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RESUMEN

La radiación solar, que se utiliza en la modelación hidrológica y agrícola, sistemas de energía solar y en 
estudios climatológicos, es el elemento más importante de la energía que llega a la tierra. El presente estudio 
comparó el desempeño de dos ecuaciones empíricas -las ecuaciones de Angstrom y Hargreaves-Samani- y 
tres modelos de aprendizaje automático -Redes Neuronales Artificiales (ANN), Máquina de Vectores de So-
porte (SVM) y Memoria a Largo Corto Plazo (LSTM)-. Se desarrollaron varios modelos de aprendizaje para 
las variables utilizadas en cada ecuación empírica. En el presente estudio, se utilizaron datos mensuales de 
seis estaciones en Turquía, tres estaciones que reciben la mayor radiación solar y tres estaciones que reciben 
la menor radiación solar. En términos de los valores del error cuadrático (MSE), el error cuadrático medio 
(RMSE), el error absoluto medio (MAE) y el coeficiente de determinación (R2) de cada modelo; el LSTM 
fue el modelo de aprendizaje más exitoso, seguido de los modelos de aprendizaje automático ANN y SVM, 
respectivamente. El valor de MAE fue de 2,65 con la ecuación de Hargreaves-Samani y disminuyó a 0,987 
con el modelo LSTM mientras que MAE fue de 1,24 en la ecuación de Angstrom y disminuyó a 0,747 con 
el modelo LSTM. El estudio reveló que el modelo de aprendizaje profundo es más apropiado para usar en 
comparación con las ecuaciones empíricas, incluso en los casos en que hay datos limitados. 

ABSTRACT

Solar radiation, which is used in hydrological and agricultural modeling, agricultural, solar energy systems, 
and climatological studies, is the most important element of the energy reaching the earth. The present study 
compared the performance of two empirical equations -Angstrom and Hargreaves-Samani equations- and 
three machine learning models -Artificial Neural Networks (ANN), Support Vector Machine (SVM), and 
Long Short-Term Memory (LSTM)-. Various learning models were developed for the variables used in each 
empirical equation. In the present study, monthly data of six stations in Turkey, three stations receiving the 
most solar radiation and three stations receiving the lowest solar radiation, were used. In terms of the mean 
squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and determination co-
efficient (R2) values of each model, the LSTM was the most successful model, followed by ANN and SVM. 
The MAE value was 2.65 with the Hargreaves-Samani equation and decreased to 0.987 with the LSTM 
model, while MAE was 1.24 in the Angstrom equation and decreased to 0.747 with the LSTM model. The 
study revealed that the deep learning model is more appropriate to use than the empirical equations, even in 
cases with limited data.
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1. Introduction
Water resources’s overexploitation associated with 
global warming affects majorly the quality and 
amount of water used (Yurekli, 2021). Agricultural 
water demand is supplied by planning water resources 
and their correct use. Therefore, evapotranspiration 
(ET) needs should be determined for sustainable 
water management. ET is the most important factor 
that represents the effect of climate parameters on 
the hydrologic cycle (Pereira et al., 2015). Direct 
calculation methods of ET are not practical nor eco-
nomical. Instead, reference evapotranspiration (ET0) 
is successfully estimated using climate parameters 
with the development of empirical equations. The 
Penman-Monteith method is proposed by the Food & 
Agriculture Organization (FAO) as the best-fit meth-
od for calculating ET0. The changes in hydrological 
and meteorological components affect ET0 seriously. 
The most significant problem in calculating ET0 is the 
missing data. Allen et al. (1998) reported that instead 
of calculating alternative ET0 with limited data, it is 
more appropriate to calculate ET0 by estimating the 
missing data.

