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RESUMEN

La concentración de formaldehido (HCHO) se puede medir desde el espacio usando luz solar ultravioleta. 
Dada su corta vida media, el HCHO se usa como indicador de la presencia de compuestos orgánicos volátiles, 
ayudando a caracterizar sus emisiones y distribución a escala global. Las observaciones de HCHO desde 
satélites requieren el cálculo el de los factores de masa de aire (AMF, por su sigla en inglés) para convertir 
densidades de columnas inclinadas a densidades de columnas verticales (VCD). La mayor parte de los 
productos satelitales de HCHO no consideran de manera explícita la presencia de nieve en la superficie de 
la tierra. En este estudio, usamos información del Espectrorradiómetro de Imágenes de Media Resolución 
(MODIS) sobre la función de distribución bidireccional de la reflexión (BRDF) y de la cobertura de nieve 
facilitada por el Sistema Multisensor Interactivo de Mapeo de Nieve y Hielo para evaluar el impacto de la 
nieve en superficie sobre las observaciones de HCHO realizadas por el Instrumento de Monitoreo de Ozono 
(OMI). Centramos nuestro análisis en 2005. Comparamos los AMF calculados usando MODIS BRDF con los 
AMF calculados usando la climatología de reflexión lambertiana del OMI (la información a priori utilizada 
por el producto operacional de la NASA, OMHCHO). Las diferencias entre ambos cálculos son importantes 
en regiones nevadas. Podemos distinguir claramente dos situaciones: en regiones permanentemente nevadas 
(Groenlandia y la Antártida) los AMF calculados usando MODIS BRDF son menores que los calculados 
con la climatología de OMI, lo que conduce a un incremento medio anual de 6% en los VCD de HCHO. 
Sobre regiones con cobertura de nieve estacional la situación es más compleja. Por ejemplo, en un estudio 
de caso realizado sobre Europa en febrero de 2005, los VCD del producto OMHCHO de la NASA (usando 
la climatología lambertiana del OMI) fueron en promedio 16% mayores que nuestros cálculos realizados 
usando datos diarios de MODIS BRDF.

ABSTRACT

Formaldehyde (HCHO) is measured from space using backscattered ultraviolet sun-light. Because of HCHO’s 
short lifetime, space-based observations of HCHO can serve as a proxy for volatile organic compounds, helping 
to characterize their global emissions and distributions. HCHO satellite observations rely on air mass factor 
(AMF) calculations to transform fitted slant columns into vertical column densities (VCD’s). Most HCHO 
satellite products do not explicitly consider the presence of snow on the ground during the calculation of AMFs. 
In this study, we leverage information from the Moderate-Resolution Imaging Spectroradiometer (MODIS) 
bidirectional reflectance distribution function (BRDF), MODIS snow cover information, and the Interactive 
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Multisensor Snow and Ice Mapping System to evaluate the impact of ground snow on Ozone Monitoring 
Instrument (OMI) HCHO retrievals. We focus our analysis on the year 2005. We compare AMFs computed 
using daily MODIS BRDF to AMFs computed using OMI’s surface reflectance climatology, the baseline for 
NASA’s OMHCHO product. Over snow-covered regions, both sets of AMFs show significant differences. 
We observe two different behaviors. Regions with permanent snow cover (Greenland and Antarctica) show 
smaller AMFs calculated with MODIS BRDF than with the OMI climatology resulting in a 6% median annual 
increase of HCHO VCDs. Over regions with seasonal snow cover, the situation is more complex with more 
variability in the differences during the year. For example, a February 2005 case study over Europe shows 
that the NASA OMHCHO VCDs (calculated using the OMI Lambertian climatology) are on average 16% 
larger than HCHO columns retrieved using daily MODIS BRDF information.

Keywords: OMI, formaldehyde, MODIS, BRDF, snow, ice, air mass factor.

