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RESUMEN

La estimación precisa de la precipitación es crucial para comprender el ciclo hidrológico, sus aplicaciones 
en la planificación específica de cuencas y la predicción de eventos extremos. La geoestadística multivariada 
aprovecha las variables correlacionadas, como la elevación del terreno y la distancia a la costa, para reducir 
la incertidumbre de la estimación. Sin embargo, las distintas características de las estaciones húmeda y seca 
exigen enfoques de estimación particulares. La estimación precisa de la precipitación plantea un desafío en 
la vasta y diversa cuenca del río Santiago (SRB) a lo largo de la costa oeste de México. Este estudio evaluó 
las estimaciones de precipitación para las estaciones seca y húmeda utilizando kriging ordinario y cokriging 
ordinario con la altitud y la distancia a la costa como variables auxiliares. La evaluación de las métricas de 
error reveló resultados superiores al incorporar la distancia a la costa como una covariable en el mes húmedo 
de julio, especialmente después de la transformación logarítmica, lo que arrojó una mejora del 17 % en el 
error estandarizado promedio en comparación con el enfoque univariado. Por el contrario, se lograron resul-
tados óptimos para el mes seco (febrero) usando kriging ordinario excluyendo valores atípicos, reduciendo 
efectivamente el error cuadrático promedio.

ABSTRACT

Accurate precipitation estimation is crucial for understanding the hydrological cycle, its applications in ba-
sin-specific planning, and outliers event prediction. Multivariate geostatistics leverage correlated variables, 
such as terrain elevation and shoreline distance, to reduce estimation error uncertainty. However, the distinct 
characteristics of humid and dry seasons demand specific estimation approaches. Precise precipitation es-
timation poses a challenge in the vast and diverse Santiago River basin (SRB) along Mexico’s west coast. 
This study assessed precipitation estimates for dry and humid seasons using ordinary kriging and ordinary 
cokriging with altitude and shoreline distance as auxiliary variables. Evaluation of error metrics revealed 
superior results incorporating shoreline distance as a covariable in the wet month of July, especially after 
logarithmic transformation, yielding a 17% improvement in average standardized error compared to the 
univariate approach. Conversely, optimal results were achieved for the dry month (February) using ordinary 
kriging excluding outliers’ values, effectively reducing the average squared error.

Keywords: seasonal changes, kriging, cokriging, gridded rain, relief variability, shoreline distance, 
topographic elevation.
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1.	 Introduction
Precipitation estimates are crucial in comprehending 
the hydrological cycle within specific basins or re-
gions. Their significance spans diverse applications, 
from facilitating design and planning to predicting 
outlier events like droughts and floods. Gridded rain 
gauge estimates have recently witnessed increased 
demand due to their ability to account for spatial and 
temporal rainfall distributions. These data primarily 
serve as inputs for hydrological models integrated 
with Geographic Information Systems (GIS).

Estimating precipitation in regions with intricate 
physioclimatic characteristics presents significant 
challenges due to its spatial and temporal variabil-
ity. Waylen et al. (1996) employed geostatistics to 
analyze precipitation estimates and investigate their 
response to the El Niño phenomenon in the complex 
terrain of Costa Rica. They discovered that the com-
plexity of precipitation estimation arises from distinct 
generating mechanisms, topographical influences, 
oceanic factors, and the lag period considered. Sim-
ilarly, Holawe and Dutter (1999) explored complex 
climate patterns in Austria’s mountainous regions on 
a seasonal scale, gaining valuable insights by com-
paring the results of simulated wet and dry periods.

Sideris et al. (2020) introduced NowPrecip, a 
precipitation nowcasting system that operates at 
various temporal scales by utilizing radar data and 
an optical flow algorithm based on geostatistics 
known as NowTrack. They successfully applied this 
system in the mountainous regions of Switzerland. 
On a seasonal scale, Portalés et al. (2010) conducted 
a comparative analysis of univariate and multivariate 
estimation methods in Valencia, Spain, to develop 
models for different seasonal periods. Given the 
geographical heterogeneity, they concluded that no 
single estimation method suits all scenarios. Notably, 
seasonal events like heavy rainfall during the wet 
season significantly impact interpolation, as Giarno 
et al. (2020) demonstrated.

Meanwhile, Vischel et al. (2009) demonstrated the 
sensitivity of hydrological systems to precipitation 
intensity and spatial patterns. Their study explored 
interannual variability resulting from changes in the 
precipitation regime over a decadal timeframe, leading 
to fluctuations in runoff. Notably, runoff estimation 
showed a significant difference, with kriging yield-
ing 25% lower estimates than those obtained with 

conditional point simulations. It is widely known that 
kriging/cokriging type estimates tend to smooth out the 
data, while simulations, on the other hand, accurately 
reproduce the variability of the data. However, it has 
been recognized that estimation and simulation ap-
proaches are optimal for criteria that typically conflict 
with each other (Goovaerts, 2000a). The estimation 
objective is to minimize the local error variance, while 
the simulation objective is to reproduce global statis-
tics such as the histogram or semivariogram. On the 
other hand, according to Webster and Oliver (2007), 
simulations are not recommended if the main purpose 
is estimation because the variance of a simulated value 
is larger than that of a kriged value.

Multivariate geostatistics have proven valuable in 
dealing with complex climates and terrains. Methods 
like cokriging (CK) or kriging with external drift 
(KED) have demonstrated the ability to incorporate 
secondary information effectively. Notably, when 
estimating precipitation, incorporating information 
such as topographic elevation as a covariate has 
shown promising results, mainly when there is a 
strong correlation with terrain elevation (Hevesi et 
al., 1992; Martinez-Cob, 1995; Holawe and Dutter, 
1999; Diodato, 2005; Murthy and Abbaiah, 2007; 
Putthividhya and Tanaka, 2012; Kumari et al., 2017).

Although the outcomes generally favor ordinary 
cokriging (OCK) (Viola et al., 2010), its implemen-
tation can be challenging as it requires fitting a linear 
coregionalization model (LCM). Using a bivariate 
data set (precipitation-covariate), LCM requires two 
direct variograms and one cross variogram, which 
must be positive definite. Some methods to prove this 
can be found in Wackernagel (1998) and are used by 
applications such as ArcGIS-Geostatistical Analyst 
(Johnston et al., 2001), where cross variograms are 
calculated through cross covariances in the coregion-
alization models. In this way, the software adapts 
these models by allowing a spatial shift between 
variables, adding two parameters to describe the 
shift in the x- and y-coordinate. On the other hand, 
studies such as Hevesi et al. (1992) and Huang and Hu 
(2009) conclude that OCK variants give better results 
than kriging as long as the precipitation-covariable 
correlation is good (> 0.7).