Meteorology stations in many regions of the world 
do not have enough data to make ET0 calculations 
with the Penman-Monteith method (Zanetti et al., 
2019). Solar radiation data representing energy from 
the sun on ET0 is one of the most commonly lacking 
meteorological parameters. Also, solar radiation is a 
significant variable since it is used in various areas 
such as meteorology, solar energy systems (Yadav 
and Chandel, 2014), and hydrological and agricul-
tural studies (Yang et al., 2006). The missing solar 
radiation data can be estimated from the sunshine 
duration using the Angstrom equation (Angstrom, 
1924), and for regions where the sunshine duration 
is not measured, from the maximum and minimum 
air temperature difference reported by Hargreaves 
and Samani (1982). Artificial intelligence techniques 
(Jiang, 2009; Yacef et al., 2012) and machine learning 
models (Lauret et al., 2015) used in solar radiation 
estimation give more successful results than em-
pirical equations. While some researchers used the 
empirical equations for solar radiation estimates 
(Besharat et al., 2013; Hassan et al., 2016; Yıldırım 
et al., 2018, Mohammadi and Moazenzadeh, 2021), 
some researchers employed machine learning meth-
ods based on the relationship of inputs and outputs 

learned from previous data sets (Sözen et al., 2004; 
Amrouche and Le Pivert 2014; Shamshirband et al., 
2015; Premalatha and Valan Arasu 2016; Guermoui 
and Rabehi 2018).

Sözen et al. (2005) reported higher success 
rates with the ANN method compared to the classic 
regression models for solar radiation estimation 
in Turkey. Rahimikhoob (2010), in his study con-
ducted in Iran, modeled solar radiation using the 
Hargreaves equation and the ANN method obtaining 
the best estimate with ANN. Compared to the empir-
ical equations, the SVM model gave better results 
in places where air temperature data are available 
(Chen et al., 2011). Premalatha and Valan Arasu 
(2016) stated that Levenberg–Marquardt was the 
ANN algorithm that gave the best result for solar 
radiation estimation in India. On the other hand, 
Chandola et al. (2020) compared LSTM and RNN 
methods for solar radiation estimation in the Thar 
desert of Pakistan and obtained the most successful 
results from the LSTM model.

The purpose of the present study was to estimate 
and analyze, using deep learning and machine learning 
models, the solar radiation values measured for Anta-
lya, Mersin, Mugla stations, which receive the highest 
radiation levels in Turkey, and Rize, Trabzon, and Ordu 
stations, which receive the lowest radiation levels. In 
addition, the performances of empirical models such 
as Hargreaves-Samani and Angstrom equations were 
compared with LSTM, SVM, and ANN models. In 
the present study, LSTM, ANN, and SVM algorithms 
were developed using the inputs of two different em-
pirical models. The ability to perform estimations with 
unlimited variables by learning historical data enables 
these models to be used frequently. The suitability 
for modeling dynamic environments such as climate 
parameters, minimizing human involvement, high 
learning speed, and accuracy made learning models 
preferable to empirical models.

2. Material and Method
2.1 Study Area and Data
Turkey is a country that is a bridge between Asia 
and Europe. Turkey’s geographical location is in the 
36–42º North latitudes and 26–45º East longitude. 
The average elevation is 1130 meters above sea 
level and gradually increases from the West to the 
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East of the country. The sea surrounds it on three 
sides (Mızrak, 1983; Atalay, 2011; Çelik, 2020). 
Turkey has very different climatic and microclimate 
zones due to its geographical location and structure. 
Turkey is divided geographically into seven regions 
(Marmara, Aegean, Mediterranean, Central Anato-
lia, Black Sea, Eastern, and Southeastern Anatolia). 
It has a semi-arid climate characteristic. 

Turkey has a high solar energy potential as it is 
close to the equator rather than the poles. According 
to Turkey’s Solar Energy Potential Atlas (GEPA), 
Turkey’s annual total sunshine duration is 2741.07 
hours year-1, its daily total sunshine duration is 
7.5 hours day-1, its daily total solar energy is 4.18 
kWh m-2 day-1 and its annual total solar energy is 
1527.46 kWh m-2 year-1. The Black Sea Region 
has the lowest radiation due to the higher number 
of rainy-day counts and geographical position. 
While Marmara and Aegean Region have radiation 
in medium value, Central Anatolia, East Anatolia, 
Mediterranean, and Southeastern Anatolia regions 
have high radiation levels. This study used the 
meteorological stations with the highest radiation 
(Mugla, Antalya, Mersin) and the lowest (Ordu, 

Trabzon, and Rize). The meteorological stations’ lo-
cations on the map of Turkey are given in Figure 1. 
Some characteristic features of the meteorological 
stations are shown in Table I.

