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RESUMEN

Los estudios epidemiológicos sobre los efectos de la contaminación del aire en México a menudo utilizan 
las concentraciones ambientales de los monitores más cercanos al hogar como indicadores de exposición, 
sin embargo, este enfoque ignora los gradientes espaciales de los contaminantes y asume que las personas 
no tienen movilidad dentro de la ciudad. Nuestro objetivo fue desarrollar modelos espaciales y temporales 
de alta resolución para predecir la exposición a largo plazo a PM2.5 y NO2 en una población de ~16 500 par-
ticipantes de un estudio de Cohorte de Maestras Mexicanas (ESMaestras). Geocodificamos las direcciones 
de la casa y el trabajo de las participantes. Utilizando información de fuentes secundarias sobre variables 
geográficas y meteorológicas, así como otros contaminantes, ajustamos dos modelos aditivos generalizados 
para predecir las concentraciones mensuales de PM2.5 y NO2 en el periodo 2004-2019. Los modelos se eva-
luaron mediante validación cruzada de 10 iteraciones. Ambos mostraron una alta precisión predictiva con 
datos fuera de la muestra y no sobreajuste (CV RMSE = 0.102 para PM2.5 y CV RMSE = 4.497 para NO2). 
Los participantes estuvieron expuestos a un promedio mensual de 24.38 (6.78) µg m–3 de PM2.5 y 28.21 
(8.00) ppb de NO2 durante el periodo de estudio. Estos modelos ofrecen una alternativa prometedora para 
estimar la exposición a PM2.5 y NO2 con alta resolución espaciotemporal para estudios epidemiológicos en 
la región del Valle de México.

ABSTRACT

Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants 
as measured by monitors closest to the home of participants as exposure proxies, yet this approach does 
not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to 
develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in 
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~16 500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses 
of participants, and used secondary source information on geographical and meteorological variables as well 
as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 con-
centrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and 
showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE = 0.102 for PM2.5 
and CV-RMSE = 4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) µg m–3 of 
PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for 
estimating PM2.5 and NO2 exposure with high spatiotemporal resolution for epidemiological studies in the 
Mexico City Metropolitan Area.

Keywords: air pollution, generalized additive models, exposure assessment.

1.	 Introduction
In 2015, the World Health Organization (WHO) 
recognized ambient air pollutant exposure and its 
effects on human health as a public health priority 
requiring further study (WHA68, 2015). The rapid 
expansion of urban areas worldwide has increased the 
number of individuals exposed to pollutant concen-
trations above the upper limits recommended by the 
WHO (Riojas-Rodríguez et al., 2016). For instance, 
the Mexico City Metropolitan Area (MCMA) is the 
third-largest metropolitan area of the member states 
of the Organization for Economic Cooperation and 
Development (OECD) and is considered one of 
three megacities in Latin America (OECD, 2016). 
Historically, this area has registered high rates of 
air pollution (INE-SEMARNAT, 2011), posing a 
constant risk to the health of its nearly 21 million 
inhabitants (INEGI, 2015).

Epidemiological studies have shown that chronic 
exposure to ambient PM2.5 and NO2 is associated 
with health outcomes including increased mortality 
(Beelen et al., 2014), cardiovascular disease (Dock-
ery, 2001; Hoek et al., 2013), lung cancer (Pope et 
al., 2002; Chen et al., 2008; Hamra et al., 2014), car-
diopulmonary conditions (Krewski et al., 2009) and 
diabetes (Li et al., 2014). These studies have used a 
variety of methods to estimate air pollutant exposure 
and have developed deterministic and/or probabilistic 
models as the cornerstone of their analyses. In Mex-
ico, the majority of epidemiological studies on the 
health effects of air pollutants have estimated pollut-
ant exposure using proximity methods, such as those 
based on data from the nearest air quality monitor 
(Rojas-Martinez et al., 2007; Barraza-Villarreal et al., 
2008; Escamilla-Nuñez et al., 2008; Hernández-Ca-
dena et al., 2009), averages by city or municipality 

