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RESUMEN

Se han desarrollado muchos modelos climáticos debido a la importancia de los efectos de los factores climá-
ticos sobre la distribución de las especies de plantas y los patrones de crecimiento. Se necesitan superficies 
climáticas precisas y confiables, especialmente para países como Turquía, que tiene un terreno complejo y 
estaciones de monitoreo limitadas. La precisión de estos modelos depende principalmente de los métodos 
de modelado espacial utilizados. En este estudio, se utilizó el modelo Spline de la Universidad Nacional 
de Australia (ANUSPLIN, por su sigla en inglés) para desarrollar superficies climáticas y se comparó con 
otros métodos, como ponderación de distancia inversa, kriging ordinal, tasa de declive y regresión multi-
lineal. Los resultados de las superficies climáticas desarrolladas se validaron utilizando tres métodos: (1) 
estadísticas de diagnóstico del modelo de ajuste de superficie, como señal, media, error predictivo de la raíz 
cuadrática media, estimación del error cuadrático medio de la raíz, residual de la raíz cuadrática media de 
la variable spline, y estimación de la desviación estándar del ruido en dicha variable; (2) comparación de 
las estadísticas de error entre las superficies interpoladas y los datos climáticos retenidos de 81 estaciones, y 
(3) comparación con otros métodos de interpolación que utilizan métricas de rendimiento del modelo, como 
error absoluto medio, error medio, error cuadrático medio y R2

adj. Los resultados más precisos se obtuvieron 
con el modelo ANUSPLIN, el cual explicó el 95, 88, 92 y 71% de la varianza en la temperatura media anual, 
mínima y máxima y precipitación total, respectivamente. El error absoluto medio de estos modelos fue de 
5.1, 16.6, 3.9 y 9.7%. Las superficies climáticas generadas podrían contribuir a los campos de la silvicultura, 
la agricultura y la hidrología.

ABSTRACT

Many climate models have been developed due to the importance of the effects of climatic factors on the 
physical and biological environment, e.g., rock weathering, species distribution, and growth patterns of 
plants. Accurate, reliable climate surfaces are necessary, especially for countries such as Turkey, which 
has a complex terrain and limited monitoring stations. The accuracy of these models mainly depends on 
the spatial modeling methods used. In this study, the Australian National University Spline (ANUSPLIN) 
model was used to develop climate surfaces and was compared with other methods such as inverse distance 
weighting, co-kriging, lapse rate, and multilinear regression. The results from the developed climate surfaces 
were validated using three methods: (1) diagnostic statistics from the surface fitting model, such as signal, 
mean, root mean square predictive error, root mean square error estimate, root mean square residual of the 
spline, and estimate of the standard deviation of the noise in the spline; (2) a comparison of error statistics 
between interpolated surfaces and the withheld climate data from 81 stations; and (3) a comparison with other 
interpolation methods using model performance metrics, such as mean absolute error, mean error, root mean 
square error, and R2

adj. The most accurate results were obtained by the ANUSPLIN model. It explained 95, 
88, 92, and 71% of the variance in annual mean, minimum and maximum temperature, and total precipitation, 
respectively. The mean absolute error of these models was 0.63, 1.16, and 0.72 ºC, as well as 54.82 mm. 
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The generated climate surfaces, having a spatial resolution of 0.005º × 0.005º could contribute to the fields 
of forestry, agriculture, and hydrology.

Keywords: climate, spatial modeling, inverse distance weighting, kriging, lapse rate, multilinear regression, 
Turkey.

1.	 Introduction
Temperature and precipitation are two essential 
climatic variables affecting biotic and abiotic envi-
ronments, and climate has a crucial effect on plant 
growth, and other living conditions. Knowing the 
spatial distribution of climate is an essential means 
of explaining the variation in biological activity, 
which is also necessary for developing stochastic 
models (Hutchinson, 1995). Deviations from op-
timum climatic conditions adversely affect plant 
distribution (Sáenz-Romero et al., 2010), growth, 
and productivity (Orlandini et al., 2009). Climate 
classification systems such as Thornthwaite and Kop-
pen have proven the main effects of temperature and 
precipitation on plant species distribution (Attorre 
et al., 2007). The relationships between climate and 
plants are reciprocal (Rebetez and Dobbertin, 2004).

Climate factors have been used as independent 
variables to predict stand productivity and forest de-
velopment by controlling carbon uptake, respiration 
loss, tree mortality, organic matter accumulation, 
shedding, and carbon loss (Bernier and Apps, 2006). 
Climatic variables are also crucial in afforestation 
studies. Regional climate is a fundamental determi-
nant of plant productivity in agriculture, forests, and 
grasslands (Monserud et al., 2006; Yener and Altun, 
2017). In addition, variables extracted from climate 
maps were used to predict the expansion of many 
bugs, such as the mountain pine beetle (Dendroctonus 
ponderosae Hopkins) and spruce budworm (Choris-
toneura fumiferana Clem.) (Bernier and Apps, 2006).

Climatic variables vary according to latitude, 
longitude, elevation, topography, and distance from 
the sea (Zhang et al., 2011). Despite their importance, 
weather stations in developing and undeveloped 
countries are insufficient due to limited budgets, 
inaccessibility to certain areas, and staff shortages 
(Taesombat and Sriwongsitanon, 2009; Samanta et 
al., 2012). Therefore, interpolating climate data from 
these stations in an inexpensive way is necessary (Shu 
et al., 2011; Samanta et al., 2012). However, studies 

whose estimates are poor and non-reproducible have 
been generally based on traditional knowledge and 
subjective considerations using observed values at 
adjacent stations (Tveito, 2007).

Climate surfaces refer to spatially interpolated 
climate data on high-resolution grids; they provide 
information to decision-makers and are used in many 
applications, including biology, environmental, and 
agricultural sciences (e.g., forestry and horticulture) 
(Hijmans et al., 2005; McKenney et al., 2013; Shan 
et al., 2020; Tan et al., 2021). In this context, surface 
resolution is essential. The higher the spatial reso-
lution, the higher the environmental variability to 
capture, especially in mountainous areas, which are 
critical for research planning, experimental design, 
and technology transfer. High-resolution climate 
surfaces are helpful for climate change in terms of 
species distribution, forest plantations, and agricul-
tural crop productivity (Cuervo-Robayo et al., 2014).