2.2 Methodology
2.2.1 Empirical Equations
Several empirical equations are used in literature 
to explain the relationships between solar radiation 
and meteorological data. FAO-56 (Allen et al., 1998) 
suggested using Angstrom and Hargreaves-Samani 
equations when solar radiation data cannot be mea-
sured. In the Angstrom equation, solar radiation is 
calculated by being associated with extraterrestrial 
radiation and relative sunshine duration. The Ang-
strom equation is given in Equation 1.

Rs =  (as + bs*
n
N )Ra (1)

where Rs is solar radiation at the surface (MJ m–2 
day–1), Ra is solar radiation at the top of the atmo-
sphere (MJ m–2 day–1), n/N is the relative sunshine 
duration (hour), and as and bs are regression constant 
(as = 0,25 and bs = 0,50). 
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Hargreaves and Samani (1982) developed Equa-
tion 2 for solar radiation calculation by relating Tmax, 
Tmin, and Ra parameters.

Rs =  kRS Tmax − Tmin Ra (2)

where Tmax is maximum air temperature (0C), Tmin 
is minimum air temperature (0C), kRS is adjustment 
coefficient (0.16- 0.19).

2.2.2 Support Vector Machine (SVM)
Vapnik (1995) developed the SVM method to solve 
pattern recognition and classification problems (Cortes 
and Vapnik, 1995). SVM is based on statistical learn-
ing theory and is mainly used to distinguish two data 
classes in the best possible way. For this purpose, 
decision boundaries or hyperplanes are determined. 
In a nonlinear dataset, SVMs cannot plot a linear 
hyperplane. Therefore, kernel numerals are used. The 
Kernel method widely increases machine learning on 
nonlinear data. The SVM estimator (y) process in the 
Kernel method is expressed as in Equation 3.

Rs =  (as + bs*
n
N )Ra (3)

where the Kernel core function is Kx,i, b is the bias 
term of the SVM network, and Wjk is called the 
weight vector. Kx and W represent Lagrange mul-
tipliers. Kx,i is a nonlinear function that maps input 
vectors to a high-dimensional feature space. Various 
function solutions determine the kernel core (Kx,i). In 
this study, the kernel function for the SVM method 
was determined as polynomial due to the lack of 
linearity between the input and output data. In the 
SVM method, the ‘Batch size’ value is 100, and the 
‘Complexity’ value is 0.5.

2.2.3 Artificial Neural Networks (ANN)
ANN is a mathematical modeling method whose de-
velopment was inspired by biological neural systems 
like the human brain. In general, ANN is a system 
consisting of non-linear artificial cells that can be 
arranged as single-layer or multi-layer and work in 
parallel (Liu et al., 2010). The basic unit of ANN 
is the artificial neurons. Neurons are structures that 
produce a response through input nodes and process 
information within themselves. Artificial neurons 
have five components: inputs, weights, combination 
function, activation function, and outputs (Cıtakoglu 
and Ozeren, 2021). Artificial neurons get together to 
create ANN. The most common structure of ANN 
consists of the input layer, where the data is present-
ed to the artificial neural network as input data; the 
hidden layer, where the data is processed; and the 
output layer, where the result is obtained. The basic 
structure of ANN is given in Figure 2.

ANN has been the most important tool in solving 
complex nonlinear problems. ANN is widely used 
in hydrological studies such as precipitation-flow 
models, precipitation, runoff, temperature, snowmelt, 
evapotranspiration, solar radiation, and drought. 
(Khotanzad et al, 1996; Dawson and Wilby, 1998; 
Machado et al, 2011). This study used four hidden 
layers for the ANN model, 20 neurons in each hid-
den layer, the hyperbolic tangent function as the 
activation function, and the Levenberg-Marquardt 
algorithm as the training algorithm.