1. Introduction
Formaldehyde (HCHO) is an important ambient 
trace chemical in the atmosphere to track as a proxy 
to volatile organic compounds. In addition, HCHO 
photolysis contributes to the creation of new hydroxyl 
(OH) and hydroperoxyl (HO2) radicals, driving the 
production of ozone (O3) and playing an important 
role in the production of secondary organic aerosols 
(Calvert et al., 2015). Background levels of HCHO 
are produced by the oxidation of methane (CH4) 
(Munger et al., 1995), whereas higher concentrations 
of HCHO can be caused by biogenic and anthropo-
genic processes (Lee et al., 1998). Since the lifetime 
of HCHO is on the order of hours (Logan et al., 
1981), it can be used to pinpoint sources of either 
direct HCHO emissions and precursors that lead to 
its production. Biogenic processes are the primary 
source of high ambient HCHO (Zhang et al., 2018). 
For example, the biggest source of atmospheric 
HCHO is its secondary production by oxidation 
of isoprene released from plants (Lee et al., 1998). 
Other sources of near-surface HCHO are wildfires 
and industrial activity (Zhu et al., 2014; Alvarado et 
al., 2020). HCHO is also important to track because 
of health concerns. When inhaled, HCHO is reactive 
to the upper airways and can cause irritation to the 
eyes, nose, and throat (Kim et al., 2019). Based on 
limited data on humans and ample data on animals, 
HCHO is a presumed human carcinogen (Swenberg 
et al., 1980, 2013). Over the years, satellite HCHO 
retrievals have been used, for example, to quantify 
biogenic isoprene emissions (Barkley et al., 2013, 
Stavrakou et al., 2015), calculate NOx to volatile or-
ganic compounds ratio to evaluate ozone production 
regimes (Duncan et al., 2014; Valin et al., 2016; Jin 

et al., 2017), and estimate the global distribution of 
OH radicals (Wolfe et al., 2019).

The first global observations of HCHO from space 
were reported using GOME-1 measurements. These 
observations were retrieved using a direct fit of the 
distinct HCHO absorption in the UV to derive HCHO 
slant column densities (SCDs) (Chance et al., 2000). 
Radiative transfer model simulations were then used 
to calculate air mass factors (AMFs) and convert 
SCDs to vertical column densities (VCDs) (Palmer 
et al., 2001). Subsequently, HCHO retrievals have 
been developed with SCIAMACHY, OMI, GOME2-
A/B/C, Suomi NPP OMPS-NM, and TROPOMI mea-
surements (Kurosu et al., 2004; Wittrock et al., 2006; 
de Smedt et al., 2008, 2012, 2018, 2021; Vrekoussis 
et al., 2010; González et al., 2015, 2016; Hewson et 
al., 2015; Li et al., 2015; Zara et al., 2018).

The retrieved vertical column densities of trace 
gases obtained using the methodology described 
above have been found to be highly sensitive to 
assumed a priori surface reflectance used in the 
AMF calculation (Martin et al., 2002; Boersma et 
al., 2004; Lamsal et al., 2017; Lorente et al., 2017). 
Therefore, high uncertainty in surface reflectance 
due to snow translates into high uncertainty in the 
AMFs (Cooper et al., 2018), including those used 
in HCHO retrievals. Previous studies on reflectivity 
climatologies used in trace gas retrievals have found 
that snow reflectivity representation was incomplete 
due to snow high spatial and temporal variability 
and the statistical methods used to exclude reflective 
clouds since these exclusions include variable snow 
cover. Additionally, surface snow may be mistaken 
for clouds, leading to further errors in cloud fraction 
and pressure estimates used in trace gas retrievals 
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(O’Byrne et al., 2010; Lin et al., 2015; Vasilkov et 
al., 2017). This makes accounting for snow cover 
difficult for satellite retrievals. O’Byrne et al. (2010) 
found that misrepresentation of surface snow in NO2 
column retrievals over broad regions with seasonal 
snow cover could lead to large errors (20-50%). Be-
cause of this, retrievals over snow-covered regions 
are often omitted or flagged as unreliable. However, 
the sensitivity of satellite observations to the lower 
part of the atmosphere over high surface reflectance 
regions such as snow increases, since more photons 
are reflected at the surface (O’Byrne et al., 2010; 
Lorente et al., 2017). This means that excluding 
snow-covered regions excludes the observations 
with the highest sensitivity (Cooper et al., 2018) to 
near surface concentrations. McLinden et al. (2014) 
also demonstrated the importance of using a priori 
surface reflectance data accounting for the spatial and 
temporal variability of snow cover when preforming 
retrievals and calculating AMFs. For instance, the 
accuracy of retrievals of the soon-to-be-launched 
geostationary Tropospheric Emissions: Monitoring of 
Pollution (TEMPO) satellite instrument will depend 
on the accuracy of surface reflectance used in retriev-
als. With this in mind, Cooper et al. (2018) assessed 
several snow cover datasets and found the Interactive 
Multisensor Snow and Ice Mapping System (IMS) 
data set to be the most accurate in identifying snow 
cover over the Northern Hemisphere.