Inverse distance weighting (IDW), kriging 
(CoKRG), parameter-elevation regression on in-
dependent slopes model, and thin-plate smoothing 
spline (TPS) are among the most commonly used 
interpolation methods, taking into account data 
features, sophisticated algorithms, and accuracy, for 
developing climate surfaces (Attorre et al., 2007; 
Shu et al., 2011; Basconcillo et al., 2017). TPS and 
CoKRG used in mountainous areas (Shan et al., 2020) 
are crucial in the computational, accurate, and opera-
tionally straightforward interpolation of climate data 
(Hutchinson, 1995). The Australian National Univer-
sity spline-based software (ANUSPLIN) also uses the 
TPS algorithm and has the outstanding advantage of 
interpolation. On the one hand, a smoothing term is 
used to reduce cross-validation error; on the other 
hand, the relationships between climate variables 
(e.g., temperature and precipitation) and elevation 
can spatially change in ANUSPLIN (Ma et al., 
2016). Because climate data are strongly affected by 
topography, this package also considers and models 
the effects of topography, including the horizontal 
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and vertical coordinate systems. This technique is 
used to model climate data in addition to other envi-
ronmental variables, for example, rainfall erosivity 
(Ma and Zuo, 2012), and is superior to CoKRG due 
to its simplicity and because it does not require prior 
calibration for each parameter (Guo et al., 2020).

In this study, Turkey was examined as the case 
study because it is a developing country with a scarce 
monitoring station network. Therefore, climate maps 
are required to obtain accurate, reliable data. By com-
bining high-resolution climate maps with temporal 
dimensions, such datasets could be a critical tool for 
monitoring and determining global climate change 
and meteorological disaster risk in the country (McK-
enney et al., 2006; Huayang et al., 2019). Similar 
interpolation studies have been performed in Turkey 
to fulfill the needs of different methods (Apaydin et 
al., 2004; Bostan et al., 2012; Güler and Kara, 2014; 
Aydin et al., 2016; Tanir and Zengin, 2016). Howev-
er, none of these studies used ANUSPLIN to model 
climate data, such as temperature and precipitation.

In several aspects, ANUSPLIN is better than other 
methodologies: (1) it has higher accuracy than local 
regression models, using all data points to calibrate 
a continuous spatially fluctuating dependency on 
elevation (Price et al., 2000); (3) the software also 
generates predicted error surfaces not provided 
by other methods, in addition to interpolated data 
(Hutchinson and Xu, 2013); (3) it is also better 
than satellite models in detecting the minimum and 
maximum values of climate data, for example, pre-
cipitation (Wang et al., 2021); and (4) it has more 
details and resolutions (Guo et al., 2020) and is not 
time-limited. For example, data from ERA40 are 
limited to 1957-2002. Therefore, choosing spatially 
explicit, dependable models such as ANUSPLIN 
provides decision-makers with valuable information 
(Lilhare et al., 2019). This information helps experts 
explain the impacts of global climate change on the 
function and distribution of terrestrial ecosystems and 
forecast its possible implications (Price et al., 2000).

Therefore, this study aimed to generate climate 
surfaces for mean annual (MAT), minimum (MA-
MINT), and maximum (MAMAXT) temperature, 
and total precipitation (MATP) by using ANUSPLIN 
software. The model maps were then compared with 
other spatial modeling methods, including IDW, 
CoKRG, lapse rate (LR), and multiple linear regression 

(MLR). Finally, the results were examined based on 
(1) diagnostic statistics from the surface-fitting model, 
such as signal, mean, root mean square predictive error 
(RTGCV), root mean square error estimate (RTMSE), 
root mean square residual of the spline (RTMSR), and 
estimate of the standard deviation of the noise in the 
spline (RTVAR); (2) a comparison of error statistics 
between interpolated surfaces and withheld climate 
data from 81 stations; and (3) a comparison with other 
interpolation methods, such as IDW, CoKRG, MLR, 
and LR, by using model performance metrics, such 
as mean absolute error (MAE), mean error (ME) or 
bias, root mean square error (RMSE), and adjusted 
coefficient of determination (R2

adj).

2.	 Material and methods
2.1 Study area
The study area was Turkey, extending between 
northeastern Asia and southeastern Europe, with 
780 580 square km. Its coastline is 3558 km long 
(Fig. 1). Three seas surround Turkey: the Black Sea, 
the Aegean Sea, and the Mediterranean Sea, with an 
interior sea, the Marmara, connecting the Black Sea 
and the Aegean Sea through Bosphorus and Darda-
nelles (Paradise, 2014). The elevation in the country 
ranges from sea level to 5137 m, with an average of 
1132 m. The summit altitudes of the plateaus increase 
to the eastern Anatolian highlands, connecting to 
the Caucasus and Zagros ranges (Kuzucuoglu et al., 
2019). The climate is characterized by mountains 
and mountain ranges running parallel to the coast 
and rising from the western to the eastern parts of 
the country. There are four dominant climate types: 
the humid temperate Black Sea, continental inland, 
Mediterranean, and Mediterranean-like climates. 
These climate types are influenced by two main 
factors: (1) various atmospheric disturbances and 
weather types originating from polar and tropical 
regions, and (2) topography, sudden rise in elevation, 
land-sea interactions, and thermodynamic influences 
(Turkes, 2020). The average temperature is 23 ºC in 
summer and –2 ºC in winter, with a mean of 13.5 ºC. 
There were significant differences in the precipitation 
totals for the inner and coastal parts. For example, 
Rize and Hopa on the Black Sea coast receive the 
greatest amount of precipitation, and provinces such 
as Konya and Igdir received the least.
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While the average annual precipitation for Tur-
key was determined as 574 mm by Sensoy et al. 
(2008), who used 101 weather stations from Turkey 
between 1981-2010, Bostan et al. (2012) determined 
it as 628.2 mm using 225 weather stations between 
1970-2006.