2.2.4 Long Short-Term Memory Networks (LSTM)
LSTM, a type of recurrent neural network (RNN) 
approach, was first proposed by Hochreiter and 
Schmidhuber (1997a). Many people then developed 
the method. The LSTM model was specifically 

Table I. Some characteristic features belong to meteorological stations

Stations Observation
Period

Elevation Latitude Longitude

Mugla 1969-2002 625 37.03 27.43
Antalya 1983-2006 39 37.04 31.79
Mersin 1984-2010 6 36.07 32.83
Ordu 1987-2010 4 40.98 37.87
Trabzon 1972-2005 10 41.00 39.71
Rize 1987-2019 6 41.02 40.51
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designed to overcome the exploding and disap-
pearing gradient problems that typically arise 
when learning long-term dependencies, even if the 
minimum time delays are very long (Hochreiter and 
Schmidhuber, 1997b; Van Houdt et al., 2020). The 
LSTM unit consists of a cell, an input gate, an exit 
gate, and a forget gate. The structure of LSTM is 
given in Figure 3. These gates handle the writing, 
reading, and resetting of the cell. The cell remem-
bers values at random time intervals, and three 
gates regulate the information flow associated with 
the cell (Singh et al., 2017). In the LSTM network 
structure, the input data is multiplied by the output 
of the input gate to identify new information that 
can be accumulated in the cell. To calculate the 
information that can be propagated to the network, 
the output data of the network is multiplied by the 
activation of the output gate. The cell states of 
the previous time are multiplied by the activation of the 
forget gate to determine whether the last state of 
the cell is forgotten. (Sainath et al., 2015). 

(Xt) is an input at time step t, the hidden state 
from the previous time step (St–1) is introduced to 
the LSTM block, and the hidden state (St) is then 
calculated as follows:

The first step; is to decide what information to 
discard from the cell state. This decision is made by 
the following forget gate (ft):

ft =  σ ( )* Xt U f W f+ *St−1 + bf  (4)

The second step; is to decide what new informa-
tion to store in the cell state. There are two stages 
in this step. 

1) The input gate (it) layer decides which values to 
update. 

2) The tanh function determines the candidate infor-
mation that will create new information.

it =  σ ( )W i*  Xt Ui + *St−1 + bi  (5)

Ćt = tanh( ) Xt Uc+   Wc* *St−1 + bc   (6)

The third step, from the old cell state Ct−1 is to 
create the new cell state Ct as follows.

Ct = ) Ct−1* ft +  it* Ćt  (7)

The final step decides what will be produced as 
output. The output gate (Ot) determines which com-
ponents of the cell state will be generated as output 
in this stage. Then the cell state goes through the 
tanh layer (to push between -1 and 1 the values) and 
multiplies it with the output gate as follows

Ot =  σ ( )* * Xt U0  W0+  St−1 + bo   (8)

St =  Ot* tanh(Ct) (9)
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From the previous six equations, the LSTM pres-
ents the following three groups of parameters:

1. Input weights: Uf, Ui, Uc, U0.
2. Recurrent weights: W f, Wi, Wc, W0

3. Bias: bf, bc, bi, bo. 

The LSTM model used in the study has one input 
layer, one hidden layer containing 64 LSTM neurons, 
and one output layer that makes a single value esti-
mation. Sigmoid was used as the activation function 
in LSTM neurons. The learning rate of the model was 
determined as 0.005. The dropout value is set to 0.1 
to avoid over-fitting. The stochastic Gradient Descent 
(SGD) algorithm was used as the optimization meth-
od. The LSTM model is trained for 100 epochs, and 
one batch size is used in this training (Li and Cao, 
2018; Granata and Di Nunno, 2021).