To address the effects of seasonal snow cover in 
the AMF calculation, a surface reflectance parameter 
can be incorporated into the calculation. Since light 
reflected from the Earth’s surface is anisotropic, 
surfaces can appear brighter or darker depending on 
the viewing angle and illumination angle (Kimes, 
1983; Li and Strahler, 1986). This is represented 
mathematically by the bidirectional reflectance dis-
tribution function (BRDF) (Nicodemus et al., 1992). 
The BRDF cannot be measured directly because it is 
a ratio between the angle of incidence and the angle 
of reflection of sunlight. For satellite remote sensing 
estimation of BRDF, observations over a large angu-
lar range are first atmospherically corrected, and then 
fitted to a semi-empirical BRDF model (Engelsen et 
al., 1998; Lucht et al., 2000).

In this study, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) BRDF/Albedo data set 
will be used in AMF calculations to reduce spatial and 

temporal representation errors in surface reflectance. 
We also use the IMS data set to identify snow-covered 
pixels in the Northern Hemisphere.

In this study, AMF calculations performed using 
the Lambertian climatology of the Ozone Monitoring 
Instrument (OMI), the current surface reflectance 
data set considered by NASA’s HCHO retrievals 
(González et al., 2015), will be examined over 
snow-covered regions and compared to AMF calcu-
lations over the same snow-covered regions (defined 
by the IMS dataset) performed using the MODIS 
BRDF data. In section 2, the data and methods used 
will be explained in detail. Section 3 will describe 
the results from comparing the two different sets of 
AMF calculations and will discuss implications for 
the HCHO retrieval. The paper ends with the con-
clusions summarizing the most relevant results and 
limits of the approach in section 4.

2. Data and methods
2.1 Data
The three types of data used in this study are the 
Interactive Multisensor Snow and Ice Mapping 
System (IMS), the Moderate Resolution Imaging 
Spetroradiometer MCD43C1 Version 6 Bidirection-
al Reflectance Distribution Function and Albedo 
(MODIS BRDF/Albedo) Model Parameter, and the 
Aura OMI Formaldehyde (OMHCHO) Total Column 
1-orbit L2 Swath 13 × 24 km V003 data sets.

2.1.1 IMS
The IMS data set, obtained from the United States 
National Ice Center, provides daily maps of snow 
and sea ice extent for the Northern Hemisphere 
from February 1997 to present. These maps are 
derived from both satellite imagery and in situ data. 
The data are saved in ASCII text and GeoTIFF file 
formats in three different resolutions (1, 4, 24 km) 
(U.S. National Ice Center, 2008). In this study, we 
use the 4 km resolution. The left panel in Figure 1 
is an example plot of the IMS snow and ice cover 
for December 15, 2005. Cooper et al. (2018) found 
that the IMS data set had the best agreement with in 
situ observations with respect to snow identification 
among the snow cover data sets they analyzed. Of 
the four data sets analyzed by these authors, the IMS 
had the best performance with an F score of 85%, 
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showing the highest balance between precision (the 
probability that regions identified as snow are actually 
snow-covered) and accuracy (a measure of the correct 
classification of a grid box as snow-covered or not).

2.1.2 MODIS BRDF/Albedo
This study uses the MODIS BRDF/Albedo daily data 
set (Schaaf et al., 2010) distributed in a 0.05º reso-
lution (5.6 km at the equator) climate modeling grid 

(CMG) (Schaaf and Wang, 2015). This gridded prod-
uct (MCD43C1) is produced by combining MODIS 
nominal resolution BRDF retrievals from the Terra 
and Aqua satellites on a 16-day moving window. The 
measurements are temporally weighted on the ninth 
day of the retrieval period and files are saved using the 
Julian day that reflects the ninth day in the filename. 
This product covers the entire global land mass and 
shallow waters. Given the spatial resolution of the 
OMI sensor at nadir (13 × 24 km), using the CMG 
grid provides optimal spatial resolution.