2.2 Data
The climate data consisted of MAT, MAMINT, 
MAMAXT, and MATP. To obtain this data from the 
Turkish State Meteorological Services (MGM, 2018), 
274 weather stations were used for 1960-2017. The 
quality and homogeneity of long-term temperature 
and precipitation data obtained from MGM have been 
systematically analyzed (Turkes et al., 2002; Turkes 
and Tatli, 2009; Komuscu, 2010; Arikan and Kahya, 
2019). The quality of the data, such as duplication, 
was also checked. To develop the models 70% of 

the stations were used; the remaining 30% was set 
aside for model validation. Sample stations in the 
training and test data sets were randomly selected. 
The elevation information for weather stations was 
extracted from digital elevation model (DEM) data 
(NASA/METI/AIST, 2009) using the stations’ lon-
gitude and latitude.

Although the observation period of the stations 
varies slightly according to the variables measured, 
this period could be classified as < 30 years (6.3-
7.4%), 30-40 years (8.1-8.5%), 40-50 years (12.-
12.5%), and > 50 years (72.4-72.8%).

2.3 Interpolation methods
2.3.1 Australian National University Spline (ANUS-
PLIN)
ANUSPLIN is a Fortran spatial interpolation soft-
ware package. It uses the thin-plate smoothing spline 
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Fig. 1. Location of the study area and distribution of the input data stations.
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algorithm developed by Hutchinson and Xu (2013) 
to fit climate surfaces to noisy data as a function of 
one or more independent variables. This approach is 
well suited to interpolating noisy climate data through 
variable terrain and performs well compared with oth-
er techniques (McKenney et al., 2006). This package 
comprises programs such as Spline, Selnot, Addnot, 
Lapgrd, Lappnt, and Gcvgml. In addition, the pack-
age interrogates the fitted surfaces as point and grid 
forms while developing standard-error surfaces. This 
method enabled the measured data to be transferred 
from weather stations to the climate surface grids, 
and the methods determined errors on surface grids, 
validating the cross-validation techniques.

Thin-plate smoothing spline interpolation tech-
niques were first introduced by Wahba (1979, 1990) 
and Hutchinson (1991), who first used this technique 
for spatial interpolation of climate data and developed 
the ANUSPLIN software. The model for thin-plate 
spline functions for N observed data values zi given 
by Hutchinson and Xu (2013):

zi  = f(xi )  + bT yi  + ei (  = 1,…,Ni )	 (1)

In Eq. (1) f is the n unknown smooth function of 
xi; zi shows the dependent variable (e.g., temperature 
and precipitation); xi is the independent variable, 
such as longitude, latitude, and elevation; yi is the 
p-dimensional vector of independent covariates; b is 
an unknown p-dimensional vector of coefficients of 
yi; ei indicates zero-mean random errors, accounting 
for measurement error and deficiencies in the spline 
model, with a variance of wiσ2, where wi refers to 
the relative error variance (known), and σ2 is the 
error variance (unknown), which is constant across 
all data points (Hutchinson, 1991; Hutchinson and 
Xu, 2013).

The function f and the coefficient vector b are 
determined by minimizing:

N

∑
i=1

zi  - f(xi ) - b T yi

wi

+ pJm ( f) f (x)	 (2)

where Jm(f) is a measure of the complexity of f (the 
“roughness penalty” is defined in terms of an integral 
of the mth order partial derivatives of f), and p is a 
positive number called the smoothing parameter. As 
p approaches zero, the fitted function may become 
an exact interpolant. As p approaches infinity, the 

least-squares with order depends on the order m of 
the roughness penalty.

The smoothing parameter is usually chosen by 
minimizing the measure of the predictive error of the 
fitted surface calculated via generalized cross-vali-
dation (GCV). By implicitly eliminating each data 
point and computing the residual from the omitted 
data point of a surface fitted to all other data points 
using the same value of p, Eq. (3) calculates the 
GCV for each value of the smoothing parameter p. 
GCV is then a suitably weighted sum of the squares 
of these residuals (Zhang et al., 2011; Hutchinson 
and Xu, 2013).

GCV = 
∥ W –1 (I - A)z ∥2 / N

[tr (I - A)  / N]2
	 (3)

A, I, and tr (I-A) in Eq. (3) indicate the identity 
matrix, influence matrix, and residual degrees of 
freedom, respectively, whereas Eq. (4) calculates W, 
which is the diagonal matrix.

W  = diag (w1 wN)	 (4)

The variance σ2 of the data error ei in Eq. (5) is 
formulated by

VAR = 
∥ W –1 (I - A)z ∥2

tr (I - A)
	 (5)

If σ2 is known or estimated, an unbiased estimate 
of the “true” mean square error of the fitted function 
across the data points is provided by

MSE = ∥W –1(I - A)z∥2/N - 2 2 tr (I - A)  / N + 2	 (6)

Craven and Wahba (1978) have shown that under 
suitable conditions, the formula is

GCV = MSE + 2	 (7)

The weighted mean residual sum of squares is 
provided by

MSR = ∥W –1(I - A)z ∥2 /N 	 (8)

RTVAR, RTGCV, RTMSE, and RTMSR are ob-
tained by taking the square roots of VAR, GCV, MSE, 
and MSR (Eqs. [5], [3], [6], and [8], respectively), 
and written to the output log files.
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This study used a second-order spline with no 
transformation for the temperature and square root 
transformation for the precipitation recommended 
by Hutchinson and Xu (2013) to reduce positively 
skewed values by using ANUSPLIN v. 4.4. Only 
the SPLINE and LAPGRD programs were used in 
this study. While SPLINE fits an arbitrary number of 
(partial) thin plate smoothing spline functions of one 
or more independent variables, LAPGRD calculates 
values and Bayesian standard error estimates of par-
tial thin plate smoothing spline surfaces on a regular 
rectangular grid.