2.3. Predictive Model Development
In this study, solar radiation values   were estimat-
ed by giving input attributes determined for the 
Hargreaves-Samani equation and Angstrom equation 
as input to machine learning and deep learning model. 
Since the input parameters of both equations were 
different, two different models were created. The 
input attributes for the Hargreaves-Samani equation 
were extraterrestrial radiation, daily minimum air 
temperature, and daily maximum air temperature. 
The input attributes for the Angstrom equation were 
the extraterrestrial radiation, the actual sunshine du-
ration, and the maximum duration of sunshine hours. 
Extraterrestrial radiation was determined from solar 
constant, solar declination, and time of year for differ-
ent time periods and latitudes by the method specified 
in Allen et al. (1998). In estimating the solar radiation 
value, which is the dependent variable, performance 
comparisons of ANN, SVM, and LSTM methods 
are made for both equations. In addition, the values   
calculated by the Hargreaves-Samani equation and 
Angstrom equation, which are used to complete the 
missing data in the solar radiation values   measured 
in the literature, were compared with the estimated 
values of machine learning and deep learning mod-
els. In this study, the kernel function for the SVM 
method was determined as polynomial due to the 
lack of linearity between the input and output data. In 
the SVM method, the ‘Batch size’ value is 100, and 

the ‘Complexity’ value is 0.5. The most critical dis-
advantage of ANN and LSTM methods is that there 
is no standard way to determine model parameters 
(Sherstinsky, 2020). The optimum parameters were 
determined in the study by the trial-and-error method 
until the most suitable values for these two methods 
were found. For the ANN model, four hidden layers, 
20 neurons in each hidden layer, hyperbolic tangent 
function as activation function, and Levenberg-Mar-
quardt algorithm as training algorithm was used. The 
LSTM model used in the study has one input layer, 
one hidden layer containing 64 LSTM neurons, and 
one output layer that makes a single value estima-
tion. Sigmoid was used as the activation function in 
LSTM neurons. The learning rate of the model was 
determined as 0.005. The dropout value is set to 0.1 
to avoid over-fitting. The Stochastic Gradient Descent 
(SGD) algorithm was used as the optimization meth-
od. The LSTM model is trained for 100 epochs, and 
one batch size is used in this training (Li and Cao, 
2018; Granata and Di Nunno, 2021). 

It is thought that a dataset containing a total of 
2112 daily solar radiation values   is sufficient for 
objectively evaluating the machine learning and deep 
learning models used in the study (Gers et al., 2000). 
The study applied a 3-fold cross-validation method 
to the dataset prepared for the solar radiation value 
estimation, allowing objective evaluation of ANN, 
SVM, and LSTM models (Hastie et al., 2009). This 
method divides the dataset into two sets, 80% of 
the values for training (1691) and 20% for testing 
(421). The study’s dataset was changed in the same 
distribution ratios, and three different test results were 
found. The experiments were carried out by taking 
the average of these results (Kohavi, 1995).

2.4 Model performance measures
In this study, mean absolute error (MAE), root means 
square error (RMSE), mean relative error (MRE), 
and determination coefficient (R2) were used as per-
formance evaluation criteria of the models. The fact 
that the MAE value, which questions the absolute 
error between the real and the estimated values, is 
close to zero reveals the result of the model’s good 
estimation ability (Duan et al., 2016).

MAE =
∑n

i=1 x − x′ 
n

 (10)
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In Equation 10, x is the actual value, x’ is the 
estimated value, and n is the number of data. While 
calculating the RMSE value, the sum of the squares 
of the errors of the data set is divided by the number 
of data, and the square root of this value is taken 
(Duan et al., 2016).

RMSE =
∑n

i=1 (x − x′ )2

n
 (11)

Since the errors are squared in the RMSE value, 
large errors in the data set significantly affect the 
mean. In this way, it is ensured that large errors have 
a greater effect on the overall evaluation. The fact 
that the RMSE value is generally below 10% of the 
mean dependent variable value reveals the result of 
a successful estimation (Lee, 2014). The MRE value 
calculates the relative absolute error between the 
actual values and the estimated values.

MRE =
∑n

i=1
(x − x′ )

x

n
 (12)

The fact that the MRE value given by Equation 12 
approaches zero indicates that the estimative ability of 
the model is good. The R2 value, which represents the 
rate of variance of the dependent variable explained by 
the independent variables, is defined in the range of 0 
to 1. A close to zero  value indicates no relationship 
between the independent and dependent variables. In 
contrast, a  value close to one shows that the indepen-
dent variables can explain the dependent variables. 
The value is desired to be close to one (Fisher, 1922).