(Téllez-Rojo et al., 2000; Carbajal-Arroyo et al., 
2011), or Inverse Distance Weighting (IDW) interpo-
lation (Riojas-Rodríguez et al., 2014; Trejo-González 
et al., 2019). One disadvantage of these approaches 
is their failure to capture the spatial variability of 
exposures caused by local pollution sources, urban 
topography and local meteorological factors (Jerrett 
et al., 2005), which leads to considerable uncertainty 
regarding accurate exposure estimation. To the best 
of our knowledge, the available literature offers few 
epidemiological studies which have employed more 
sophisticated, high-resolution methods (e.g., based 
on satellite data) for estimating exposure to ambient 
air pollutants in the Mexican population (Rosa et al., 
2017; Gutiérrez-Ávila et al., 2018; Téllez-Rojo et al., 
2020). Furthermore, previous studies have noted that 
human exposure to air pollutants can differ between 
individuals due to variable factors such as time spent 
outdoors and mobility patterns, thereby introducing 
bias into individual-level exposure estimates in epi-
demiological analyses (Setton et al., 2011; Nyhan et 
al., 2019; Yu et al., 2020).

To offset these limitations, our study has geo-
coded the home and work addresses of the study 
population and fitted generalized additive models 
(GAMs), which predict PM2.5 and NO2 concentra-
tions at both locations. The principal advantage of 
the GAMs is their use of semiparametric methods to 
model non-linear functions through penalized splines 
(Yanosky et al., 2008).

This study represents a refinement of exposure 
models previously developed and applied in the 
MCMA (Just et al., 2015; Rivera-González et al., 
2015; Son et al., 2018). In order to craft a feasible 
model adaptable to the limited information available 
in developing countries, we used the highest-quality 
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and largest amount of secondary source data available 
on air pollutant predictors in Mexico. This study 
therefore provides a novel methodological tool to be 
used in the Mexican Teachers’ Cohort (MTC) study, 
as well as for subsequent epidemiological studies 
which seek to assess the effects of PM2.5 and NO2 
exposures on health. Our aim was to determine the 
level of monthly exposure to outdoor PM2.5 and NO2 
of approximately 16 500 MTC participants living 
and working in the MCMA between 2004 and 2019.

2.	 Material and methods
We developed spatiotemporal prediction models for 
PM2.5 and NO2 using the pollutant concentrations at 
monitoring locations as the dependent variable, and 
meteorological and geographic variables, as well as 
other pollutants, as predictors. For statistical mod-
eling, geostatistical modeling, geoprocessing and 
spatial analysis, we used R software version 3.5.3 
(R Core Team, 2019).

2.1 Study population and geocoding
This study is nested within a larger study known 
as the MTC, an ongoing prospective observational 
study established in 2006-2008 that includes 115 314 
female public-school teachers from 12 Mexican 
states, with a median age at enrollment of 44 years. 
A detailed description of the full cohort has been 
published elsewhere (Lajous et al., 2015). In brief, 
recruitment was divided into two phases: the first 
(2006) took place in two states (Jalisco and Veracruz, 
n = 27 979), and the second (2008) incorporated 10 
additional states (Baja California, Chiapas, Mexico 
City [CdMx], Durango, Guanajuato, Hidalgo, Mex-
ico State [EdoMex], Nuevo León, Sonora and Yu-
catán, n = 87 335). Participants completed a reference 
questionnaire with sociodemographic characteristics 
(including home address [HA] and work address 
[WA]), reproductive history, diet, lifestyle and health 
status. Follow-up takes place every 3-4 years to ob-
tain information on any disease diagnoses and update 
participant risk factor profiles. The first follow-up 
cycle (2011-2013) obtained a response rate of 83%, 
and the second cycle (2014-2020, ongoing) of 61%.

For the present study, we selected a subsample 
of the MTC which excluded participants with the 
following characteristics: (1) from states other than 

CdMx or EdoMex (n = 92 571), (2) without a valid 
HA or WA on file (n = 6071), or (3) with an HA or 
WA unable to be geocoded inside the area of influence 
of the MCMA environmental monitoring network 
(n = 265, methods described below). The analysis 
included a total study population of n = 16 407 MTC 
participants.

The original MCMA is composed of 16 munici-
palities of CdMx, 59 of EdoMex and one of Hidalgo. 
We did not include the entire MCMA due to the low/
under-representation of pollutant measurements at 
locations far from monitoring stations, which do not 
achieve full coverage of the area (Fig. 1). Based on this 
determination, we drew the boundaries of the analysis 
area using the extreme coordinate position of a 5 km 
radius around each of the most peripheral monitoring 
stations. Within these boundaries, we defined a grid 
composed of 1 × 1 km cells (in gray, Fig. 1).