2.3.2 Inverse distance weighting (IDW)
IDW is one of the simplest and most commonly used 
methods. The weighted average of data within a 
particular cut-off distance or from a given number m 
of the closest points estimates attributes at unknown 
points (typically 10-30) (Mitas and Mitasova, 1999; 
Chen and Guo, 2017). The assumption is that sampled 
points closer to the unsampled point are more similar 
in their values than those farther away (Panigrahi, 
2014). The weights mentioned in this method are 
calculated using Eq. (9):

i  = 
1

d i p

d i p∑n
i=1

1 	 (9)

where di is the distance between x0 and xi, p is the 
power parameter, and n shows the number of sampled 
points used for interpolation. The most important fac-
tor affecting the accuracy of the method is the power 
parameter, which is generally set to 2. In the case of 
its increase, the estimation will be more influenced 
by samples around and the interpolation will be local, 
not global (Panigrahi, 2014).

2.3.3 Co-kriging (CoKRG)
The assumption in kriging is that the spatial varia-
tion in a regionalized variable is too irregular to be 
modeled by a mathematical function but it can be 
modeled by a stochastic distribution, which is based 
on exploring and then modeling stochastic aspects 
of the variable, which is similar to IDW. CoKRG 
uses a linear combination of weights at known 
points to predict values at unknown points (Beek, 
1991; Wu and Hung, 2016). The co-kriging method 
is the multivariate equivalent of kriging, which is 
only applicable when multivariate data is involved 

(Hooshmand et al., 2011). The general equations of 
co-kriging estimator are;

∑ v
 l=1 ∑n

i=1 il lv (xi ,xj)  – µv= uv(xj ,x)

∑ nl
 i=1 il  = {1, 1  = u

0, 1  u

	 (10)

While u shows the primary variable, v shows the 
secondary variable, contributing to the estimation 
of primary variables. The cross semi-variogram is 
determined before and defined by Eq. (11):

uv (h) = 
1

2N(h)
N(h)

∑
i=1

{Zu(xi) – Zu (xi + h)}Zv (xi) – Zv (xi + h)}
	 (11)

i, λi is the weight associated with the data, µ is the 
Lagrange coefficient, and γ(xi, xj) is the value of the 
variogram corresponding to a vector with origin in 
xi and extremity in xj.

2.3.4 Multiple linear regression (MLR)
MLR, calculated using Eq. (12), is a regression mod-
el that uses the relationships between the response 
(dependent) and explanatory (independent) variables. 
In the study, while mean, minimum, and maximum 
temperatures and precipitation were used as depen-
dent variables, latitude, longitude, and elevation were 
used as independent variables.

Z(s) = 0  +  
p

∑
k=1

k  Xk (s) + (s)β 	 (12)

Z(s) is the response variable at location s; β0, β1 to 
βn are intercept terms and regression coefficients, 
X1 to Xn are the values of 1 to p explanatory vari-
ables, and ε(s) is the residual term at location s. The 
MLR model estimation is based on the least-squares 
method, which minimizes the sum of squares of the 
discrepancies between the observed and predicted 
values (Sheather, 2009).

2.3.5 Lapse rate (LR)
The LR, defined as the changing adiabatic cooling 
and warming rate in the atmosphere, was developed 
to predict air temperature based on the altitude 
above sea level. It determines the air temperature of 
unsampled points by using the value of the nearest 
weather station and the differences between the 
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elevations of an unsampled and sampled point. The 
method assumes that LR is constant throughout the 
study area (Panigrahi, 2014). The decrease in the 
annual temperature in Turkey is recommended to be 
approximately 0.5 ºC per 100 m rising from the sea 
level (Erinc, 1984).

Tp = To ± LR ×  h	 (13)

where Tp is the temperature at the unsampled lo-
cation/point, To shows the temperature measured 
at the sampled location/weather station nearest to 
the unsampled point, LR is 0.5 C for Turkey in the 
literature, and h represents the differences between 
the elevations of sampled and unsampled locations 
in a unit of hectometer.

Similar to temperature, precipitation also increas-
es with elevation above sea level, to some extent. 
This change in rainfall is also due to the LR, which 
promotes condensation in the air mass and thereby 
rain (Turkes, 2010). The increasing rainfall is calcu-
lated using Eq. (14), developed by Schreiber (1904), 
a Czech scientist. The annual precipitation in Turkey 
is approximately 40-50 mm per 100 m and is recom-
mended to be 45 mm (Erinc, 1984).

Ph = Po ± 45h	 (14)

where Ph shows the unknown (to be calculated) 
precipitation in unsampled locations, Po is the mean 
annual precipitation at the nearest sampled location 
(weather station), h represents the differences be-
tween elevations of sampled and unsampled locations 
in a unit of hectometer, and 45 is a constant defined 
in previous studies.

2.4 Model performance criteria
RMSE, MAE, ME, and R2

adj were used to evaluate 
and compare the methods. The error metrics were 
formulated using Eqs. [15]-[18].

RMSE  = 1
N

N
∑
i=1

(yi -ŷ  )
2
	 (15)

MAE  = 1
N

N
∑
k=1

yi – ŷ   	 (16)

R2 = 1 – 
(yi – ŷ)

, R2
adj  = 1 – (1– ) [ n–1

n–(k+1)]
(yi –y)

R2 	 (17)

ME = ∑
N
i=1

(yi – ŷ )
N

	 (18)

Where ŷ is the predicted value of y, y̅ is the mean 
value of y, n is the number of observations, and k is 
the number of estimated parameters.

3.	 Results and discussion
3.1 Spatial interpolation by ANUSPLIN
Diagnostic statistics for interpolated climate data from 
1960 to 2017, such as MAT, MAMINT, MAMAXT, 
and MATP were obtained using the SPLINE and 
LAPGRD tools in ANUSPLIN software (Table I). 
The final climate surfaces and their respective standard 
errors (error covariance) for precipitation and mean, 
minimum, and maximum temperatures were generated 
using 274 weather stations (70% for training and 30% 
for the test) distributed throughout the country.