The three model weighting parameters that 
MCD43C1 provides are the isotropic, volumetric, 
and geometric, corresponding to the RossThi-
ck-LiSparse kernel functions used to characterize 
isotropic, volume and surface scattering (Wang et 
al., 2018). The top right panel of Figure 1 shows an 
example plot of the MODIS derived bihemispherical 
reflectance under isotropic illumination (white-sky 
albedo) for December 15, 2005. All model param-
eters are available as a separate layer for MODIS 
spectral bands 1 through 7 as well as the visible, 
near infrared (NIR), and shortwave bands. There are 
also ancillary layers for quality, local solar noon, 
percent finer resolution inputs, snow cover, and 
uncertainty (Schaaf and Wang, 2015). We use the 
snow cover information included in the MCD43C1 
files to identify snow-covered pixels in the Southern 
Hemisphere. Stroeve et al. (2005) examined the 
uncertainty of the MODIS albedo over 16 sites in 
Greenland using three years of ground measure-
ments. They found that when only considering the 
highest quality results from the BRDF algorithm, 
the MODIS BRDF/Albedo root mean square error 
(RMSR) was ± 0.04 (slightly larger than that of the 
in situ measurements). As a result, they determined 
that there was a general agreement between MODIS 
and the in situ observations. A follow up study (Stro-
eve et al., 2013) investigated the MODIS albedo 
uncertainty and accuracy using 11 years of station 
data in Greenland, reporting a good agreement be-
tween MODIS albedo and ground measurements 
with RMSE < 0.067 and an average bias of –0.022 
(MODIS albedo slightly larger than the albedo from 
in situ measurements). A recent validation study 
in mid-latitude regions also confirms that MODIS 
collection V006 albedo agrees well with in-situ 
observations for various land types, all of them with 
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Fig. 1. Top panel plot shows IMS data for December 15, 
2005 (4 km resolution). The middle panel plot shows the 
white-sky albedo calculated from MODIS BRDF/Albedo 
band 3 data for December 15, 2005 (0.05º× 0.05º). Lastly, 
the bottom panel shows OMHCHO data for December 
2005 average column amount of HCHO sampled to a 
0.1º× 0.1º regular grid using Sun et al. (2018) algorithm. 
OMHCHO retrievals with solar zenith angle bigger than 
70º and cloud fractions above 40% are filtered out.
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RMSE < 0.0318 and bias within ± 0.0076 (Wang 
et al., 2018). Schaaf et al. (2010) have shown the 
accuracy of high quality MODIS albedo to be under 
5 and 10% for low quality, at most validation sites 
selected from the international Baseline Surface 
Radiation Network (BSRN) stations.

2.1.3 OMHCHO
Level 2 OMHCHO version 3 product files are dis-
tributed from the NASA Goddard Earth Sciences 
Data and Information Services Center (GES DISC) 
(Chance, 2007). This product uses backscatter ultra-
violet radiances to derive SCDs by direct fitting in 
the spectral window 328.5-356.6 nm. Subsequently, 
SCDs are converted to VCDs following the meth-
odology developed by Palmer et al. (2001) for AMF 
calculations. In this methodology, the scattering 
weights accounting for the vertical sensitivity of the 
satellite measurements are combined with vertical 
profiles of formaldehyde. The scattering weights in 
the OMHCHO retrieval are pre-computed and stored 
on a look-up-table that considers the viewing geom-
etry, the surface albedo and the surface (or cloud) 
pressure. Vertical formaldehyde profiles are obtained 
from a GEOS-Chem (v9-01-03) climatological data-
set with a spatial resolution of 2º × 2.5º. If clouds are 
present in the scene, they are accounted for using the 
independent pixel approximation.

The bottom right panel of Figure 1 shows OMH-
CHO data for December 2005 averaged into a regu-
lar grid. Files contain total vertical column HCHO, 
fitting uncertainty, quality flags, geolocation and 
other ancillary information (González et al., 2015) 
necessary for the calculation of AMFs. The AMF 
represents the relative mean light path of photons (at 
a certain wavelength) as they interact with a certain 
absorber in the atmosphere relative to its vertical path 
(Lorente et al., 2017). The AMF for HCHO can be 
recalculated using the information contained in the 
OMHCHO files (cloud fraction, cloud pressure, and 
viewing geometry). We perform two AMF calcula-
tions; the first one uses the surface reflectance infor-
mation from the OMI LER (OMLER) climatology 
(Kleipool et al., 2008) provided with the OMHCHO 
product, while the second calculation uses the MO-
DIS BRDF/Albedo data described in section 2.1.2. 
The OMHCHO algorithm obtains cloud information 
from the OMI O2-O2 operational cloud algorithm 

(OMCLDO2), which characterizes the surface reflec-
tance using the OMLER climatology mentioned. The 
OMCLDO2 algorithm has problems distinguishing 
between clouds and highly reflective surface with 
albedos close to 0.8 (Veefkind et al., 2016) and 
therefore cloud fraction and pressure uncertainties 
are larger in snow-covered scenes.

