applying logarithmic trans-
formations to each covariable in OCK estimations,
they did not outperform OK results. Reducing the
number of gauges from 89 to 77 by discarding dis-
tributional outliers for variogram fitting in OK and
then adding them back in estimations significantly
improved the errors. For instance, ME decreased
from 0.005 to 0.0006, RMSE decreased from 2.74
to 2.66, and ASE decreased from 2 to 1.5 in 89 and
77 precipitation gauges, respectively.

For February, precipitation estimates were com-
pared using the three different methods, similar to
what was done in July. The findings showed that the

OCK method did not outperform the OK predictions
for 77 precipitation gauges. This was due to the lim-
ited amount of rainfall recorded during February and
the lack of correlation between covariables. Accord-
ing to Goovaerts (2000b), cokriging will be useful as
long as a good correlation exists between variables.
Therefore, only the best results were mapped and
shown in Figure 2a, c, e. To improve the normality of
the data, outlier values were removed for variogram
fitting (Fig. 3c), although the initial distribution of
data was not particularly problematic. Maps were
created to display the resulting estimates using OCK
for February, based on 77 observed data points and
transformed covariables. These maps can be seen
in Figure 6a, c. By reducing the data from 89 to 77,
the range of variability was narrowed to between
9.1 and 15.2.

According to Jalili and Modarres (2020), in-
creasing the number of gauges does not necessarily
improve estimates. The maps in Figure 6b, d show the
standard error predictions, reflecting the uncertainty
related to the predicted values. Using 77 data points
reduced the estimation error variance from more than
1.37 to less than 0.83. It is important to note that
regardless of whether 77 data points or any covari-
able (elevation or shoreline distance) were used, the
contour maps remained the same. Hence, there was
no improvement in the estimation.

5. Discussion

Based on the correlation analysis, there seems to be
no relationship between the precipitation data for
February and the secondary variables. However, for

Table VIII. Cross-validation results for precipitation estimation of February using ordinary

co-kriging and ordinary kriging.

Ordinary cokriging Ordinary kriging

Stadigraph
89P-LSD  89P-LE  77P-LSD  77P-LE 89P 77P

ME (mm) —-0.0038  —0.0035  0.00014  0.00085 0.0050  —0.00061
RMSE (mm) 2.6679 2.6682 2.6402  2.64549 2.7418 2.6592
MSE (-) -0.0016  —0.0015  0.00045  0.00099 0.0016 0.00015
RMSSE (-) 1.2090 1.2101 1.6588 1.6614 1.3380 1.6807
ASE (mm) 2.1712 2.1696 1.5722 1.5722 2.0084 1.5608

89P: 89 precipitation gauges, 77P: 77 precipitation gauges, LSD: logarithm of shoreline
distance, LE: logarithm of the topographic elevation.
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Fig. 6. Left panel, OK estimates for the precipitation of (a) February using the variogram fitted to 77 observed data points
and transformed shoreline distance (77P-LSD); (c) OCK using 89 data points and transformed elevation as covariable
(89P-LE); (e) using the variogram fitted to 77 observed data points (77P). Right panel, the respective standard errors:
(b) 77 observed data points and transformed shoreline distance; (d) OCK using 89 data with transformed elevation as
covariable; and (f) using the variogram fitted to 77 observed data points (OK: ordinary kriging; P: precipitation; L:
logarithmic transformation; SD: shoreline distance; OCK: ordinary cokriging; E: topographic elevation).

July, the goodness of fit is satisfactory (R? = 0.70)
for the two covariates. This justifies the use of the
two secondary variables for estimating precipitation
with OCK. Logarithmic transformation was used
to rectify the precipitation data distribution, which
helped to obtain a good fit for July’s precipitation
data. This confirms Giarno et al. (2020) findings
that data transformations are only beneficial during
the wet season and not the dry season in some
regions.