The spatial variability in precipitation patterns is in-
fluenced by various environmental descriptors, encom-
passing both complex terrain and other contributing 



741Improving geostatistical precipitation estimates in the Santiago River basin, Mexico

factors. Researchers such as Goovaerts (2000b) and 
Subyani and al-Dakheel (2009) suggest incorporat-
ing additional secondary variables to enhance the 
precision of cokriging estimates. Volkmann et al. 
(2010) have also employed CK and KED alongside 
radar data as a covariable. Among the various factors 
explored for their correlation with precipitation, two 
significant ones are the distance to the shoreline and 
the topography.

The proximity to coastlines plays a crucial role in 
precipitation patterns. Ogino et al. (2016) identified 
distinct precipitation peaks near the coast, gradually 
diminishing over approximately 300 km on both 
sides of the coastline. Similarly, Buttafuoco and 
Lucà (2020) conducted a study in the coastal chain 
of southern Italy, revealing higher precipitation levels 
near the shoreline, particularly at higher elevations. 
Hayward and Clarke (2009) observed a greater vari-
ability in precipitation per kilometer near the coast, 
with certain seasons exerting notable influence in 
regression models.

Topography also significantly impacts precip-
itation distribution. Johansson and Chen (2003) 
delved into the relationship between precipitation, 
topography, and wind flow in Sweden, as represent-
ed by geostrophic air humidity from the shoreline. 
The results showcased increased variation in the 
windward zone of the mountain range due to pres-
sure changes with wind speed, while coastal regions 
experienced rising air, gradually diminishing in 
mountain valleys.

In a comparative study, Majani et al. (2007) 
compared KED with ordinary kriging (OK) using 
topographic elevation, slope, wind, and shoreline 
distance as covariates. The researchers found that 
topographic elevation emerged as the most effective 
covariate, as precipitation correlations with the other 
variables remained relatively small (< 0.5).

Meanwhile, Cunha et al. (2013) evaluated OCK 
with topographic elevation and shoreline distance 
data in Espírito Santo, Brazil, and compared it with 
OK. The results slightly favored OCK interpolation 
with topographic elevation, only marginally outper-
forming shoreline distance.

Spatial distributed pluviometric data is one of 
the main inputs for hydrological models; therefore, 
reducing geostatistical estimation error uncertainty 
is vital to enhance the accuracy of model simulations 

and projections. The Santiago River basin (SRB) 
covers a large part of the west coast of Mexico 
with a wide diversity in relief and climates, which 
makes pluvial precipitation estimation a challenging 
problem (Ávila-Carrasco et al., 2016). This study 
compares the effectiveness of univariate or multi-
variate geostatistics with shoreline distance or terrain 
elevation as secondary variables to reduce precipi-
tation estimate error uncertainty. The precipitation 
estimates are generated for characteristic dry and 
humid months using OK and OCK. Additionally, 
the rainfall-covariable correlation and logarithmic 
transformation benefits are explored for both cases.

2.	 Data and methodology
2.1 Study area
The SRB is located in the western central region of 
Mexico, encompassing an area of approximately 
76 274 km² with a perimeter spanning 1923.5 km. 
This basin extends across seven Mexican states, in-
cluding northern Jalisco, southern Zacatecas, Aguas-
calientes, and eastern Nayarit, as well as smaller por-
tions of Durango, San Luis Potosí, and Guanajuato 
(Fig. 1). The SRB culminates in an outflow into the 
Pacific Ocean near the town of San Blas, Nayarit. Its 
highest topographical point reaches an elevation of 
3130 m above sea level (masl).

Within the Hydrological Region VIII Lerma-San-
tiago, the SRB is renowned for its remarkable cli-
matic and biomass diversity. This basin is further 
partitioned into two distinct hydrological subregions: 
Río Alto Santiago and Río Bajo Santiago. The to-
pography traverses an array of elevations, spanning 
from sea level along the Pacific coast to the towering 
heights of 4500 masl in mountainous regions such as 
the Nevado de Toluca in the State of Mexico and the 
Nevado de Colima in the state of Jalisco.

Land use within this basin exhibits a range of 
patterns, with forests occupying 32% of the territory, 
agricultural areas comprising 27%, jungles constitut-
ing 18%, and grasslands and thickets encompassing 
14%. The remaining land is distributed among veg-
etation zones (7%), urban areas, and wetlands (1%).

The SRB’s average surface runoff is about 
7849 hm³ yr–1, with an annual water availability of 
6287 hm³ yr–1. The basin has 47 overexploited aqui-
fers, leading to a deficit of 216 hm3. Groundwater 
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recharge is 1803 hm³ yr–1, yet the exploitation index 
averages 0.60.

The basin houses approximately 7 459 130 people 
across 11 081 localities within 123 municipalities. 
With a population density of 103 people per km², 
urban centers like Guadalajara, Aguascalientes, and 
Tepic house around 87% of the population.

Economically, the 2008 Gross Domestic Product 
(GDP) amounted to 552 466 411 MXN (at 2003 
prices), equivalent to 6.5% of the national GDP. 
The tertiary sector played a pivotal role, constituting 
23.74% of the total GDP of the hydrological region 
in 2008 (CONAGUA, 2014).

In the northeastern expanse of Lake Chapala, the 
Poncitlán dam governs the discharge of the principal 
collector within the SRB. The Santiago River tra-
verses the states of Jalisco, Zacatecas, and Nayarit, 
journeying 524 km before flowing into the Pacific 
Ocean. Navigable only by small boats in Nayarit, 
the Santiago River is punctuated by significant trib-
utaries, including the Verde, Juchipila, Bolaños, and 
Huaynamota rivers. Several reservoirs within the 

basin primarily serve irrigation and power generation 
purposes (Gómez-Balandra et al., 2012).

Per the National Water Commission of Mexico 
(CONAGUA, 2014), the basin’s climate exhibits 
arid conditions in the northern sector, while a hu-
mid climate characterizes the central region, tran-
sitioning into hot and humid conditions along the 
coast. The annual average precipitation stands at 
822 mm year–1, with a notable concentration of 80% 
occurring between June and September. The basin 
experiences an average annual temperature of 19 ºC 
and an evaporation rate of 1831 mm.