The summary statistics for the surfaces are 
listed in Table I. MAT, MAMINT, and MAMAXT 
averaged approximately 13.34, 8.04, and 19.41 ºC, 

Table I. Summary statistics for annual climate surfaces obtained with ANUSPLIN.

Statistics Signal
ratio

Min. Max. Mean SD SE RTGCV RTMSE RTMSR RTVAR ρ

MAT (ºC) 0.38 –11.8 19.7 13.34 3.47 0.17 0.55 0.27 0.31 0.40 0.03
MAMINT (ºC) 0.46 –18.9 16.6 8.04 3.95 0.29 0.96 0.48 0.46 0.66 0.02
MAMAXT (ºC) 0.53 –3.4 26.0 19.41 3.22 0.18 0.59 0.29 0.26 0.38 0.01
MATP (mm) 0.58 260.8 2233.0 654.88 301.9 35.2 51.4 25.3 21.9 33.5 0.01

ANUSPLIN: Australian National University Spline; SD: standard deviation; SE: standard error; RTGCV: root mean 
square predictive error; RTMSE: root mean square error estimate; RTMSR: root mean square residual of the spline; 
RTVAR: standard deviation of the noise in the spline; MAT: mean annual temperature; MAMINT: mean annual minimum 
temperature; MAMAXT: mean annual maximum temperature; MATP: mean annual total precipitation.
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respectively. The MATP averaged approximately 
654.88 mm. The minimum and maximum values from 
the fitted surfaces ranged from –11.8 to 19.7, –18.9 
to 16.6, and –3.3 to 26.0 ºC for MAT, MAMINT, and 
MAMAXT, respectively, and 260.7 to 2232.6 mm for 
MATP (Figs. 2a and 5a). The covariance error ranged 
from 0.45 to 0.77 ºC for MAT, 0.72 to 1.34 ºC for 
MAMINT, 0.43 to 0.78 ºC for MAMAXT, and 52.9 
to 470.2 mm for MATP (Figs. 2b and 5b). Figures 2b 
and 5b showed that the error covariances of fitted sur-
faces were relatively higher in the mountainous part 
of the eastern Black Sea and eastern Anatolia than 
in the rest because of an insufficient weather station 
network and the sudden rise in elevation resulting in 
spatial variability in temperature and precipitation. 

However, ANUSPLIN enables better prediction in 
such areas than other techniques, by calibrating a 
spatially varying dependence on elevation, which 
uses all data points (Price et al., 2000). Basconcillo et 
al. (2017) and Zhao et al. (2019) have reported sim-
ilar cases in the Philippines and the Tibetan Plateau, 
respectively. However, Ma et al. (2015, 2016) stated 
that inconsistent dense weather stations and complex 
terrain also cause interpolation errors. Huayang et al. 
(2019) found a larger RMSE of 1.5 ºC in the moun-
tainous parts of southern and western Anhui than in 
the other parts of the region (RMSE = 0.7 ºC). Bostan 
et al. (2012) found similar results, implying larger 
errors (336 mm) in the eastern part of Turkey than 
the western part (236 mm) in interpolating precipi-
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Fig. 2. (a) Interpolated surface for mean annual temperature (MAT) and (b) its standard errors.



433Development of high-resolution annual climate surfaces for Turkey

tation. Zhao et al. (2019) found an error covariance 
for China between 1951 and 2011 of 0.7-1.1 ºC and 
8-143 mm; they also reported relatively high errors 
in temperature and precipitation, particularly when 
there were insufficient weather stations. 

Hutchinson and Xu (2013) introduced diagnostic 
statistics. The mean smoothing parameter ρ is nearly 
zero (0.01 to 0.03), indicating an exact interpolant 
(Hutchinson and Xu, 2013). Zhao et al. (2019) 
found that this smoothing parameter was 0.01-0.12 
for temperature and 0.02-0.06 for precipitation. The 
signal, defining the number of degrees of freedom 
of the fitted spline for the climate surfaces, is below 
one half of the number of weather stations or slightly 
higher than it.

The signal ratio (the ratio of the signal of the fitted 
spline to the number of data points) ranged between 
0.38 and 0.58. RTGCV, a robust measure and square 
root of GCV, used for the predictive performance 
of a climate surface, was found as 0.55, 0.96, and 
0.59 ºC for MAT, MAMINT, and MAMAXT, respec-
tively, and 51.4 mm for MATP.

The RTMSE (the estimate of the true interpolation 
error over the data points after measurement error in 
data has been removed) was 0.27, 0.48, and 0.29 ºC 
for MAT, MAMINT, and MAMAXT, respectively, 
and 25.3 mm for MATP. The RTGCV and RTMSE 
values from this study are consistent with those of 
other studies that have used ANUSPLIN to interpo-
late climate data. The error statistics in Table I show 
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Fig. 3. (a) Interpolated surface for mean annual minimum temperature (MAMINT) and (b) its standard errors.
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that the developed surfaces are good (McKenney et 
al., 2006; Zhang et al., 2011; Ma et al., 2016; Zhao 
et al., 2019; Shan et al., 2020). Zhao et al. (2019) 
also used ANUSPLIN to interpolate temperature and 
precipitation with 0.025º resolution in China from 
1951-to 2011 in an area of 9 597 000 km2, using 
data from stations (1153 for temperature and 1202 
for precipitation). They found an RTGCV, RTMSR, 
and RTVAR of 0.88-1.43, 0.35-0.52, and 0.58-0.69 
ºC, and 1.17-3.10, 0.82-2.24, and 0.89-2.62 mm for 
precipitation. The spatial resolution of generated 
surfaces was 0.005º equaling 0.6 km. Climate maps 
with fine spatial resolution are very important tools 
for showing climatic characteristics, especially in 
complex terrain (Zhao et al., 2019) like in Turkey.