We geocoded the HA and WA of each participant 
within the study population. For HA, we geocoded 
zip codes (ZC) as reported at baseline. Based on the 
Mexican Postal Service (SEPOMEX) criteria for 
valid ZCs, we selected only those containing five 
digits and verified that the first two corresponded to 
the codes of home municipalities also reported by 
teachers. Finally, we used the geographical layer of 
SEPOMEX’s ZCs (Gobierno de México, n.d.) to as-
sign the coordinates of the ZC’s centroid to each HA. 
Since information on HA changes was unavailable 
for before and after the baseline, we assumed that HA 
were constant throughout the follow-up period. To 
geocode WAs at baseline and follow-ups, we used the 
workplace codes provided by the National Teaching 
Career Program. The geographic coordinates (longi-
tude and latitude) were matched from the National 
School Information System (SEP, n.d.).

2.2 Meteorological and air pollutant data
We obtained databases of hourly pollutant measure-
ments (PM10, PM2.5, SO2, NO2 and O3) and relevant 
meteorological variables (relative humidity, tempera-
ture and wind speed) for all monitoring sites within 
the area of interest from 1:00 LT on January 1, 2004 
to 12:00 LT on July 31, 2019. Datasets were provided 
by the monitoring network of Mexico City’s Envi-
ronmental Ministry and remain permanently avail-
able for public consultation on the official websites 
(Gobierno de la Ciudad de México, n.d.).
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We calculated daily and monthly estimators 
(averages) for each pollutant and meteorological 
variable at each monitoring station where a minimum 
of 75% of the required observations were available 
(18 h and 23 days, respectively). Otherwise, we re-
corded data as missing and those observations were 
not part of the complete case analysis (more details 
in the statistical analysis section). Seasons, used as 
a categorical variable, were defined as follows: the 
cold-dry season from November to February, the hot-
dry season from March to May, and the rainy season 
from June to October.

2.3 Geographic data and other covariables
Geographic profiles of the monitoring sites were 
characterized using a geographic information system 
(GIS). We created a geographical layer of the air qual-
ity monitoring stations in place from 2004 to 2019 in 
the study area, based on coordinates provided by the 
National Air Quality Information System (SINAICA) 
(INECC, n.d.). The altitude variable was provided by 
SINAICA in meters above sea level (masl) and cate-

gorized into tertiles as follows: low as ≤ 2300 masl, 
medium as ≥ 2301 and ≤ 2500 masl, and high as ≥ 
2501 masl. The vehicle motorization index (number 
of motorized vehicles per 1000 inhabitants) was 
calculated annually at the municipal level, based on 
population projections from the National Population 
Council (Gobierno de México, n.d.) and historical 
databases of registered motor vehicles in circulation 
(automobiles, passenger buses, cargo trucks and 
motorcycles), according to the Mexican National 
Institute of Statistics, Geography and Informatics 
(INEGI, n.d.). This variable was categorized into 
tertiles as follows: low as ≤ 222 vehicles per 1000 
inhabitants, medium as ≥ 223 and ≤ 487 vehicles 
per 1000 inhabitants, and high as ≥ 488 vehicles per 
1000 inhabitants.

2.4 Statistical analysis
2.4.1 Generalized additive models (GAMs) and va-
lidation
To determine the contribution of each predictor to 
PM2.5 and NO2 variability at monitoring stations 

A B

Fig. 1. Area of analysis and geocoded addresses. (a) Location of work addresses at baseline (2008) and first follow-up 
cycle (2011-2013). (b) Location of home addresses and number of teachers per zip code.
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between 2004 and 2019, we fitted two independent 
GAMs (Eq. [1])

E(Y X1, X2, …, Xp) = α0 +
p

∑
j=1

fj(Xj)	 (1)

where fj (.) are smooth functions, Y is the vector of 
outcomes and the Xj are the vectors of covariates. 
We performed a complete case analysis for each 
model, using monthly PM2.5 or NO2 concentrations 
per monitoring site as the dependent variable. Due 
to its skewed distribution, the vector PM2.5 was 
log-transformed. Models only included covariables 
expected a priori to exert a physical influence on the 
PM2.5 and NO2 levels. Predictors introduced in the 
adjusted models were the group of other pollutants, 
the meteorological variables and the geographical 
variables. To account for the correlation between 
pollutants, we included them with interaction terms. 
To ensure a parsimonious model specification, we 
tested the contribution of each term by eliminating it 
in the model and retained only those which improved 
predictive accuracy and showed statistical signifi-
cance (p < 0.05). Model comparison and selection 
were performed according to deviance explained 
(DE), Akaike information criterion and root mean 
square error (RMSE). To test the goodness of fit, we 
performed a residual diagnosis allowing us to verify 
normality and the absence of any overdispersion 
patterns. Finally, we performed stepwise selection to 
test and select the number of base functions needed 
to achieve a smooth curve which would maximize 
our data fit and reduce RMSE.