2.2 Main characteristics of the rainfall variability 
in the Santiago River basin

The SRB can be categorized into three distinct 
physio-climatic regions based on its seasonal pre-
cipitation patterns, as Méndez-González et al. (2008) 
outlined. The first region occupies the northern 
segment of the basin, extending across the Mexican 
plateau and encompassing the elevated zones (Fig. 2). 
This is the most arid region, which witnesses the 
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lowest annual average rainfall, measuring 446 mm. 
The second region occupies the basin’s central 
expanse, which is predominantly characterized by 
the topographic elements of the “Sierra Madre Oc-
cidental” mountain range. Here, the average annual 
precipitation stands at 748 mm. The third region is 
along the coastal regions of Jalisco and Nayarit in the 
central sector of the Mexican Pacific. It experiences 
the highest humidity levels among the three, with an 
average annual rainfall of 1008 mm.

The SRB is situated in the tropical zone of the 
northern hemisphere, specifically south of the Tropic 
of Cancer. The trade winds and mid-latitude phenom-
ena brought about by oceanic anticyclones dominate 
this area. Rainfalls occur between May and October, 
mostly during summer and autumn, which constitute 
70% of the yearly rainfall. July receives the highest 
amount of rainfall, and heat waves are frequent 

between July and August. Cyclonic disturbances af-
fect the SRB during summer, when the Intertropical 
Convergence Zone (ITCZ) moves northward. The 
cyclonic season lasts from June to November, with 
September and October being the strongest months, 
accounting for more than half of the yearly rainfall. 
Winter sees the subtropical high-pressure belt, trade 
winds moving south, and westerly winds becoming 
more prevalent. Vortexes and cyclonic depressions 
occur over the plateau and mountainous regions of the 
SRB, as they intercept the westerly winds character-
istic of mid-latitudes, which bring cold temperatures.

2.3 Rainfall and covariables data
There are 287 meteorological stations in the SRB, 
with record periods dating back to 1927 and ending 
in 2010. Only stations that meet specific criteria were 
selected to ensure consistency in the information 
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collected. Firstly, stations with record periods that 
start from 1980 or later were chosen. Secondly, 
only stations with record periods of at least 30 years 
were considered. Lastly, stations with missing data 
exceeding 15% of the total monitored data during 
that period were excluded (CONAGUA, 2014). After 
applying these criteria, a network of 100 stations with 
homogenized recording periods ranging from 1980 
to 2009 was obtained. The daily data collected over 
30 years, equivalent to 10 950 days, was subjected to 
frequency analysis as a part of the data exploration. 
This CONAGUA data is freely available through the 
Climate Computing Project (CLICOM, 2023). Rain 
gauge spatial locations, CLICOM-ID, and elevations 
are shown in Figure 1.

The quality of data was improved by applying 
exploratory data analysis. This involved analyzing 
mean precipitation for monthly and annual data dis-
tribution and checking descriptive statistics, kurtosis, 
and skewness values. Stationarity and consistency 
were also checked. Outliers were identified and 
removed, and data transformation was done to meet 
requirements. The result was a precipitation set of 
89 stations scattered throughout the SRB. Table I 
shows statistics for selected monthly and annual 
periods. The dry month statistics are close to normal 
distribution statistics, but the wet months show sig-
nificant variation with larger kurtosis and skewness 

values. This is likely because the dry season has less 
precipitation than the wet season.

Covariable data were available over all the SRB 
surface. Terrain elevation was provided by the digital 
elevation model from the Continuo de Elevaciones 
Mexicano (CEM 3.0). The metadata can be down-
loaded at the INEGI website (INEGI, 2024). The data 
used for the SRB surface was in a grid format of 15 
× 15 m resolution. On the other hand, for shoreline 
distance, gridded information was generated for the 
entire study area surface. A 500 × 500 m grid was 
generated by getting the shoreline distance to all grid 
cells using the ArcGIS near (analyst) tool.

3.	 Geostatistical modeling
Estimates derived from univariate OK and bivariate 
OCK were compared. The geostatistical approach 
employed for analyzing each variable encompasses 
three essential stages: exploratory data analysis, 
structural analysis, and prediction.

3.1 Exploratory analysis
The exploratory analysis clarifies data characteris-
tics using standard statistical methods. It is vital for 
all statistical analyses, especially for geostatistics, 
to ensure data is not affected by distributional or 
spatial outliers. Inspecting data is the first step in 

Table I. Exploratory analysis of data for 89 rain gauge stations.

Period Mean
(mm)

Minimum
(mm)

Maximum
(mm)

Median
(mm) Kurtosis Skewness Variance

(mm2)
Standard 

deviation (mm)

January 19.91 11.00 37.56 19.28 5.04 1.12 28.85 5.37
February 11.05 2.30 17.48 10.96 3.81 –0.18 7.36 2.71
March 2.79 0.75 8.50 2.76 8.02 1.39 1.37 1.17
April 5.48 0.96 17.38 5.34 5.41 0.96 7.47 2.76
May 18.69 5.92 29.17 18.74 3.36 –0.42 22.07 4.72
June 105.09 48.72 208.33 92.35 3.11 1.00 1471.49 38.50
July 167.09 55.78 368.96 149.77 4.53 1.16 3704.12 61.11
August 145.24 76.69 468.15 133.61 13.58 2.71 4260.49 65.44
September 106.01 52.47 380.78 94.19 17.75 3.37 2496.69 50.04
October 40.22 24.05 149.96 36.29 23.88 4.14 309.92 17.63
November 9.74 4.71 25.19 9.06 8.74 1.75 9.59 3.10
December 10.21 4.76 21.78 9.59 4.70 1.37 12.91 3.60
Monthly 53.46 28.79 129.84 48.72 7.61 1.81 325.04 18.08
Annual 641.53 345.44 1558.09 584.70 7.61 1.81 46 806.19 216.97
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its preliminary exploration to make decisions for 
addressing any issues with it. This is done by dis-
playing data using histograms, box plots, and scatter 
diagrams and computing summary statistics (Chilés 
and Delfiner, 2012).

The sample distribution should be trend-free 
and exhibit homogenous spatial distribution. When 
using the OK variance to evaluate local estimate 
error uncertainty, it is important that the sample 
distribution is normal-shaped (Heuvelink and Pe-
besma, 2001). Also, skewed distributions can lead 
to unstable estimates and less certain inferences 
(Webster and Oliver, 2007). One way to address this 
issue is by transforming the measured values to a 
new scale where the distribution resembles a normal 
distribution. The physics of the environment might 
determine what transformation would be appropriate; 
logarithmic transformations are the most common in 
Earth sciences.