González et al. (2015) estimated the errors 
in the AMF calculation to be around 35% with 
errors due to surface reflectance uncertainty over 
snow-covered pixels as large as 26%. OMHCHO 
files contain data from the day-lit portion of an orbit 
(approximately 53 min). There are roughly 14-15 
orbits per day.

2.2 Methods
2.2.1 Using IMS and MODIS BRDF to characterize 
OMI pixels
Each pixel in the OMHCHO data product is cross 
referenced with the IMS data set using the OMI pixel 
boundary information provided in the OMHCHO 
product. Given the spatial resolution of OMI, several 
IMS and MCD43C1 data points are enclosed within 
one OMI pixel. Since IMS is a binary product, we 
assign a value of 1 to IMS grid boxes identified as 
snow-covered and a value of 0 otherwise. We then 
proceed to calculate the OMI pixel snow fraction 
by working out the mean of all IMS boxes. Once all 
snow-covered pixels are identified via the IMS data 
set, BRDF information for each pixel is obtained by 
cross referencing OMI geolocation with the MODIS 
BRDF/Albedo. The mean of all MODIS pixels con-
tained within each OMI pixel is calculated for the 
three BRDF parameters.

Figure 2 shows an example of the snow charac-
terization over Europe during February 2005 and 
2006. For this particular month, the difference in the 
white sky albedo due to presence of snow between the 
two years and impact of snow cover in the retrieved 
HCHO can be seen in the Balkans, where the pres-
ence of snow in 2005 resulted in unrealistically high 
HCHO columns.

MODIS information is provided at seven bands, 
with band 3 covering the 459-479 nm spectral range, 
being the closest to the UV region used for OMI 
HCHO retrievals (330-360 nm). Following the spec-
tral dependence of snow albedo in the UV and VIS 
spectral regions reported in Warren and Wiscombe 
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(1980) and Wiscombe and Warren (1980) (snow al-
bedos vary little between MODIS band 3 and HCHO 
retrieval spectral regions), we directly apply the 
MODIS BRDF observations of band 3 in our AMFs 
calculations at 340 nm over snow-covered areas. For 
snow-free pixels we predict the BRDF parameters at 
340 nm by using a probabilistic model (factor anal-
ysis) that estimates the UV BRDF using the BRDF 
observations from the first four MODIS bands (Chan 
et al., 2019). The model is an extension of the work 
presented by Zoogman et al. (2016), and is trained 
on reflectance spectra from the USGS spectral library 
(Kokaly et al., 2017) and SCIAMACHY LER cli-

matology (Tilstra et al., 2017). The method exploits 
the fact that a large degree of spectral variability in 
the UV-visible reflectance (> 99%) of Earth surface 
types can be constrained within a four-dimensional 
subspace.

2.2.2 Air mass factor calculation
The calculation of AMFs for each satellite obser-
vation follows the formulation described in Palmer 
et al. (2001) and Martin et al. (2002) with Vector 
Linearized Discrete Ordinate Radiative Transfer 
(VLIDORT) as the radiative transfer model (Spurr 
et al., 2008). We refer to Nowlan et al. (2018) for a 
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Fig. 2. Rows one, two, and three consist of the IMS, MODIS BRDF/Albedo, and OMHCHO data, respectively. The 
first column of images is from February 2005, the second column of images is from February 2006, and the third 
column is the 2006-2005 difference. Values off all three products are shown on a 0.1º × 0.1º grid. For the IMS data, 
the plot represents the fraction of IMS pixels that were snow-covered in February 2005 and 2006 at each grid. Both the 
MODIS BRDF/Albedo and OMHCHO data are the average of all retrievals’ pixel values for February 2005 and 2006 
at each grid using Sun et al. (2018) algorithm.
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detailed description of the methodology we have used 
in the AMFs calculations. Here we briefly describe 
the input data sets. We obtain cloud properties (cloud 
fraction and cloud pressure) to apply the independent 
pixel approximation (Martin et al., 2002), viewing 
geometry (solar zenith angle, viewing zenith angle 
and relative azimuth angle) and geolocation infor-
mation (latitude and longitude pixel bounds) from 
OMHCHO level 2 files (González et al., 2015).