The results from the developed surfaces were 
also validated using test (withheld) stations. A study 
performed by Cuervo-Robayo et al. (2014) interpo-
lated maximum and minimum temperatures and total 
precipitation in Mexico, in addition to 19 bioclimatic 
variables by using ANUSPLIN. The number of stations 
used to interpolate climate data and the resolution of 
maps was about 5000 and 0.008º for the study. Average 
RTGCV for monthly temperature and precipitation 
was 1.26-1.12 ºC and 24.67%, and the RTMSE was 
0.48-0.56 ºC and 11.11% for temperature and precip-
itation. The MAE was 0.76 ºC for the minimum and 
maximum temperature and 8.90 mm for precipitation, 
and the model performance criteria are presented in  . 
In a study to interpolate temperature and precipitation 
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Fig. 4. (a) Interpolated surface for mean annual maximum temperature (MAMAXT) and (b) its standard errors.
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in Mexico, using ANUSPLIN, the percent RTGCV 
and RMSE were 8-23.5 and 3.5-23.6 for MAMINT, 
5.1-6.8 for MAMAXT, and 20.0-26.8 for MATP 
(Sáenz-Romero et al., 2010). The coefficient of de-
termination (R2

adj) with RMSE in this study was 0.95 
with 0.8 ºC, 0.88 with 1.43 ºC, 0.92 with 0.96 ºC, and 
0.71 with 83.7 mm for MAT, MAMINT, MAMAXT, 
and MATP, respectively. The model fit was adequate 
according to model statistics. MAE, RMSE, and R2 
in a study (Shan et al., 2020) were 0.85, 1.06 ºC and 
0.52, respectively, for the Middle East of the Qilian 
Mountain. Ma et al. (2017) developed rainfall surfaces 
with a spatial resolution of 10 × 10 km for the 9 597 000 
km² in their study, using 894 weather stations. They 
found that the r and MSE for monthly rainfall were 

0.83 to 0.89 and 25.4 to 27.8 mm, respectively, in 
China’s border areas.

Withheld data (approximately 30%) was also used 
to test the developed surfaces accuracy and the magni-
tudes of withheld errors (e.g., MAE and ME; Fig. 6), 
which were 0.63 and 0.09 ºC, 1.16 and –0.10 ºC, 
0.72 and 0.05 ºC, and 54.8 and –23.97 mm for MAT, 
MAMINT, MAMAXT, and MATP, respectively. The 
percent error, ranging from 3.9 in MAMAXT to 16.6 
in MAMINT, was small, slightly underestimated for 
MAMINT and MATP and overestimated somewhat 
for MAT and MAMAXT. These errors are consistent 
with those reported in the literature (McKenney et 
al., 2006; Hopkinson et al., 2012; Cuervo-Robayo 
et al., 2014; Ma et al., 2015; Zhao et al., 2019). For 
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Fig. 5. (a) Interpolated surface for mean annual total precipitation (MATP) and (b) its standard errors.
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example, Cuervo-Robayo et al. (2014) determined 
those values for MAMINT, MAMAXT, and MATP 
in Mexico: 1.32 and –0.10 ºC, 1.15 and 0.04 ºC, and 
15.43 and –2.25 mm, respectively.

3.2 Comparison of ANUSPLIN with other interpo-
lation methods
The model was also validated by calculating predic-
tive measures such as R2

adj, MAE, ME, and RMSE, 
using differences between fitted surfaces and with-
held data, and compared ANUSPLIN with other in-
terpolation techniques such as IDW, CoKRG, MLR, 
and LR. The fitted surfaces explained 95, 88, 92, and 
71% of the variance in MAT, MAMINT, MAMAXT, 
and MATP, respectively (Fig. 6a-d). The RMSEs 
were 0.84, 1.43, and 0.96 ºC for MAT, MAMINT, 
and MAMAXT, respectively, and 83.7 mm for MATP. 
Many studies (McKenney et al., 2006; Hopkinson 
et al., 2012; Cuervo-Robayo et al., 2014; Ma et al., 

2015; Zhao et al., 2019), including this one, have 
modeled climate data using ANUSPLIN and vali-
dated the model using data and diagnostic statistics.

3.2.1 Mean annual temperature (MAT)
All climate data were interpolated with the IDW, 
CoKRG, MLR, LR, and ANUSPLIN techniques and 
compared using performance indices such as R2

adj, 
RMSE, and MAE between fitted surfaces and the 
withholding dataset.

While the mean observed MAT was 12.39 ºC, the 
predicted MAT average was between a minimum 
of 12.39 ºC and a maximum of 12.67 ºC, belonging 
to ANUSPLIN and LR, respectively. ANUSPLIN 
accounted for 95% of the variance in MAT, with an 
RMSE of 0.84 ºC (Fig. 6a). As shown in Figures 6a 
and 7a-d, ANUSPLIN outperformed the other tech-
niques with a higher R2

adj (0.95), as well as lower 
RMSE (0.84ºC) and MAE (0.63 ºC).

y = 0.936x + 0.693
R2

adj = 0.95
y = 0.911x + 0.718

R2
adj = 0.88

y = 0.891x + 86.22
R2

adj = 0.71
y = 0.874x + 2.262

R2
adj = 0.92

0

5

10

15

20

25
(a) (b)

(c) (d)

0 5 10 15 20 25

RMSE = 0.84
MAE = 0.63
ME = 0.09

RMSE = 1.43
MAE = 1.16
ME = –0.10

RMSE = 83.74
MAE = 54.82
ME = –23.97

RMSE = 0.96
MAE = 0.72
ME = 0.05

–5

0

5

10

15

20

0 5–5 10 15 20

5

10

15

20

25

30

5 10 15 20 25 30

E
st

im
at

ed
 M

A
M

A
X

T 
(º

C
)

E
st

im
at

ed
 M

A
T 

(º
C

)

E
st

im
at

ed
 M

A
TP

 (m
m

)
E

st
im

at
ed

 M
A

M
IN

T 
(º

C
)

Observed MAMAXT (ºC) Observed MATP (mm)

Observed MAT (ºC) Observed MAMINT (ºC)

200

400

600

800

1000

200 400 600 800 1000

Fig. 6. Correlations and error metrics between observed and predicted climate data with ANUSPLIN for (a) MAT, 
(b) MAMINT, (c) MAMAXT, and (d) MATP. (MAT: mean annual temperature; MAMINT: mean annual minimum 
temperature; MAMAXT: mean annual maximum temperature; MATP: mean annual total precipitation).