3.2 Structural analysis
The objective of the structural analysis is to character-
ize the spatial structure of a regionalized variable. It is 
the process of estimating and modeling the function 
that describes the spatial correlation of the variables 
involved, commonly called the variogram. The re-
liability of geostatistical estimation depends on the 
variogram. Univariate kriging spatially estimates a 
property using known values obtained at neighboring 
or nearby positions. The function that describes the 
spatial continuity of the variable is the experimental 
variogram:

γ (h) =
1

2N (h)

N(h)

∑
i=1

[Z(xi) − Z(xi + h)]
2

	 (1)

where Z(xi + h) and Z(xi) are the values of the vari-
ables at the points xi + h and xi, respectively. N(h) 
is the number of data pairs separated by a distance h 
which in general is a vector. The experimental var-
iogram is fitted with a theoretical variogram model. 
There are several theoretical variogram models; the 
most common are spherical, exponential, and Gauss-
ian. The components of a variogram model are the 
sill, the range, and the nugget.

If two regionalized variables Zv1 (xi) and Zv2 (xi) 
are considered, the cross semivariance moment 
estimator function is given by the cross-variogram.

γv1v2(h) =
1

2N (h)

N(h)

∑
i=1

[Zv1(xi + h) − Zv1(xi)][Zv2(xi + h) − Zv2(xi)]

	 (2)

A linear coregionalization model (LCM) assumes 
that all simple variograms (Eq. [1]) and crossed 
variograms (Eq. [2]) can be expressed as a linear 
combination of theoretical models (Isaaks and Sri-
vastava, 1989). For the case of considering only two 
variables, the equations are:
γv1(h) = α0γ0(h) + … + αmγm(h)
γv2(h) = β0γ0(h) + … + βmγm(h)
γv1v2(h) = δ0γ0(h) + … + δmγm(h)

	 (3)

3.3 Model validation
The leave-one-out cross-validation technique was 
used, which consists of removing one data location 
and then predicting the associated data using the data 
in the rest of the locations (Chilès and Delfiner, 2012). 
The primary use of this analysis is to compare the 
predicted value with the observed one to provide a 
rigorous evaluation of a model’s predictive accuracy. 
The method is applied automatically in ArcGIS Geo-
statistical Analyst (Johnston et al., 2001). Through the 
Python tool, the result object contains an entity class 
(shapefile: line, point, or polygon) and a cross-valida-
tion result, including the statistics in Table II.

3.4 Ordinary kriging estimator
OK is the most used geostatistical interpolation 
technique. It is the best unbiased linear estimator 
because it is based on the minimization of the 
error variance; it is linear because the estimates 
are weighted linear combinations of the available 
information; and it is unbiased because it focuses 
on obtaining an average residual error equal to zero 
(Isaaks and Srivastava, 1989). The principle of 
kriging is to estimate the value of a random variable 
Z at one or more unmonitored sites or over large 
blocks, based on more or less scattered data samples 
such as Z(x1), Z(x2),… Z(xN), at points x1, x2,… xN, 
which can be distributed in two or three dimensions 
(Webster and Oliver, 2007). The OK theory assumes 
that the mean is unknown, in such a way that for 
point estimates the estimate Z̑ at some given position 
x0 is given by the following equation:
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Ẑ(x0)=
n

∑
i=1

λiZ(xi)	 (9)

where λi are the weights that must add up to one to 
ensure that the estimate is not biased. The local vari-
ance of the data within the limits of an ellipsoid is 
used for the estimation, which is of great help in the 
case where there are few measurement sites; however, 
the local variance may not reflect these local changes. 
In OK, the variance is minimized using an external 
linear parameter known as the Lagrange multiplier 
(µ), which minimizes the error and makes the analysis 
unbiased. In matrix form, this is expressed as follows:

γ(x1,x1) γ(x1,x2) … γ(x1,xN) 1
γ(x2,x1) γ(x2,x2) … γ(x2,xN) 1

⋮ ⋮ ⋮ ⋮ 1
γ(xN,x1) γ(xN,x2) … γ(xN,xN) 1

1 1 … 1 0

λ1
λ2
⋮
λN
μ

=

γ(x1,x0)
γ(x2,x0)

⋮
γ(xN,x0)

1

	(10)

3.5 Ordinary cokriging estimator
The OCK method extends the principles of kriging 
to accommodate multivariate estimation. It facilitates 

the prediction of a target variable at a given location 
by leveraging spatial relationships with neighboring 
auxiliary or secondary variables that exhibit spatial 
correlation with the primary variable of interest and 
offer supplementary information that enhances the 
accuracy of predictions. In practical applications, 
OCK is particularly beneficial in areas where data on 
the primary variable are sparse or unevenly distrib-
uted, whereas the auxiliary variables are extensively 
monitored. One of the most important difficulties of 
this method is that there are few standard models 
for cross-covariances or covariograms. A common 
approach is the linear coregionalization model. 
However, it is important noticing that cokriging will 
not always improve the corresponding OK estimate. 
According to Isaaks and Srivastava (1989), if the 
primary and secondary variables exist at all data 
locations and the auto and cross-variograms are 
proportional to the same basic model, the cokriging 
estimates will be identical to those of OK. Conse-
quently, if the variogram models demonstrate a high 
degree of similarity in shape and the primary variable 
is adequately sampled, the utility of cokriging in 
improving estimates diminishes.

Table II. Summary of prediction error metrics used in cross-validation (Johnston et al., 2001).

Mean error (ME*): the average difference between the 
measured and predicted values. ME =

∑n
i=1 [Ẑ(xi)−Z(xi)]

n 	 (4)

Root mean square error (RMSE): it indicates the precision 
of the model to predict the measured values; the smaller 
this error, the better.

R MSE =
∑n

i=1 [Ẑ(xi)−Z(xi)]
2

n 	 (5)

Average standard error (ASE): the average of the prediction 
standard errors. ASE =

∑n
i=1 σ2(xi)

n 	 (6)

Mean standardized error (MSE): the average of the 
standardized errors. This value should be close to 0. MSE =

∑n
i=1 {[Ẑ(xi) − Z(xi)]/σ(xi)}

n 	 (7)

Root-Mean-Square Standardized Error (RMSSE): its value 
should be close to one of the valid prediction standard 
errors.
RMSSE >1, the variance in the predictions is underestimated.
RMSSE <1, the variance in the prediction is overestimated.