A priori vertical profiles are extracted from a 
high-performance GEOS-Chem (GCHP; Eastham 
et al., 2018) monthly and hourly climatology with a 
resolution of 0.5º × 0.5º. GEOS-Chem is a global 3-D 
chemical transport model with a detailed HOx-NOx-
VOC-O3-aerosol-halogen tropospheric chemistry 
mechanism (Bey et al., 2001; Park et al., 2004; Mao 
et al., 2013). The simulation has a spin-up time of 1 
year, driven by Modern-Era Retrospective Analysis 
for Research and Applications, Version 2 (MERRA-2) 
meteorological fields (Gelaro et al., 2017). Global 
anthropogenic emissions are from the Community 
Emissions Data System (CEDS; Hoesly et al., 2018) 
substituted by MIX inventory (Li et al., 2017) over 
Asia. Biogenic emissions are calculated online using 
the Model of Emissions of Gases and Aerosols from 
Nature (MEGAN) (Guenther et al., 2012). Biomass 
burning emissions are from the fourth-generation 
Global Fire Emissions Database (GFED4; Giglio et 
al., 2013). The values of the climatology are inter-
polated to each OMI pixel center latitude, longitude, 
and time of day. The radiative transfer calculation uses 
vertical profiles of temperature, pressure, ozone and 
formaldehyde at 47 levels extending from the surface 
to 0.01 hPa.

We performed two sets of AMFs calculations, 
using the Smithsonian Institution High-Performance 
Cluster (SIHPC, n.d.), whose only difference is the 
surface reflectance information. The first set uses the 
OMI Earth Surface Reflectance Climatology (OM-
LER; Kleipool et al., 2008), which is the climatology 
employed by the OMHCHO product, and treats the 
surface as a Lambertian reflector. The second set 
of AMF calculations uses the BRDF parameters 
leveraging VLIDORT’s BRDF supplement and the 
MODIS BRDF dataset described in sections 2.1.2 
and 2.2.1. The results and discussions that follow 
focus on the differences between these two sets of 
AMF calculations.

3. Results and discussion
Figure 3 shows global mean AMFs for 2005 calcu-
lated using MODIS BRDF and OMLER as well as 
their difference. The first row in Figure 3 considers 
all scenes: from no snow to 100% snow cover con-
ditions. The difference plot in the first row (right 
column) shows several regions where using MO-
DIS BRDF information results in larger AMFs (red 
colored areas), while in others it results in smaller 
AMFs (blue colored areas). To better understand this 
behavior, we segregate pixels with snow cover larger 
than 25% (second row) and smaller than 25% (third 
row) in Figure 3.

The difference plot of the second row in Figure 3 
reveals two distinct situations when snow is covering 
at least 25% of the observed scene. Over locations 
where seasonal snow occurs, AMFs calculated using 
MODIS BRDF information are bigger than those 
calculated using the OMLER climatology. This is 
expected given the monthly nature of the OMLER 
climatology and the methodology used to calculate 
it. By design, the OMLER climatology tries to char-
acterize the surface reflectance of a given location 
avoiding observations in which the scene contains 
clouds or abnormally high values within a given 
month (Kleipool et al., 2008). This methodology, 
necessary to obtain reliable information about the sur-
face albedo (when it is not covered by snow), results 
in an underestimation of the surface albedo when 
seasonal snow is present. Because of its temporal and 
spatial resolution, MODIS BRDF observations are 
capable of detecting the presence of seasonal snow 
and improve the characterization of snow-covered 
scenes. These regions with seasonal snow cover are 
colored in red in the difference plot of the second 
row with almost all of them located in the Northern 
Hemisphere with the exception of a small region 
over Patagonia.