In the structural analysis, variogram parameters
were analyzed. For the bivariate cases, a Gaussian
model was more effective, consistent with the find-
ings of Goovaerts (2000b) and Jalili and Modarres
(2020). A larger nugget/sill ratio was obtained when
the number of data used to estimate the variogram
was reduced. According to Goovaerts (2000a), a
larger nugget effect indicates weakened spatial
dependence between the two variables’ data, and
the benefits of using kriging diminish. Additionally,



Improving geostatistical precipitation estimates in the Santiago River basin, Mexico 755

reducing the number of data points increases the
range. The inner points gain weight as the effective
range increases, according to Webster and Oliver
(2007). Conversely, if the effective range decreases
substantially, the weights of inner points decrease
while the outer ones increase. A shorter range may
produce estimates equal to the mean of the available
data, and lower estimation variances due to the dif-
ferences in the weights become 1 n™'. On the other
hand, for larger range estimation, the variance is
lower since it produces the effect of samples being
twice as close in terms of statistical distance.

The logarithmic transformation of the secondary
data, such as shoreline distance and topographic
elevations, shows that the RMSSE values are closer
to one, indicating a good correspondence between
the errors and the estimated error variances. This
result coincides with Giarno et al. (2020) findings
for the wet season. Other authors, such as Majani
(2007) or Cunha et al. (2013), found that terrain
elevation provided better results than shoreline
distance. However, in the first case, the data did
not show a good correlation between shore distance
and precipitation, and in the second one, elevation
results were only slightly better than those of
shoreline distance.

The gradient towards the ocean suggests a strong
influence of the humidity source on precipitation.
Johansson and Chen (2003) found that rainfall
data on the windward side of the mountain range is
more variable than in other areas, and terrain slope
influence on precipitation is stronger near the coast.
This influence is evident in our study zone, where
most gauges are in a low variability zone. A rainfall
gradient was also detected near the coast, where
higher precipitation is recorded, decreasing inland.
Similarly, Subyani (2009) found that factors such as
shoreline distance and seasonality, apart from terrain
elevation and complex terrain, may increase rainfall
variability.

6. Conclusions

This study evaluates different techniques for improv-
ing precipitation estimation in the SRB, specifically
for dry and humid months. Bivariate methods using
covariables like altitude and shoreline distance for
spatial interpolation of precipitation were compared

with univariate methods. Ordinary kriging was used
for the univariate case, while ordinary cokriging was
used for the bivariate case. Correlation and logarith-
mic transformation were explored for precipitation
data from different seasons, with analysis done for
February and July, representing the dry and humid
months.

The results showed that estimation improved
using transformed data when there was a high cor-
relation between precipitation and covariables for
the humid month of July. Using shoreline distance
or terrain elevation for spatial estimation using
OCK in the wet season months, like July, would be
a good option since both covariables showed a good
correlation for humid July. Using OCK was justified,
and logarithmic transformation helped significantly.
This was evident for precipitation and auxiliary
variables of terrain elevation and shoreline distance,
where data distributions got closer to normal. The
improvement was evident, especially for shoreline
distance, where errors approached those obtained
with terrain elevation.

As is well known, humidity sources, along with
terrain elevation, influence the rainfall regime. In this
case study, shoreline distance data may offer the same
benefits as terrain elevation for geostatistical precip-
itation estimation in areas like the SRB. Finding the
correct geostatistical interpolation algorithm may
be difficult since each region is unique due to phys-
iographic and climatological differences. However,
following the steps and methods used in this paper
could be helpful in achieving good performance for
a hydrologic model, thus preventing high costs and
biases.

On the other hand, our findings highlight that data
transformation and the use of secondary data may
not yield satisfactory results during dry months. It
is important to note that the normal distribution of
data is not a common characteristic of dry months,
which poses a challenge for geostatistical methods.
Consequently, simpler techniques like the inverse
ditance weighted interpolation (IDW) method or
Thiessen polygons, which do not rely on data nor-
mality assumptions, might be more appropriate in
such scenarios. Additionally, while data distribution
skewness can be improved by discarding outliers and,
therefore, a better variogram fitting is achieved, these
data should not be discarded at estimation. Hence,
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further research is warranted to explore alternative
approaches and enhance our understanding of pre-
cipitation estimation during dry periods.
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