To test the GAMs for possible overfitting and eval-
uate their predictive accuracy, we carried out a 10-
fold cross-validation and determined the predictive 
accuracy of each model based on its cross-validation 
root mean square error (CV-RMSE).

2.4.2 Model predictions and geostatistical conditio-
nal simulation
We used the GAM coefficients to predict the monthly 
concentrations of PM2.5 and NO2 in each 1 × 1 km grid 
cell from January 2004 to July 2019. For each 
grid cell and for each month of the study period, 
we carried out 3000 simulation replicates using the 
Geostatistical Conditional Simulation (GCS) method 
(ESRI, n.d.) with the aim to obtain the mean value of 
the predictor variables: PM10, O3, SO2, NO2, wind 

speed, relative humidity and temperature in each cell. 
As part of the GCS, we fitted Gaussian and exponen-
tial variograms with and without the nugget effect to 
empirical semivariograms in order to characterize the 
spatial structures at unmeasured locations (Eq. [2]). 
To this end, we used the Cholesky decomposition of 
covariance matrix (Chilès and Delfiner, 2012):

γ(h) =
1

2N(h) ∑
N(h)
i=1 [Z(Xi) − Z(Xi + h)]

2
	 (2)

where the degree of spatial dependence among the 
values of attribute Z in two different locations or 
points in space was semivariance γ(h), and the dis-
tance between the points was lag h.

To account for error ϵij in the GAMs caused by 
the spatial correlation of the observations, we carried 
out the same simulation procedure with the residuals 
before adding them to the predicted values for each 
grid cell.

2.5 Assigning of cohort participant exposures
To maximize the precision of exposure estimates, 
we accounted for the intra-city mobility of study 
participants by assigning predicted monthly values 
for PM2.5 and NO2 for each month during the study 
period to the grid cell where the HA and WA of 
each teacher were located. With the assumption that 
mobility-based estimates (HWAweig) were closer to 
actual exposure (individual monitoring), HA and WA 
exposures were weighted according to the number of 
hours spent at each address, assuming the average 
length of the Mexican workday (8 h) (Eq. [3]).

H WAweig = 2HA /3 + WA /3	 (3)

To assess the relevance of mobility to our study, 
we compared HA and WA exposures by calculat-
ing the difference between HA-HWAweig. The null 
hypothesis (a difference of zero) was proved using 
a mixed-effects model, where the teacher was the 
grouping variable.

3.	 Results
3.1 Study population and geocoding
The national-level MTC included 115 314 total par-
ticipants, of which 22 743 lived either in the CdMx 
or EdoMex. From this subsample, we were able to 



196 K. Cervantes-Martínez et al.

geocode HA and WA within the MCMA of 73% (n = 
16 672). In terms of HAs, the median of teachers per ZC 
was 23, with a range of one to 175 (Fig. 1). The areas 
of these ZCs ranged from 0.005 to 17.003 km2. There-
fore, the final study population included 16 407 MTC 
participants who lived and worked in the area of 
analysis (Fig. 2), covering (totally or partially) 72 
municipalities in the CdMx or EdoMex.

3.2 Descriptive statistics
Monthly averages of PM2.5, NO2 and their predictor 
variables at the monitoring site level are summarized 
in Table I. During the 2004-2019 period, a maximum 
of 11 and 17 monitoring stations for PM2.5 and NO2, 
respectively, provided data on all variables required 
to adjust the GAMs. The geometric mean and SD 
of monthly PM2.5 concentrations were 3.18 and 
0.27 µg m–3, respectively, and the mean and SD of 
monthly NO2 concentrations were 28.34 and 8.59 
ppb, respectively. Over the study period, the mean 
ambient temperature was around 17 ºC (range 5, 23), 
wind speed averaged 1.85 m/s (range 0.49, 4.95) and 
average humidity was 55% (range 28, 88). The lowest 
concentrations of both pollutants were registered 
during the rainy season, and the highest during the 
cold-dry season. PM2.5 concentrations were greatest 
at the lowest altitudes.