The median value of the difference between the 
AMF calculations performed using MODIS BRDF 
and OMLER information is about 10%. These differ-
ences are not uniform across all regions. Depending 
on location, the differences can be smaller as indi-
cated by a 25% percentile difference of 3% or much 
larger with a 75% percentile of 22%. In order to 
disentangle the contributions from different months 
and the effects of changing observation geometries 
and underlying land cover, Figure 4 provides a more 
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Fig. 3. Global average of OMI formaldehyde AMFs for the year 2005 calculated at a spatial res-
olution of 0.5º using the physical oversampling algorithm described in Sun et al. (2018). The top 
row shows results considering all available pixels regardless of their snow cover, middle row only 
pixels with snow fractions larger than 25% and bottom row only pixels with snow fraction smaller 
than 25%. The first column shows results obtained using MODIS BRDF parameters, the second 
column results obtained using the OMI’s OMLER climatology, and the third column the relative 
difference between columns one and two.
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Fig. 4. Monthly differences between AMFs calculated using MODIS BRDF and OMLER surface information. The 
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comprehensive analysis of the effects of seasonal 
snow cover in the AMF calculations by region and 
month. The largest positive differences are located 
over the North American and Eurasian continents 
within the 55º to 70º N latitudinal band.

Very different is the situation where permanent 
snow cover conditions exists (Greenland and Ant-
arctica). Over these two regions, AMF calculations 
using MODIS BRDF information results in smaller 
AMF values than calculations using the OMLER 
climatology. The median difference over Greenland 
and Antarctica in the AMF values is –6%, yet there 
is large variability in the differences between both 
sets of calculations with the 25% percentile of the 
difference being –17%. The median difference of the 
AMFs for the permanent snow regions is similar to 
the median difference shown in the bottom row of 
Figure 3 elsewhere in the globe for snow fractions 
smaller than 25%. In this case the global median 
difference is –5%.

The box and whisker plots in Figure 4 can help to 
better understand the differences between BRDF and 
OMLER AMF calculations on a monthly basis. We 
have analyzed separately three regions in the North-
ern Hemisphere: Europe, North America and Asia. 
Similarly to the second row of Figure 3, the results 
shown in Figure 4 consider only scenes with snow 
fractions over 25%. While the range of the differences 
is similar for all three regions, they display particular 
trends and behaviors.

Over Europe, the median difference per month 
ranges between 1 and 17% from November to July. 
The largest positive difference is observed in March, 
when the spread is also the greatest as indicated by an 
inter quartile range (IQR) of 20%. During the summer 
months, the small number of scenes with snow are 
linked to mountain regions in the northern part of the 
domain. It is worth mentioning that the large median 
difference observed during October (–35%) is linked 
to the Scandinavian Peninsula (not shown). The vari-
ability of the differences (characterized by the annual 
mean IQR) is 11%, the smallest of the three regions 
analyzed over Europe, with Asia showing an annual 
mean IQR of 18% and North America 15%. In Asia 
the median difference is positive between November 
and July ranging from 26% in January to 1% in July. 
The analysis over the North American region shows 
the largest difference between both sets of calcula-

tions in March with a median difference of 26%. 
The larger variability observed over Asia is a direct 
consequence of the geographical region considered 
in the analysis and its snow precipitation patterns.

The largest positive differences are shown in win-
ter and spring. They indicate that AMFs calculated 
using BRDFs are larger than those calculated with 
the OMLER climatology. This is expected given 
the seasonal nature of the snow cover in the three 
regions analyzed. During the Northern Hemisphere 
summer, differences are smaller, getting closer to the 
5-6% expected from snow free scenes. It is however 
interesting that September and October (with a small 
number of snow-covered scenes) show negative or 
near zero mean and median differences. This result is 
most likely linked to high elevation mountain regions 
with complex topography.

Finally, we go back to February 2005 over Europe 
(see Fig. 2) to evaluate how the AMFs calculated 
using MODIS BRDF mitigate the high bias observed 
in the retrieved HCHO columns of the operational 
(OMHCHO) OMI product. Figure 5 compares the 
retrievals calculated with MODIS BRDF and OM-
LER surface information. The VCDs retrieved using 
OMLER data (top right panel in Fig. 5) show hot 
spots of HCHO near the Alps, Balkans, and Carpath-
ian mountain ranges as well as Northeastern Europe.

These unrealistic columns are qualitatively cor-
related with high snow fractions (bottom right panel 
in Fig. 5). The results of the retrieval using AMFs 
calculated with MODIS BRDF information reduce 
the intensity of the unrealistic hot spots of high 
HCHO concentrations (top left panel in Fig. 5). The 
reduction of these hot spots is easier to appreciate in 
the difference plot comparing both retrievals (bottom 
left panel). HCHO columns are reduced everywhere 
with significant snow fractions. In some regions like 
the Alps and Northeastern Europe the reduction in 
the HCHO columns can reach 50% or more. On 
average, over pixels with snow fraction bigger than 
25%, HCHO columns are reduced by 16%.