RMSSE =
∑n

i=1 {[Ẑ(xi) − Z(xi)]/σ(xi)}
2

n 	 (8)

* Z̑(xi) are predicted values, Z(xi) are measured values, σ(xi) is the standard deviation of predicted values, and n is the 
total data values.



747Improving geostatistical precipitation estimates in the Santiago River basin, Mexico

According to Webster and Oliver (2007), assum-
ing that there are I = 1, 2,…, V secondary variables 
and the primary variable is denoted as u, then the 
cokriging predictor for block B, Z̑u (B) can be ex-
pressed as a linear sum:

Ẑu(B ) =
V

∑
I=1

*
nI

∑
i=1

λiI zI(xi)	 (11)

where the subscript i refers to the sites, of which 
there are nl where the variable zI has been measured. 
Furthermore, the estimation variance is minimized 
by solution of the kriging system (Eq. [12]). In both 
cases weights λiL must satisfy Eq. (13) conditions

V

∑
I=1

*
nI

∑
i=1

λiI γIv(xi, xj) + ψv = γ̄uv(xj, B)	 (12)

nI

∑
i=1

λiI = {
1 I = u
0 I ≠ u	 (13)

for all v = 1, 2; . . . , V and all j = 1, 2, . . . ; nv. The 
quantity γIv (xi, xj) is the (cross-)semivariance be-
tween variables I and V at sites i and j, separated by 
the vector xi xj; γ ̅uv (xj, B) is the average cross-semi-
variance between a site j and the block B; and ψv is 
the Lagrange multiplier for the vth variable. But if 
I = v or u = v the semivariances are the autosemivari-
ances. Eqs. (12) and (13) give the weights λ that are 
inserted in Eq. (11) to estimate Zu(B). The estimation 
variance is given by

σ2
u (B ) =

V

∑
I=1

*
nI

∑
i=1

λiI γ̄Iv(xj, B)+ ψv − γ̄uu(B, B )	 (14)

where γ ̅uu (B, B) is the integral of γuu(h) over B, i.e., 
the within-block variance of u.

Cokriging equations also can be represented in 
matrix form. For two variables u and v, let Γuv de-
note a matrix of semivariances and cross-semivari-
ances between sampling points in a neighborhood. 
If nu and nv represent places in which variables u 
and v were measured, the order of the matrix is 
nu × nv. In the same way, additional Γuu, Γvu¸ Γvv 
matrices are generated and included, while buu and 
buv represent the vectors of autosemivariances for 
variable u and cross-semivariances respectively. 
In this way, the system of equations in its matrix 
form is shown as:

Γuu Γuv     
Γvu Γuv

1 0
1 0
⋮ ⋮
1 0
0 1
0 1
⋮ ⋮

0 1
1 1…1  0 0…0 0 0
0 0…0  1 1…1 0 0

 .

λ1u
λ2u
⋮ ⋮
λnuu

λ1v
λ2v
⋮ ⋮
λnvv
ψu
ψv

=

 buu
⋮ ⋮
buv
1
0

	 (15)

Eq. (15) is further simplified as λ = G–1b, where G 
is the augmented Γ matrix, λ is the vector of weights 
and Lagrange multipliers, and b is the right-hand 
vector. The Γ matrix, and the λ and b vectors are 
not shown in this work; please refer to Webster and 
Oliver (2007) for the full description.

4.	 Results
This section begins with an analysis of the variables 
correlation followed by the exploratory and structural 
analyses, culminating with the presentation of rainfall 
estimate results.

4.1 Correlation analysis
The correlation analysis was conducted to support 
the use of covariates in the estimation with OCK. 
Estimates of precipitation for a dry month (February) 
and a wet month (July) were evaluated to represent 
the wet and dry seasons. Data from 89 rain gauges 
with records from 1980-2010 were used to obtain 
these estimates. Figure 2 displays scatter plots of 
precipitation recorded for February and July against 
secondary variables: shoreline distance (Fig. 2a, b) 
or topographic elevation (Fig. 2c, d). Simple linear 
regression models were fitted using precipitation as 
the explained variable and covariables as explanatory 
variables. The coefficient of determination (R2) was 
used to measure how well the data fit the relationship 
between the variables analyzed. This coefficient ex-
plains the extent to which one factor’s variability can 
be attributed to its relationship with another related 
factor. In the linear case, the square root of the co-
efficient of determination matches with the Pearson 
correlation coefficient (r), thus measuring the linear 
dependence between the variables.
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Alternatively, the Pearson coefficient also mea-
sures the linear relation between two variables; it 
varies from –1 to +1. Negative values mean that one 
variable increases while the other decreases, then the 
fitted line presents a negative slope. A value between 
± 0.5 and ±1 is considered a strong correlation. In this 
case study, a strong correlation is observed for the 
month of July using both covariates (see Table III). 
According to Isaaks and Srivastava (1989), a good 
correlation coefficient may be affected by extreme 
pairs, resulting in a strong correlation that does not 
reflect the poor correlation of the other pairs. Alter-
natively, the Spearman coefficient is a non-parametric 
test that uses data ranges instead of the original data 
and is interpreted similarly to the Pearson coefficient. 
Significant differences between Pearson and Spearman 
coefficients may provide valuable clues to the nature 
of the relationship between the two variables. In the 
results presented in Table III, this is evident when the 
terrain elevation is used as covariable in both months.

4.2 Exploratory analysis
The selection of final observed data points for esti-
mating rainfall in February and July was informed by 
these exploratory analyses. Figure 3 illustrates fre-
quency histograms and boxplots depicting precipita-
tion data for February and July. In February (Fig. 3a), 
the distribution of precipitation appears nearly 
normal, while a discernible positive bias is evident 
for July (Fig. 3b). This discrepancy is reflected in a 
significant difference in the mean precipitation values 
between the two months. To enhance the normality 
of the data and mitigate bias in variogram estimation, 
distributional outliers (values that fall outside boxplot 
whiskers) were removed from the February dataset, 
resulting in the retention of 77 rain gauges for anal-
ysis (Fig. 3a, c). Additionally, July data underwent 
transformation using the natural logarithm function 
(Fig. 3d). The transformed data distribution closely 

approximates normality, as corroborated by Table IV.
Also, the data statistics were thoroughly exam-

ined. In February, after the removal of outliers, the 
data from 77 rain gauges exhibited statistics indica-
tive of a closer approximation to a normal distribu-
tion. Notably, the kurtosis approached its optimum 
value of 3, while the mean and median values exhib-
ited greater proximity (refer to Table IV). Similarly, 
in July, the application of logarithmic transformation 
yielded statistics that aligned more closely with the 
desired parameters, as evidenced by Table IV.