R2 = 1 −
∑n

i=1 (x − x′ )2

∑n
i=1 (x − x̄)2

 (13)

3. Results and Discussion
The average MAE, RMSE, MRE, and R2 values 
obtained from the experiments performed for the 
Hargreaves-Samani and the Angstrom equation are 
given in Tables II and III.

As can be seen in Tables II and III, two different 
models created with input from the Hargreaves-Sa-
mani and Angstrom equations for the LSTM model 
are the most successful among machine learning and 
deep learning methods used in experimental studies. 
The results obtained with machine learning and deep 
learning models show more successful outcomes 
than the solar radiation values calculated by both 
the Hargreaves-Samani and the Angstrom equations 
alone. The results obtained with input from the Ang-
strom equation are more successful than the results 

Table II. Average estimation results of solar radiation values from the 
Hargreaves-Samani equation

Solar Radiation Value Estimation

Method Evaluation Criteria

R2 MAE RMSE MRE

Hargreaves-Samani 0.9236 2.65 3.398 0.312
SVM 0.964 1.257 1.628 0.148
ANN 0.9685 1.183 1.512 0.136
LSTM 0.9749 0.987 1.298 0.109

Table III. Average estimation results of solar radiation 
values from the Angstrom equation

Solar Radiation Value Estimation

Method
Evaluation Criteria

R2 MAE RMSE MRE

Angstrom 0.9645 1.24 1.624 0.135
SVM 0.9699 1.02 1.465 0.122
ANN 0.9768 0.87 1.25 0.104
LSTM 0.9806 0.747 1.073 0.089
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with input from the Hargreaves-Samani equation. 
MAE, RMSE, and MRE values approaching zero 
and R2 values approaching one indicate the success 
of our proposed model. The graphical representation 
of the absolute errors in the test dataset for solar ra-
diation value estimation using the LSTM deep learn-
ing model, for the most successful model with the 
Hargreaves-Samani equation, is shown in Figure 4.

As seen in Figure 4, the Hargreaves-Samani 
equation and LSTM deep learning model were 
compared according to the monthly solar radiation 
value estimation results with a dataset consisting of 
2112 records and eight attributes. The LSTM deep 
learning model was observed to be more successful 
than the Hargreaves-Samani equation and minimizes 
the estimation error. It was observed that the MAE 
value, which was 2.65 with the Hargreaves-Samani 
equation, decreased to 0.987 with the LSTM model. 

The graphical representation of the absolute errors 
in the test dataset for solar radiation value estimation 
using the LSTM deep learning model, for the most 
successful model with the Angstrom equation, is 
shown in Figure 5.

As seen in Figure 5, the LSTM deep learning 
model was also more successful than the Angstrom 
equation and minimized the estimation error. As a 
result of the experimental studies, although linearity 
is observed between the solar radiation values and 

the input data set, it was observed that the error 
value was reduced by using SVM and ANN. In this 
situation, the LSTM model, one of the deep learning 
methods, was applied, and it was observed that the 
MAE value, which was 1.24, decreased to 0.747 
with the Angstrom equation. In addition, although 
the solar radiation estimation calculated using the 
Angstrom equation seemed more successful than 
the Hargreaves-Samani equation, the LSTM model 
showed more successful results than both equations. 
The test samples shown in Figures 4 and 5 were 
randomly taken from six different stations. The ran-
dom sampling of the test samples showed that the 
data collection periods were also random. This is 
especially important in terms of objective evaluation 
of the results.