437Development of high-resolution annual climate surfaces for Turkey

IDW had the lowest performance and accounted 
for 54% of the variance in MAT, with an RMSE of 
2.49, MAE of 1.69, and ME of –0.06 ºC. However, LR 
and MLR performed well, with a slightly lower R2

adj 
and slightly higher RMSE and MAE compared to 
ANUSPLIN ( . Other methods followed ANUSPLIN 
in the order of LR > MLR > CoKRG > IDW in their 
predictive performance criteria, except for ME, 
which averaged approximately–0.24 to 0.09 ºC, 
indicating bias; the lowest ME was achieved in 
the MLR method with –0.02 ºC. The independent 
variable common to all three top models is altitude, 
which strongly affects air temperature (r = –0.87) and 
is attributed to the LR method (Hutchinson and Xu, 
2013). Many studies using ANUSPLIN for tempera-
ture interpolation (Price et al., 2000; Shu et al., 2011; 
Ren-Ping et al., 2016; Shan et al., 2020) have reported 
that it is the best technique. Unlike the findings in this 
study, Güler and Kara (2014) and Lilhare et al. (2019) 
found MLR and IDW to be superior to ANUSPLIN 

in studies performed in the middle Black Sea region 
of Turkey and the lower Nelson River basin in Man-
itoba, Canada, respectively. Price et al. (2000) and 
Shan et al. (2020) also reported a higher interpolation 
accuracy of ANUSPLIN with lower RMSE (0.85 ºC) 
compared to the gradient plus inverse distance 
squared (0.89 ºC) and the LR (3.57 ºC) methods for 
annual air temperature in BC/Alberta and the middle 
east of Qilian Mountain.

Demircan et al. (2011) interpolated mean tem-
perature with MLR in Turkey and compared it to 
data from WorldClim and ERA40. They found that 
the coefficient of determination and RMSE were 
0.93-0.94 and 0.87-1.0 ºC, respectively.

3.2.2 Mean annual minimum temperature (MA-
MINT)
While the observed MAMINT was 7.0 °C, the pre-
dicted MAMINT ranged a minimum of 7.0 °C and 
a maximum of 7.19 °C, belonging to MLR and LR, 
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respectively. ANUSPLIN accounted for 88% of the 
variance in MAMINT, with an RMSE of 1.43, MAE 
of 1.16, and ME of –0.10 ºC, outperforming the other 
techniques and in good agreement with the average 
square root GCV (Fig. 6b, ). MLR also performed 
well with a slightly lower R2

adj (0.87) and slightly 
higher errors (RMSE = 1.49, MAE = 1.23, ME = 
–0.16). The lowest explanation share belongs to IDW, 
with an R2

adj of 0.63, RMSE of 2.55 ºC, and MAE of 
1.95 ºC. Other methods followed ANUSPLIN in the 
order of MLR > LR > CoKRG > IDW in terms of 
their predictive performance criteria (Fig. 8a-d). In 
the study of the middle Black Sea, Turkey by Güler 
and Kara (2014), the order was TPS = CK > IDW = 
SK > MLR.

The ANUSPLIN MAMINT surface error metrics 
were consistent with those in the literature (Price et 
al., 2000; Hutchinson et al., 2009; Cheng et al., 2020). 
For example, Hutchinson et al. (2009) determined 

the RMSE was 2.2 and MAE was 1.6 ºC in Canada. 
Although ANUSPLIN outperformed the other tech-
niques, R2

adj was slightly lower and the error metrics 
were somewhat higher than those in MAT, which is 
the case for ANUSPLIN and all the other methods.

3.2.3 Mean annual maximum temperature (MA-
MAXT)
While the observed MAMAXT was 18.4 ºC, the pre-
dicted MAMAXT ranged a minimum of 18.3 ºC and 
a maximum of 18.6 ºC, belonging to ANUSPLIN and 
IDW, respectively. ANUSPLIN accounted for 92% of 
the variance in MAMAXT, with an RMSE of 0.96, 
MAE of 0.72, and ME of 0.05 ºC, outperforming 
the other techniques and in good agreement with the 
average RTGCV (Figs. 6c,  

The predicted values of MAMAXT followed 
the actual values. LR also performed as good as 
ANUSPLIN, with a slightly lower R2

adj (0.91) and 

Fig. 8. The correlations and error metrics between observed and predicted MAMINT by interpolation methods (a) IDW, 
(b) CoKRG, (c) MLR, and (d) LR). (MAMINT: mean annual minimum temperature; IDW: inverse distance weighting: 
CoKRG: kriging; MLR: multiple linear regression; LR: lapse rate).
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slightly higher errors (RMSE = 1.07, MAE = 0.78, 
ME = –0.07). The lowest explanation share belongs 
to IDW, with an R2

adj of 0.52, RMSE of 2.45 ºC, 
and MAE of 1.67 ºC. The other methods followed 
ANUSPLIN in the following order: LR > MLR > 
CoKRG > IDW in terms of their predictive perfor-
mance criteria (Fig. 9a-d).

Hutchinson et al. (2009) found the RMSE and 
MAE of MAMAXT for Canada to be 1.8 and 0.5 to 
2.0 ºC, respectively, with an average of 1.6 ºC.