Both covariables, terrain elevation, and shoreline 
distance were available for the entire SRB area, so we 
selected a grid of observed data points with a separa-
tion of 25.69 km for both February and July. Figure 4 
shows the selected observed data points used for es-
timation in February and July. Distributional outliers 
detected in February appear in red color, while in 
blue the 77 rain gauges selected for variogram fitting. 
While for the month of July, all 89 gauges, red and 
blue, were selected.

During the data exploration process, global 
trends were identified using the ArcGIS Geostatisti-
cal Analyst Trend Analysis (Johnston et al., 2021). 
These trends and directional influences refer to the 
deterministic components of a surface that a math-
ematical formula can represent. This work used a 
second-order polynomial equation to approximate the 
valley surface topography. The trend was removed 
from the measured points, and the analysis was done 
for the residuals. It was added back in before mak-
ing predictions. Directional variograms were also 
examined using ArcGIS-Spatial Analyst. However, 
no significant variations were found, presenting just 
omnidirectional variograms.

4.3 Structural analysis
In this work, ArcGIS 10.5 was used to test the 
best-fitted theoretical variogram model to the dry 

Table III. Correlation coefficients R2, Pearson, and Spearman.

Co-variables R2 Pearson Spearman

February-shoreline distance 0.036 –0.191 –0.122
February-terrain elevation 0.0022 0.046 0.078
July-shoreline distance 0.77 –0.877 –0.859
July-terrain elevation 0.67 –0.823 –0.765
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Fig. 3. Frequency histograms for observed precipitation data values of (a) precipitation 
data for February, (b) precipitation data for July, (c) 77 rain gauges in February removing 
outliers, and (d) natural logarithm of precipitation data for July.

Table IV. Data distribution statistics for July and February and their respective 
transformed values.

Statistics July Log 
(July)

February February
(77 rain gauges)

Minimum 55.77 4.02 2.3 7.52
Maximum 368.96 5.91 17.47 15.13
Mean 167.09 5.05 11.05 11.20
Standard deviation 61.10 0.34 2.71 1.79
Skewness 1.16 0.16 –0.18 0.37
Kurtosis 4.53 3.11 3.81 2.70
1st quartile 121.35 4.79 9.66 10.01
Median 149.77 5.00 10.96 11
3rd quartile 204.12 5.31 2.59 12.31
n 89 89 89 77
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and humid months data. The best-fit variogram 
parameters are calculated automatically; then a 
theoretical variogram is selected based on the 
cross-validation statistics summary results. To en-
hance the variogram fitting modification to input 
data may include outliers removal, logarithmic 
transformations, and second-degree polynomial 

trend removal. During the structural analysis of July, 
logarithmically transformed data was used for better 
estimations, as highlighted in the exploratory data 
analysis. The parameter values of the cross vario-
grams for the OCK are summarized in Table V. The 
acronyms for the different cases are explained in the 
table's footnote. For example, LSDTR-LP indicates 
the covariance of the logarithm of the shoreline 
distance with a second-order trend removal and the 
logarithm of precipitation. Tables VI and VII follow 
the same logic. A smaller nugget was observed when 
the distance to the shoreline was introduced as a 
secondary variable. When selecting the best option 
for the bivariate cases for topographic elevation, 
higher values were noted for the nugget and partial 
sill despite the use of the same Gaussian model, lag 
size, and range. Note that for the coregionalization 
model parameters at bivariate cases, nugget is absent 
because cokriging uses variogram for autocorrela-
tion and covariance to express cross-correlation 
(Johnston et al., 2001). The last two lines in Table V 
provide a comparison between the univariate cases 
using transformed and untransformed data, with the 
spherical model being the best fit. Of course, this 
comparison of bivariate and univariate results was 

N

Simbology
SRB
Shoreline

0 15 30 60 90 120
Kilometers

Rain-gauge
February Outliner
Covariable Grid

Fig. 4. Selected observed data points used for estimation 
in February and July.

Table V. Variogram/covariogram parameters used for precipitation data of July.

Model Component Nugget
(mm2)

Partial sill
(mm2)

Range
(m)

Gaussian

LP-LP 0.012 0.507
LSDTR-LSDTR 0.004 0.101 470 345.967
LSDTR-LP — 0.001  
LPTR-LPTR 0.010 0.006

Gaussian
LETR-LETR 0.043 0.164 93 712.086
LETR-LPTR-   –0.006  
LPTR-LPTR- 0.010 0.006

Gaussian
LSDTR-LSD2TR 0.001 0.026 136 213.480
LSD2TR-LP2TR- –0.001  
LP2TR-LP2T- 0.009 0.006 93 590.645

Gaussian SD2TR-SD2TR 3 469 373.166 40 168 869.765
SD2TR-LP2TR-   –23.129

Spherical P-P 0.000 291.764 13 851.708
Spherical LP-LP 0.000 0.018 14 983.725

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic transformation, TR: 
second-order trend removal.
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generated by using the same dataset in the application 
of the respective methods.

Table VI shows the structural variogram parameters 
for February for the bivariate and univariate cases. In 
most cases, the nugget is large in comparison to the 
partial sill, which suggests a small spatial dependence 
of the data. The ratio of the nugget effect to the sill 
is often referred to as the relative nugget effect and is 
usually quoted in percentages. For the main variable, 
when 89 data point values are used, the nugget is 
36% of the partial sill; this percentage is increased to 
63 % when 77 data points are used (with the outlier 

values removed). The exploratory analysis of the 
second variable (not shown) yielded better results 
after logarithmic transformation, which is why only 
the logarithmically transformed second variable is 
presented in Table VI. The models used in the kriging 
interpolations are shown in the last two lines.

4.4 Rainfall estimations
Regarding the estimation of rainfall for July, the most 
accurate results for cross-validation errors are shown in 
Table VII. Both OCK and OK showed similar results 
for the root mean squared error (RMSE). However, 

Table VI. Variogram/covariance parameters used for precipitation data of February.