Figure 6 and Figure 7 showed box-whisker error 
plots corresponding to the absolute values of the 
difference between solar radiation values calculated 
from the Hargreaves-Samani and Angstrom equations 
and estimated values from the models. In this way, 
the distribution characteristics of the errors were 
revealed, and the models were compared objectively 
(Di Nunno et al., 2021). The line in the middle of the 
box in the box-whisker plot shows the median value 
(Q2), the lower boundary line of the box indicates 
the first quartile (Q1), and the upper boundary line 
of the box indicates the third quartile (Q3). As the Q3 
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– Q1 (IQR-interquartile range) value increases, the 
spread of the data increases, and as it gets smaller, 
it decreases. As the Q2 – Q1 value gets larger, the 
median value moves away from the first quarter, and 
the data set shows a left-skewed distribution. As the 
Q3 – Q2 value gets larger, the median value moves 
away from the third quartile, and the data set shows 
a right-skewed distribution. The data set exhibits a 
symmetrical distribution when the median, mean, 
and mode values are in the middle of the quadrants. 
The cross on the box gives the mean of the data set. 
Therefore, it shows the MAE value. The vertical lines 
coming out of the boxes denote whiskers. The lower 
whisker or lower line represents the smallest (mini-
mum), and the upper whisker or upper line represents 
the largest (maximum) data value. The dot or dots 
outside the whiskers represent outliers. The position 
of the quadrants changes as the number of outliers and 
their spread beyond the whiskers increases. There-
fore, when comparing multiple box-whisker plots, it 
is necessary to consider the number of outliers, their 
spread, the box width, and the whiskers’ lengths.

Figure 6 illustrates that while the Hargreaves-Sa-
mani model does not contain outliers, the ANN, LSTM, 
and SVM models do. Although the Hargreaves-Sa-
mani model appears to be more favorable in this 
regard, it is clear that the LSTM model stands out 
when compared to the others when looking at whisker 
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Fig. 5. Graphical representation of absolute errors of the Angstrom equation and LSTM 
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lengths, box sizes, MAE values, and how far these 
values are from the quarters. On the other hand, the 
Hargreaves-Samani model exhibits a right-skewed 
structure, and the SVM model exhibits a left-skewed 
structure. ANN and LSTM models show a more sym-
metrical structure. Considering the whisker lengths, 
LSTM can be preferred over the ANN model.

As seen in Figure 7, although all models show a 
right-skewed distribution, the size of the boxes and 
whisker lengths in the Angstrom model showed a 
wider spread than the ANN, LSTM, and SVM mod-
els. Although the box widths of the ANN, LSTM, 
and SVM models seem the same, the smallest data 
value in the LSTM model almost coincided with the 
Q1 quartile. This situation caused the MAE value to 
be even smaller. Therefore, in terms of the distribu-
tion of absolute error values, the most stable model 
seems to be LSTM.

4. Conclusion
This study has developed LSTM deep learning, 
ANN, and SVM machine learning models to estimate 
Turkey’s monthly solar radiation value. Training and 
testing processes were carried out with the meteoro-
logical data of a total of six stations in Turkey that 
receive the most and the least solar radiation. When 
the developed and empirical models are evaluated 
together, it is concluded that all learning models 
make more successful estimations than empirical 
models. While the LSTM model has lower MAE, 
RMSE, and MRE values than other learning mod-
els and empirical models, it has a higher R2 value. 
Therefore, the best-performing method is the LSTM 
deep learning model. As a result, experts who perform 
solar radiation calculations can successfully estimate 
solar radiation with the LSTM model in cases where 
measurement is impossible.

This study, which deals with estimating the solar 
radiation value, transfers the computational engineer-
ing task from the researchers to the deep learning 
model. The deep learning approach performs much 
better when comparing the deep learning method, the 
empirical models, and the traditional machine learning 
models. The success of the deep learning approach 
is based on two main reasons. The first is that deep 
learning models mimic how the human brain works. 
High-level attributes that represent semantic relation-

ships are extracted by taking the lower-level attributes 
with the successive layers of the model. Second, 
thanks to the memory module in the LSTM model, it 
automatically identifies active features at each step of 
the training. Finally, for the estimation process used in 
this study, ANN, SVM, and LSTM machine learning/
deep learning methods seem to be methods that can 
be used in relational screening studies. These methods 
are known to be powerful estimation methods. For 
this reason, it is recommended that these methods be 
used more widely in similar studies to be conducted 
in the future.
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