3.2.4 Mean annual total precipitation (MATP)
The mean observed MATP was 566.8 mm, while 
its predicted value averaged between a minimum of 
588.5 mm and a maximum of 658.3 mm, correspond-
ing to LR and CoKRG, respectively. ANUSPLIN 
accounted for 71% of the variance in MATP, with 
an RMSE of 83.7 mm, MAE of 54.8, and ME of 

–24 mm, outperforming the other techniques and in 
good agreement with the average RTGCV (Figs. 6d, 
 . The predicted values of MATP closely matched the 
actual values. MLR, LR, and IDW performed worst; 
CoKRG followed ANUSPLIN with a lower R2

adj 
(0.56) and slightly higher errors (RMSE = 116.67, 
MAE = 93.55). ANUSPLIN decreased the MAE 
by 6.8% and RMSE by 5.8% compared to CoKRG, 
which dramatically increased the reliability of inter-
polation results (Fig. 10a-d).

Some studies using ANUSPLIN to interpolate 
precipitation and comparing it with other methods 
(McKenney et al., 2006; Taesombat and Sriwongsita-
non, 2009; Shu et al., 2011; Ma and Zuo, 2012) found 
it to be superior to the other methods. For example, 
ANUSPLIN (with an RMSE of 8.42 to 8.50 mm and 
MAE of 3.81 to 3.94 mm) outperformed the isohy-
etal and Thiessen polygon techniques to interpolate 

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

25

30

E
st

im
at

ed
 M

A
M

A
X

T 
(º

C
)

E
st

im
at

ed
 M

A
M

A
X

T 
(º

C
)

E
st

im
at

ed
 M

A
M

A
X

T 
(º

C
)

E
st

im
at

ed
 M

A
M

A
X

T 
(º

C
)

(a) (b)

(c) (d)

y = 0.523x + 8.922
R2

adj = 0.52

RMSE = 2.45
MAE = 1.67
ME = –0.16

y = 0.783x + 4.095
R2

adj = 0.84

RMSE = 1.39
MAE = 1.11
ME = –0.11

y = 0.7893x + 3.9819
R2

adj = 0.81

RMSE = 1.25
MAE = 0.91
ME = –0.06

y = 0.878x + 2.303
R2

adj = 0.91

RMSE = 1.07
MAE = 0.78
ME = –0.07

Observed MAMAXT (ºC)

5 10 15 20 25 30

Observed MAMAXT (ºC)

5 10 15 20 25 30

Observed MAMAXT (ºC)

5 10 15 20 25 30

Observed MAMAXT (ºC)

Fig. 9. The correlations and error metrics between observed and predicted MAMAXT by interpolation methods 
(a) IDW, (b) CoKRG, (c) MLR, and (d) LR. (MAMAXT: mean annual maximum temperature; IDW: inverse 
distance weighting: CoKRG: kriging; MLR: multiple linear regression; LR: lapse rate).



440 I. Yener

the areal rainfall in northern Thailand (Taesombat 
and Sriwongsitanon, 2009). The mean percentage 
absolute error in this study (9.7%) was consistent 
with those in the literature (Hutchinson et al., 2009; 
Shu et al., 2011). By contrast, Shu et al. (2011) found 
that RMSE and MAE for ANUSPLIN were 106.8 
and 87.3 mm, respectively, equaling 9.9% compared 
with CoKRG (11.3%) in the Anhui province, and 
Hutchinson et al. (2009) determined that value as 9%. 
The weak performance of other interpolation methods 
could be attributed to the scarcity and nonuniform 
distribution of stations in mountainous areas and the 
sudden rise in elevation. Other studies (Yang et al., 
2015; Basconcillo et al., 2017; Wang et al., 2021) also 
used ANUSPLIN, but other methods such as IDW 
and satellite-remote sensing datasets performed best. 
Interpolation techniques other than ANUSPLIN have 
also been used. In other cases (Aslantas, 2013; Tanir 
and Zengin, 2016; Sattari et al., 2017) ANUSPLIN 

has not been used, since universal kriging and MLR 
performed better than other methods such as OK, 
GWR, and MLR.

4.	 Conclusion
Turkey is a country with complex, variable terrain that 
influences the climate. Most of the Turkish territory 
does not have sufficient weather stations, especially in 
areas away from large, industrialized regions. There-
fore, spatially reliable, robust models are required. 
This study aimed to interpolate long-term climate data 
in the country by using ANUSPLIN, which performs 
adequately in complex terrain with sudden rises in 
elevation and scarce weather stations. The model used 
latitude and longitude as independent variables and 
elevation as a covariate. Thirty percent of the stations 
were withheld and used to assess the accuracy of the 
developed climate surfaces, which provide more accu-

Fig. 10. The correlations and error metrics between observed and predicted MATP by interpolation methods 
(a) IDW, (b) CoKRG, (c) MLR, and (d) LR). (MATP: mean annual total precipitation; IDW: inverse distance 
weighting: CoKRG: kriging; MLR: multiple linear regression; LR: lapse rate).
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rate estimates with good signal ratios, lower RTGCV, 
RTMSE, and RTVAR, as well as significant  values.

This study also compared other interpolation 
methods in the complex geomorphological territory 
of Turkey. The results demonstrate that ANUSPLIN, 
with its higher explaining ratios (71% for precip-
itation, and 88 to 95% for temperature) and lower 
errors (9.7% for precipitation, and 3.9 to 16.6% for 
temperature), outperformed the other techniques for 
each climatic variable. The grids presented in this 
study have higher spatial resolutions (0.005º, corre-
sponding to 0.6 km) than the prior surfaces created 
for the country. The interpolated surfaces for MAT, 
MAMINT, MAMAXT, and MATP by ANUSPLIN 
were superior to the other interpolation methods used.

Nevertheless, this study has several limitations. 
First, the insufficient number of weather stations with 
a significant sudden rise in elevation, particularly in 
steep landscapes, caused large interpolation errors. 
The largest error was observed in the northeastern 
Black Sea and eastern and southeastern Anatolia, 
which are the country’s most mountainous regions. 
Pooling and reanalyzing data from meteorological 
stations and satellites and using stations from neigh-
boring countries could minimize the interpolation 
errors in further studies, especially in data-scarce 
landscapes (Lilhare et al., 2019).

The developed maps forming predicted climate 
data (which are essential for managing and con-
serving plant species) could be used in agriculture, 
forestry, and other environmental areas, especially 
with insufficient weather stations.
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