Model Component Nugget
(mm2)

Partial sill
(mm2)

Range
(m)

Spherical
89P-89P 3.650 9.155

450 824.069LSD-LSD 0 1.191234
LSD-89P — –0.103 

Spherical
89P-89P 3.643 9.158

450 824.069LE-LE 0 1.713708558
LE-89P — –0.038

Gaussian
77P-77P 2.185 2.007

198 160.691LE-LE 0.0486 0.590
LE-77P — –0.072

Gaussian
77P-77P 2.194 2.099

207 581.259LSD-LSD 0.00041 0.411
LSD-72P — –0.165

Spherical 89P-89P 2.762 7.888 262 337.295
Gaussian 77P-77P 2.139  2.022 187 925.888

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic 
transformation, TR: second-order trend removal.

Table VII. Cross-validation results for precipitation of July using OCK and OK

Stadigraph Ordinary cokriging Ordinary Kriging

LP-LSDTR LPTR-LETR LPTR-LSDTR LPTR-SDTR P LP

ME (mm) –0.84 –0.003 –0.32 –0.07 1.12 –0.08
RMSE (mm) 20.22 20.27 20.44 20.09 23.45 22.83
MSE (–) –0.061 –0.013 –0.025 –0.015 0.04 0.01
RMSSE (–) 1.09 1.17 1.16 1.17 1.32 1.03
ASE (mm) 21.64 19.60 19.59 19.57 17.04 23.31

P: precipitation, E: topographic elevation, SD: shoreline distance, L: logarithmic transformation, TR: second-
order trend removal.
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Prediction Map
Precipitation
(mm)

Prediction 
Standard Error Map
(mm)

Less than 95

Less than 5

5.1 - 7

7.1 - 9

9.1 - 11

11.1 - 13

13.1 - 15

15.1 - 17

17.1 - 19

19.1 - 21

More than 21

95.1 - 127

(a) (b)

(c) (d)

(e) (f)

127.1 - 159

159.1 - 191

191.1 - 223

223.1 - 255

255.1 - 287

287.1 - 320

320.1 - 352

More than 352

Fig. 5. (a and b) Precipitation estimates and corresponding error maps in July;  (c and d) OCK precipitation-topographic 
elevation (LPTR-LETR) and OCK precipitation-shoreline (LPTR-LSDTR), and (e and f) OCK (LPTR-SDTR) (OCK: 
ordinary cokriging; L: logarithmic transformation; P: precipitation; TR: second order trend removal; E: topographic 
elevation; SD: shoreline distance). 

the univariate OK led to significant underestimation 
of estimated error variances, particularly in the case 
of shoreline distance. This is reflected in the average 
standard error (ASE) of 17.04 in the OK estimation 
with precipitation data, which was the lowest in com-
parison with the other cases, conversely to RMSE, 
which was the biggest (23.45). The best estimates 
were obtained with OCK by applying a logarithmic 
transformation to precipitation. This was observed for 
LPTR-SDTR (see Table VII), where shoreline distance 
data was used without transformation. The best values 
for the Root-mean-square standardized error (RMSSE) 
and ASE were 20.09 and 19.57, respectively, which 

were slightly superior to the results obtained using 
topographic elevation (LPTR-LETR) of 20.27 and 
19.60, respectively. When comparing the results of 
transformed precipitation and shoreline distance data 
(LPTR-LSDTR), stadigraph values were also similar 
to those of the topographic elevation case, with a slight 
improvement in error metrics; however, the mean error 
(ME) was higher.

Figure 5 compares the three best July precipitation 
estimates and their standard errors for OK and OCK 
using shoreline distance and topographic elevation 
as covariates. The figures show the same classes for 
easy comparison.
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Table VIII. Cross-validation results for precipitation estimation of February using ordinary 
co-kriging and ordinary kriging.

Stadigraph
Ordinary cokriging Ordinary kriging

89P-LSD 89P-LE 77P-LSD 77P-LE 89P 77P

ME (mm) –0.0038 –0.0035 0.00014 0.00085 0.0050 –0.00061
RMSE (mm) 2.6679 2.6682 2.6402 2.64549 2.7418 2.6592
MSE (–) –0.0016 –0.0015 0.00045 0.00099 0.0016 0.00015
RMSSE (–) 1.2090 1.2101 1.6588 1.6614 1.3380 1.6807
ASE (mm) 2.1712 2.1696 1.5722 1.5722 2.0084 1.5608

89P: 89 precipitation gauges, 77P: 77 precipitation gauges, LSD: logarithm of shoreline 
distance, LE: logarithm of the topographic elevation.

The OCK estimates were very similar and had 
smoother contours, revealing a precipitation gradient 
with the highest values on the west shore. The most 
significant differences were in the standard error map 
using the terrain elevation and the shoreline distance 
(Fig. 5b, d, f).

When comparing the standard error maps for 
OCK, the estimates of LPTR-LETR and LPTR-SDTR 
look quite similar (Fig. 5b, f, respectively). However, 
LPTR-LSDTR had the highest error expansion near 
the coast and provided the best result.

All 89 rain gauges were used for the February 
precipitation estimations, keeping the 77 fitted data 
variogram parameters. Table VIII displays the three 
estimation methods’ cross-validation outcomes for 
precipitation in February. The results indicate that 
using covariables in OCK resulted in higher RM-
SEs than univariate OK estimates using the fitted 
variogram parameters on 77 data. When comparing 
the errors between 89 and 77 data values, the latter 
option delivered better results in both bivariate and 
univariate cases. Despite applying logarithmic trans-
formations to each covariable in OCK estimations, 
they did not outperform OK results. Reducing the 
number of gauges from 89 to 77 by discarding dis-
tributional outliers for variogram fitting in OK and 
then adding them back in estimations significantly 
improved the errors. For instance, ME decreased 
from 0.005 to 0.0006, RMSE decreased from 2.74 
to 2.66, and ASE decreased from 2 to 1.5 in 89 and 
77 precipitation gauges, respectively.

For February, precipitation estimates were com-
pared using the three different methods, similar to 
what was done in July. The findings showed that the 

OCK method did not outperform the OK predictions 
for 77 precipitation gauges. This was due to the lim-
ited amount of rainfall recorded during February and 
the lack of correlation between covariables. Accord-
ing to Goovaerts (2000b), cokriging will be useful as 
long as a good correlation exists between variables. 
Therefore, only the best results were mapped and 
shown in Figure 2a, c, e. To improve the normality of 
the data, outlier values were removed for variogram 
fitting (Fig. 3c), although the initial distribution of 
data was not particularly problematic. Maps were 
created to display the resulting estimates using OCK 
for February, based on 77 observed data points and 
transformed covariables. These maps can be seen 
in Figure 6a, c. By reducing the data from 89 to 77, 
the range of variability was narrowed to between 
9.1 and 15.2.