3.3 Generalized additive model for PM2.5 and pre-
dicted values
The PM2.5 model predictors were altitude, relative 
humidity, wind speed, season and year, in addition 
to the pollutants PM10 and NO2. Only PM10, relative 
humidity and wind speed were included as continuous 
variables with smoothing functions, using penalized 
splines of up to seven degrees of freedom (Fig. 3).

The maps in Figure 4 illustrate the average spatial 
distribution of the monthly PM2.5 levels predicted by the 
model per year on the surface of the area of analysis (the 
grid). In general, predicted levels were higher further 
north within the MCMA and trended downwards until 
2014. The 2019 map considers only measurements until 
July; therefore, the rainy season, which yielded the low-
est PM2.5 levels (see Table I), was underrepresented. The 
percentage of deviance explained by the model was high 
(DE = 87.3%) for the 2004-2019 period (Table I). The 
RMSE in the sample indicated high predictive accuracy 
with a low level of error (RMSE = 0.100), and showed 
no overfitting of data, as determined by its proximity to 
the cross-validation error (CV-RMSE = 0.102).

3.4 Generalized additive model for NO2 and predic-
ted values
The NO2 model predictors were the vehicle motor-
ization index, wind speed, temperature, season and 

MTC nationwide
(12 states)
n=115 314

Mexico Citu and Mexico State
n=22 743

Excluded n=92 571
Other states

Excluded n=265
Outside analysis area

Excluded n=6 071
HA or WA not reported

Misreported HA or WA (non-exixtent)
HA or WA outside MCMA

Geocoded WA and HA inside MCMA
n=16 672

Within the area of influence of the
monitoring stations (5 km radius)

n=16 407

Fig. 2. Flow chart of geocoding process and identification of study population. 
(MTC: Mexican Teachers’ Cohort; MCMA: Mexico City Metropolitan Area; SE-
POMEX: Mexican Postal Service; HA: home address; WA: work address; WC: 
workplace code).
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Table I. Descriptive statistics for final GAM predictor variables, and bias and precision statistics from cross-validation.

Variable Time-
varying

Model

PM2.5 mean (SD) 
n = 779

NO2 mean (SD) 
n = 1298

Monitoring stations included 2004-2019 period (min-max) 3-11 6-17
PM2.5 (µg m–3) Yes 25.05 (6.90) ---
NO2 (ppb) Yes 29.83 (8.02) 28.34 (8.59)
O3 (ppb) Yes --- 27.95 (7.14)
PM10 (µg m–3) Yes 49.67 (17.15) 50.41 (18.66)
SO2 (ppb) Yes --- 6.93 (4.23)
Temperature (ºC) Yes --- 16.71 (2.18)
Wind speed (m/sec) Yes 1.90 (0.50) 1.81 (0.47)
Relative humidity (%) Yes 52.54 (11.40) ---
Season a
	 Rainy (ref)
	 Cold-dry
	 Hot-dry

No
19.73 (3.90)
29.12 (6.30)
27.90 (5.88) 

23.42 (6.35)
33.13 (8.62)
28.83 (7.39)

Motorization index (no. vehicles/1,000 ha) a
	 High (ref)
	 Medium
	 Low

Yes
---
---
---

27.60 (7.47)
29.35 (8.77)
27.52 (9.68)

Altitude (m) a
	 High (ref)
	 Medium
	 Low

Yes
19.80 (4.53)
24.96 (6.10)
26.36 (7.20)

---
---
---

Year a
	 2004 (ref)
	 2005
	 2006
	 2007
	 2008
	 2009
	 2010
	 2011
	 2012
	 2013
	 2014
	 2015
	 2016
	 2017
	 2018
	 2019

28.32 (5.75)
29.26 (9.94)
29.09 (6.41)
28.16 (4.92)
26.80 (7.10)
24.07 (5.88)
23.63 (8.01)
24.87 (7.95)
23.39 (4.49)
25.33 (7.47)
23.22 (6.14)
24.96 (5.75)
24.39 (6.97)
24.66 (7.75)
24.05 (5.91)
24.15 (6.37)