4. Conclusions
The presence of snow on the ground affects the 
accuracy of space-based trace gas retrievals using 
backscattered solar radiation. Several studies pri-
or to this work have highlighted this reality and 
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proposed different strategies to mitigate snow effects 
on the quality of satellite trace gas retrievals in snowy 
landscapes. Here, we examine the effects of improved 
surface characterization over snow-covered regions 
on the AMF calculations.

While our study looks specifically at OMHCHO 
retrievals during 2005, the datasets we use here to 
characterize snow-covered surface reflectance are 
suitable for most retrievals in the ultraviolet and 
visible spectral region including for example NO2. 
In the past, this kind of retrievals have used clima-
tological surface reflectance information during 
AMF calculations, and only recently the use of high 
temporal and spatial resolution surface reflectance 
datasets has been incorporated (Lamsal et al., 2021). 
For example, the OMHCHO product uses the OMI 
Lambertian Equivalent Reflectance climatology. 
Given their nature, climatologies are not suitable to 
characterize seasonal snow episodes and the change 
in snow albedo in relatively short periods.

In this study we leverage daily MODIS surface re-
flectance information in the form of BRDFs (MODIS 
product MCD43C1) to capture the rapid changing 
nature of the surface associated with snow. After 
sampling MCD43C1 to each satellite observation, 

we compute two sets of AMFs using the OMLER 
climatology and MODIS BRDFs respectively and 
the VLIDORT radiative transfer model. We also use 
the daily IMS snow product to determine the snow 
fraction in each OMI ground pixel.

The comparison between two sets of AMFs 
provides some insights on the effect of snow. On 
a planetary scale, AMFs over regions permanently 
under snow or ice are 6% smaller (yearly average) 
if calculated using MODIS BRDF vs. OMLER in-
formation. The opposite occurs when seasonal snow 
is present on the satellite scene. In this case, AMFs 
calculated using MODIS BRDF are on average (over 
the year 2005) 10% larger than AMFs calculated 
using OMLER. We have also conducted a monthly 
analysis for three Northern Hemisphere geographic 
regions: North America, Europe and Asia. These 
comparisons show large variability in the computed 
AMFs, with differences as large as 50%.

To illustrate the benefits of using MODIS BRDF 
instead of OMLER we analyzed HCHO retrievals 
over Europe during February 2005, a period and 
region affected by large snowfalls. While the OMH-
CHO product (using OMLER) shows an unrealistic 
enhancement of formaldehyde columns not associ-

Fig. 5. HCHO VCDs retrieved using BRDF AMF calculations (top 
left panel), OMLER AMF calculations (top right panel), the differ-
ence between them (bottom left panel) and the IMS snow fraction 
for February 2005 over Europe.
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ated with any known process, the AMFs calculated 
using MODIS BRDFs reduce the retrieved columns 
on average by 16%, greatly mitigating the effects 
of snow.

While using MODIS BRDFs is an improvement 
over the traditional Lambertian climatologies there 
are still limitations associated with MODIS retriev-
als. First, the 16-day period of MODIS observations 
needed to retrieve BRDFs limits the capture of very 
fast changing surface conditions, including snowfalls 
and quick melts. Second, MODIS BRDF information 
is not available over sea-ice areas as a standard prod-
uct. Since HCHO concentrations are not significant 
over sea-ice areas, the absence of BRDF information 
over sea-ice is not a significant problem. However, 
other trace gases of interest that can be retrieved 
using backscattered solar radiation such as bromine 
monoxide are directly linked to the snow pack over 
the Arctic sea-ice and therefore subject to important 
errors associated with the use of surface reflectance 
climatologies in these sea-ice covered regions. The 
errors associated with uncertainties in the determi-
nation of cloud parameters over snow and ice could 
be addressed in a future study if future versions of 
the OMCLDO2 algorithm consider MODIS BRDF 
surface information instead of OMLER as explained 
in Lamsal et al. (2021).

Keeping all the considerations above in mind, 
we would like to argue that using MODIS (or some 
other high-resolution imager) BRDF to characterize 
the surface reflectance in the calculations of AMF 
represents a large improvement over LER climatol-
ogies. We have proven its impact on OMI retrievals, 
but given the spatial resolution of state-of-the-art 
instruments such as TROPOMI, the importance of 
using surface reflectance information with enough 
spatial and temporal resolution becomes even more 
necessary in snow and snow-free scenes.
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