According to Jalili and Modarres (2020), in-
creasing the number of gauges does not necessarily 
improve estimates. The maps in Figure 6b, d show the 
standard error predictions, reflecting the uncertainty 
related to the predicted values. Using 77 data points 
reduced the estimation error variance from more than 
1.37 to less than 0.83. It is important to note that 
regardless of whether 77 data points or any covari-
able (elevation or shoreline distance) were used, the 
contour maps remained the same. Hence, there was 
no improvement in the estimation.

5.	 Discussion
Based on the correlation analysis, there seems to be 
no relationship between the precipitation data for 
February and the secondary variables. However, for 
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Fig. 6. Left panel, OK estimates for the precipitation of (a) February using the variogram fitted to 77 observed data points 
and transformed shoreline distance (77P-LSD); (c) OCK using 89 data points and transformed elevation as covariable 
(89P-LE); (e) using the variogram fitted to 77 observed data points (77P). Right panel, the respective standard errors: 
(b) 77 observed data points and transformed shoreline distance; (d) OCK using 89 data with transformed elevation as 
covariable; and (f) using the variogram fitted to 77 observed data points (OK: ordinary kriging; P: precipitation; L: 
logarithmic transformation; SD: shoreline distance; OCK: ordinary cokriging; E: topographic elevation).
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July, the goodness of fit is satisfactory (R² ≈ 0.70) 
for the two covariates. This justifies the use of the 
two secondary variables for estimating precipitation 
with OCK. Logarithmic transformation was used 
to rectify the precipitation data distribution, which 
helped to obtain a good fit for July’s precipitation 
data. This confirms Giarno et al. (2020) findings 
that data transformations are only beneficial during 
the wet season and not the dry season in some 
regions.

In the structural analysis, variogram parameters 
were analyzed. For the bivariate cases, a Gaussian 
model was more effective, consistent with the find-
ings of Goovaerts (2000b) and Jalili and Modarres 
(2020). A larger nugget/sill ratio was obtained when 
the number of data used to estimate the variogram 
was reduced. According to Goovaerts (2000a), a 
larger nugget effect indicates weakened spatial 
dependence between the two variables’ data, and 
the benefits of using kriging diminish. Additionally, 
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reducing the number of data points increases the 
range. The inner points gain weight as the effective 
range increases, according to Webster and Oliver 
(2007). Conversely, if the effective range decreases 
substantially, the weights of inner points decrease 
while the outer ones increase. A shorter range may 
produce estimates equal to the mean of the available 
data, and lower estimation variances due to the dif-
ferences in the weights become 1 n–1. On the other 
hand, for larger range estimation, the variance is 
lower since it produces the effect of samples being 
twice as close in terms of statistical distance.

The logarithmic transformation of the secondary 
data, such as shoreline distance and topographic 
elevations, shows that the RMSSE values are closer 
to one, indicating a good correspondence between 
the errors and the estimated error variances. This 
result coincides with Giarno et al. (2020) findings 
for the wet season. Other authors, such as Majani 
(2007) or Cunha et al. (2013), found that terrain 
elevation provided better results than shoreline 
distance. However, in the first case, the data did 
not show a good correlation between shore distance 
and precipitation, and in the second one, elevation 
results were only slightly better than those of 
shoreline distance.

The gradient towards the ocean suggests a strong 
influence of the humidity source on precipitation. 
Johansson and Chen (2003) found that rainfall 
data on the windward side of the mountain range is 
more variable than in other areas, and terrain slope 
influence on precipitation is stronger near the coast. 
This influence is evident in our study zone, where 
most gauges are in a low variability zone. A rainfall 
gradient was also detected near the coast, where 
higher precipitation is recorded, decreasing inland. 
Similarly, Subyani (2009) found that factors such as 
shoreline distance and seasonality, apart from terrain 
elevation and complex terrain, may increase rainfall 
variability.

6.	 Conclusions
This study evaluates different techniques for improv-
ing precipitation estimation in the SRB, specifically 
for dry and humid months. Bivariate methods using 
covariables like altitude and shoreline distance for 
spatial interpolation of precipitation were compared 

with univariate methods. Ordinary kriging was used 
for the univariate case, while ordinary cokriging was 
used for the bivariate case. Correlation and logarith-
mic transformation were explored for precipitation 
data from different seasons, with analysis done for 
February and July, representing the dry and humid 
months.

The results showed that estimation improved 
using transformed data when there was a high cor-
relation between precipitation and covariables for 
the humid month of July. Using shoreline distance 
or terrain elevation for spatial estimation using 
OCK in the wet season months, like July, would be 
a good option since both covariables showed a good 
correlation for humid July. Using OCK was justified, 
and logarithmic transformation helped significantly. 
This was evident for precipitation and auxiliary 
variables of terrain elevation and shoreline distance, 
where data distributions got closer to normal. The 
improvement was evident, especially for shoreline 
distance, where errors approached those obtained 
with terrain elevation.

As is well known, humidity sources, along with 
terrain elevation, influence the rainfall regime. In this 
case study, shoreline distance data may offer the same 
benefits as terrain elevation for geostatistical precip-
itation estimation in areas like the SRB. Finding the 
correct geostatistical interpolation algorithm may 
be difficult since each region is unique due to phys-
iographic and climatological differences. However, 
following the steps and methods used in this paper 
could be helpful in achieving good performance for 
a hydrologic model, thus preventing high costs and 
biases.

On the other hand, our findings highlight that data 
transformation and the use of secondary data may 
not yield satisfactory results during dry months. It 
is important to note that the normal distribution of 
data is not a common characteristic of dry months, 
which poses a challenge for geostatistical methods. 
Consequently, simpler techniques like the inverse 
ditance weighted interpolation (IDW) method or 
Thiessen polygons, which do not rely on data nor-
mality assumptions, might be more appropriate in 
such scenarios. Additionally, while data distribution 
skewness can be improved by discarding outliers and, 
therefore, a better variogram fitting is achieved, these 
data should not be discarded at estimation. Hence, 
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further research is warranted to explore alternative 
approaches and enhance our understanding of pre-
cipitation estimation during dry periods.
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