33.97 (7.15)
34.02 (8.86)
33.14 (7.22)
33.04 (7.64)
31.73 (7.17)
30.70 (7.25)
32.14 (8.49)
28.06 (8.88)
27.78 (8.77)
25.98 (7.96)
26.06 (7.47)
23.92 (7.21)
24.80 (7.66)
25.74 (8.25)
25.72 (7.30)
22.20 (6.67)

Statistics Model

PM2.5 NO2

DE 87.3% 74.4%
RMSE 0.100 4.406
CV-RMSE 0.102 4.497

aVariable included is categorical; however, for descriptive purposes, mean (SD) is presented for the dependent variable 
in each category.
DE: deviance explained; RMSE: root mean square error; CV: cross-validation.
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year, in addition to the pollutants PM10, O3 and SO2. 
Only PM10, O3 and wind speed were included as 
continuous variables with smoothing functions using 
penalized splines of up to seven degrees of freedom, 
since the other continuous variables showed a linear 
relationship with the dependent variable (Fig. 3). 
The maps in Figure 4 show the model predictions 
of average spatial distribution of monthly levels of 
NO2 within the study area per year. In general, the 
predicted levels of NO2 were highest in the center of 
the MCMA and trended downwards until 2016, with a 
mean of 16.87 ppb (SD = 7.77) within the study area. 
As with PM2.5, only measurements until July 2019 
were considered. The percentage of deviance ex-
plained by the model was intermediate (DE = 74.4%) 
for the 2004-2019 period (Table I). The RMSE in 
the sample indicated high predictive accuracy with 
a low level of error (RMSE = 4.406) and showed no 

overfitting of data, as determined by its proximity 
to the cross-validation error (CV-RMSE = 4.497).

3.5. Exposure assignment adjusted for mobility
All teachers reported a HA different from their WA, 
which strengthens the case for considering mobility 
when estimating air pollutant exposure. For the 
time period and population analyzed, the ranges of 
differences in estimated exposure at the homes and 
workplaces of participants were 0-6.01 µg m–3 for 
PM2.5 and 0-14.76 ppb for NO2. Only 0.11% (n = 
1799) of teachers changed WAs between the first and 
second follow-up cycles. On average, they traveled 
6.285 km (SD = 6.216) between their homes and their 
workplaces (min: 0.0098 km, Q1: 1.846 km, Q2: 
4.282 km, Q3: 8.746 km, max: 56.155 km).

We obtained 187 weighted monthly averages of 
PM2.5 and 187 of NO2 assigned to each teacher as 
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Fig. 3. Smooth plots from the final models showing non-linear effects of selected predictors and associated predicted 
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Fig. 4. Raster of the annual average of the monthly PM2.5 and NO2 predicted concentrations on the surface of the 
area of analysis (grid made up of 1 × 1 km cells) (2004-2019).
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a proxy for long-term exposure. Figure 5 illustrates 
the annual distribution and principal statistics for the 
weighted monthly averages (HWAweig) assigned to 
the 16 407 MTC participants during the 2004-2019 
period. For both pollutants, we determined the ex-
pected exposure variability attributable to the spatial 
distribution of pollutants and the location of HAs 
and WAs within the study area. On average, for the 
population and period analyzed, weighted exposures 
were 24.38 µg m–3 (SD = 6.78) to PM2.5 and 28.21 
ppb (SD = 8.00) to NO2.

Average exposures to both pollutants were lower 
at HAs than at HWAweig (PM2.5: HA 24.37 µg m–3,  
HWAweig 24.39 µg m–3; NO2: HA 28.15 ppb, HWAweig 
28.21 ppb). Average differences were –0.016 (range 
–2.00-1.91) for PM2.5 and –0.063 (range –4.92-4.60) 
for NO2. In both cases, the differences between HA 
and HWAweig did not equal zero and were statistically 
significant (p < 0.0001).

4.	 Discussion
The models developed in our study provide a useful 
method for predicting monthly exposure to outdoor 
PM2.5 and NO2 at any location within large areas 
throughout the MCMA, with high spatial (1 × 1 km) 
and temporal (16 years: 2004-2019) resolution. 
These models performed well and delivered high 
predictive accuracy, with cross-validation errors 
slightly higher than those of the models (CV-RMSE 
= 0.102 for PM2.5 and CV-RMSE = 4.497 for NO2). 
A large difference between these values would have 
suggested that GAMs overfit the data, as performance 
would have been lower in data not included in the 
adjustment during cross-validation. Because of their 
high resolution, these models satisfy the permanent 
need of epidemiological studies to predict and assign 
exposures to ambient air pollutants in numerous 
MCMA locations with a high degree of precision. 
Furthermore, they cover a long time period (16 
years) on a small temporal scale (monthly), allowing 
the assessment of effects of medium- and long-term 
exposures.

To our knowledge, only three published studies 
have proposed models for determining exposure to 
ambient air pollutants in Mexico (Just et al., 2015; 
Rivera-González et al., 2015; Son et al., 2018), of 
which all focus on Mexico City and/or the MCMA. 

Rivera-González et al. (2015) provide a comparison 
of four basic methods based on proximity and in-
terpolation for all criteria pollutants. The principal 
limitation of several of these approaches is that they 
do not capture the spatial variability of exposure 
(Jerrett et al., 2005). Our study overcomes this 
limitation by using high spatial resolution, which 
captures much greater variability. Son et al. (2018) 
proposed a mixed-effects regression model based 
on land use for all criteria pollutants. Although this 
study follows the traditional assumption of a linear 
relationship between predictors and the dependent 
variable, it is innovative in that it explores the sta-
tistical model-fitting techniques of least absolute 
shrinkage and selection operator (LASSO) method, 
in addition to analyzing various spatiotemporal scales 
(hourly, daily, monthly, semi-annual and annual). 
Instead of this model, our study proposes GAMs, 
which maximize the quality of dependent variable 
prediction by accounting for its non-linear relation-
ship with the predictors, and incorporate smoothed 
(non-parametric) terms using penalized splines. 
However, we explored a monthly exposure scale for 
only two criteria pollutants. Finally, Just et al. (2015) 
developed a more sophisticated mixed-effects regres-
sion model, including satellite-based aerosol optical 
depth measurements as primary PM2.5 predictor, over 
a period of 10 years. While innovative, this method is 
limited in that it cannot be applied where little or no 
PM2.5 monitoring data exist for validation, and also 
because no satellite measurements can be taken on 
cloudy days (Paciorek and Liu, 2009; Bravo et al., 
2012). We overcame this first limitation, an obstacle 
faced by many developing countries, by using infor-
mation on predictors from secondary sources which 
are easily accessed and interpreted, and are perma-
nently monitored. Furthermore, we covered a longer 
time span (16 years) and also modeled NO2 exposure. 
Despite important distinctions from previous studies, 
we obtained largely similar results; predicted spatial 
patterns for PM2.5 were comparable and, on average, 
predicted concentrations for both pollutants (PM2.5 
and NO2) were only slightly lower.

The results of our analyses demonstrate the rel-
evance of using meteorological variables and other 
pollutants as primary PM2.5 and NO2 predictors. 
This could indicate the feasibility of generating 
highly predictive models using only secondary 
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monitoring data from local networks. Our study 
therefore confirms that, despite limited availability 
of information, it is possible to design feasible 
methods for predicting outdoor exposure to air 
pollutants, including for other pollutants (such as 
PM10) when no data is available on PM2.5, as is the 
case in multiple cities within developing countries. 
In terms of spatiotemporal prediction of PM10, we 
expect to observe predictive accuracy as high as 
that of PM2.5, since in urban areas both fractions 
of PM have similar potential sources, though in 
different proportions (Karagulian et al., 2015). 
Furthermore, geographical predictors are a key 
consideration given the nature of the contaminants 
of interest and the geographical characteristics of 
the study area. In the two models we developed, the 
geographical predictors showed smaller coefficients 
than the other predictors. In addition to altitude 
and the vehicle motorization index, we generated 
and tested other geographical variables. The linear 
meters of different types of avenues in buffers of 
100-, 300- and 500-m diameters around the mon-
itoring stations did not prove to be significant and 
therefore were not included in the final models. 
We tested the UV-B radiation variable and found a 
significant relationship with NO2; however, it was 
excluded from the final model due to insufficient 
monitoring sites in the study area (only 0-6 stations 
during the 2004-2019 period) which did not allow 
a semivariographic analysis, causing an increase of 
0.583 units of CV-RMSE in the NO2 model (CV-
RMSE including UV-B = 3.914).

A recent study which analyzed and compared 
the home-work mobility patterns of approximately 
400 000 individuals, affirmed that ignoring mobility 
causes erroneous classification when estimating 
health effects (Nyhan et al., 2019). The principal 
strength of our study was in considering home-work 
mobility to estimate PM2.5 and NO2 exposures. Given 
the findings of Nyhan et al. (2019), we expect that this 
consideration will help reduce measurement errors 
that could lead to null association measurements in 
subsequent epidemiological studies. Another strength 
of our study was the method used to ascertain the spa-
tial distribution of predictor variables at unmeasured 
sites. Although no existing method can offer an exact 
estimate of an unknown reality, GCS considers the 
dispersion of the phenomenon analyzed and allows 

the obtention of one among the possible spatial of a 
random function (surface). The simulated variables 
thus present the same variability and correlation 
characteristics as the observed data (measured ac-
cording to their mean, variance and semivariogram) 
(Goovaerts, 1997; Deutsch and Journel, 1998). Other 
potential methods considered included IDW interpo-
lation or kriging; however, despite their extensive 
application in earth and environmental sciences, these 
provide only a smooth image of reality, whereas GCS 
assumptions include seasonality and a normal data 
distribution (Goovaerts, 1997; Deutsch and Journel, 
1998).

We are aware that inherent precision and measure-
ment errors exist in predictive models such as the one 
we developed, which depend not only on mobility 
but also on the residential history of participants and 
precise geocoding of addresses. Prior studies have 
suggested that the geocoding technique can influence 
health effect estimates when using fine-scale expo-
sure models (Jacquemin et al., 2013). Therefore, we 
recognize three sources of error. First, we assumed 
that the HAs of cohort participants were permanent 
throughout follow-ups, supported by a previous study 
by Pimienta-Lastra and Toscana-Aparicio (2019) that 
registered low inter-municipal migration within the 
MCMA (4.8%) from 2010 to 2015 (Pimienta-Lastra 
and Toscana-Aparicio, 2019), thereby suggesting that 
our study population was similarly unlikely to change 
addresses. Second, we assessed HAs by geocoding 
the centroids of their corresponding ZCs as opposed 
to using exact HA coordinates, and ZC areas varied 
widely (0.005-17.003 km2) among participants. 
Previous studies have documented that estimating 
air pollution exposure by certain zones such as zip 
codes implies greater uncertainty, as compared to 
estimation by exact home addresses (Kinnee et al., 
2020); however, since home addresses were not 
available, we used zip code centroids as a proxy of 
participant residence. Finally, we assumed that the 
long-term outdoor exposure levels determined were 
also a reasonable representation of interior and mi-
croenvironment exposure.

The models developed were subject to various 
limitations. First, determination of the study area 
and population was restricted by the quality of 
secondary available data (the geographical layer of 
ZCs) to geocode the HAs of the MTC participants. 
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Although the cohort was extended across 12 Mexi-
can states, we were able to partially include only two 
of them in this study. Second, given the suboptimal 
quality of available data, we did not include the 
characterization of pollution sources attributable 
to land use and vehicular traffic emissions. None-
theless, as a proxy for the latter, we used a vehicle 
motorization index created with official data on 
registered vehicles at the municipal level. This data 
was used under the assumption that it would stay 
constant within each municipality, and inter-munici-
pal mobility was not considered. The vehicle motor-
ization index variable proved significant in the NO2 
model, but not the PM2.5 model, which is consistent 
with our theoretical framework given that NO2 is 
primarily generated by fuel combustion in vehicles. 
The result of including aggregated variables to the 
models may have been a misclassification of predic-
tions’ spatial variability, as a result of the dilution 
of all possible values within each aggregated area. 
Finally, another important limitation to consider was 
the lack of monitoring data, which limits the type 
of statistical and spatial analyses possible. Air pol-
lution models require datasets with sufficient data 
for training models and validation, therefore less 
available data limits the statistical techniques than 
can be applied to achieve prime model performance 
or cross-validation.

5.	 Conclusions
In conclusion, it is crucial for environmental 

epidemiology to apply methods for the estimation 
of ambient air pollutant exposure that can overcome 
limited data availability, which is a particularly 
relevant factor in developing countries. Our results 
suggest that the model presented herein offers a 
promising alternative to be used in epidemiological 
studies for predicting PM2.5 and NO2 exposure with 
high spatiotemporal resolution within the MCMA in 
the 2004-2019 period. Beyond the MCMA context, 
these models can be replicated in other cities using 
similar information sources. Our results highlight the 
importance of developing pollutant exposure models 
with high predictive accuracy based on available 
secondary data from official sources. Further research 
should focus on expanding these models to other 
Mexican cities.
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