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RESUMEN

Los valores poco confiables o ausentes en datos climatológicos son una importante área de investigación, 
y existen varios métodos disponibles para completar los datos faltantes y evaluar la calidad de los mismos. 
Nuestro estudio tiene como objetivo comparar el rendimiento de diferentes métodos de estimación de valores 
faltantes diseñados explícitamente para la precipitación y datos hidrológicos. La variable climática utilizada 
para el análisis fue la precipitación diaria. Consideramos dos regiones climáticas y orográficas diferentes 
para evaluar el efecto de la altitud, régimen de precipitación y porcentaje de datos faltantes sobre el Error 
Absoluto Medio de los valores imputados, y realizamos una evaluación de homogeneidad en las estaciones 
meteorológicas. Se excluyeron del análisis las estaciones meteorológicas con más del 25% de datos faltan-
tes. En la región semiárida, los métodos con mejor desempeño fueron el ReddPrec el cual resultó óptimo en 
nueve estaciones y el GCIDW en ocho, de un total de 23 estaciones, con valores promedio de MAE de 1.63 
mm/día y 1.46 mm/día, respectivamente. En la región húmeda, el método GCIDW fue óptimo en ~59% de 
las estaciones, el EM en ~24% y el ReddPrec en ~17%, con valores promedio de MAE de ~6.0 mm/día, 6.5 
mm/día y ~9.8 mm/día, respectivamente. Esta investigación realiza una valiosa contribución para identificar 
los métodos más adecuados para imputar la precipitación diaria en diferentes regiones climáticas de México 
con base en indicadores de eficiencia y evaluación de homogeneidad.

ABSTRACT

Climatological data with unreliable or missing values is an important area of research, and multiple methods 
are available to fill in missing data and evaluate data quality. Our study aims to compare the performance 
of different methods for estimating missing values explicitly designed for precipitation and multipurpose 
hydrological data. The climate variable used for the analysis was daily precipitation. We considered two dif-
ferent climate and orographic regions to evaluate the effects of altitude, precipitation regime, and percentage 
of missing data on the Mean Absolute Error of imputed values and performed a homogeneity evaluation of 
meteorological stations. We excluded meteorological stations with more than 25% missing data from the 
analysis. In the semi-arid region, ReddPrec (optimal for nine stations) and GCIDW (optimal for eight sta-
tions) were the best-performing methods for the 23 stations, with average MAE values of 1.63 mm/day and 
1.46 mm/day, respectively. In the humid region, GCIDW was optimal in ~59% of stations, EM in ~24%, 
and ReddPrec in ~17%, with average MAE values of ~6.0 mm/day, 6.5 mm/day, and ~9.8 mm/day, 
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respectively. This research makes a valuable contribution to identifying the most appropriate methods to 
impute daily precipitation in different climatic regions of Mexico based on efficiency indicators and homo-
geneity evaluation.

Keywords: homogeneity, imputation, missing precipitation data.

1.	 Introduction
Precipitation is a vital parameter of the Earth’s weather 
system (Partal, 2018); it synthesizes the behavior of the 
climate in a region (Pabón-Caicedo et al., 2001) and is 
a significant source of information for meteorological 
and hydrological studies (Navarro de León et al., 2005; 
Guijarro, 2014; Li et al., 2020; Morales et al., 2021).

Climatological data with unreliable or missing 
values is an important area of research, and there 
are multiple methods available to fill in missing data 
(Suhaila et al., 2008; Firat et al., 2012; Kang, 2013; 
Azman et al., 2015; Kanda et al., 2018; Morales et 
al., 2019;) and evaluate data quality. Missing data 
frequently occur due to various problems, including 
issues with the measuring devices, measurement 
errors, absence or replacement of the observer, loss 
of records, relocation of stations, urbanization of 
the area, and natural hazards (Suhaila et al., 2008). 
Meanwhile, the loss of homogeneity in a time series 
of meteorological observations is a consequence of 
changes in the methodology used, the conditions 
around the station, and the lack of reliability of the 
measurement tool (Firat et al., 2012; Guijarro, 2014; 
Kamaruzaman et al., 2017).

Numerous studies have explored various methods 
for the imputation of missing values of climato-
logical and hydrological variables, which include 
distance weighting techniques (Radi et al., 2015), 
linear regression (Aieb et al., 2019), artificial neural 
networks (Norazizi and Deni, 2019), and geostatis-
tical techniques (Wagner et al., 2012). For example, 
Norazizi and Deni (2019) compared the performance 
of an artificial neural network, bootstrapping, expec-
tation maximization, and multivariate imputation by 
chained equations (MICE) methods. Their outcomes 
showed that the artificial neural network had the 
best performance, but this method involves complex 
mathematical formulation that requires intensive cal-
culations with high computational cost (Campozano 
et al., 2014; Miró et al., 2017). When Kriging and 
Co-Kriging techniques were compared with MICE 

by Carvalho et al. (2017), MICE provided better 
estimates of daily precipitation values. Wagner et al. 
(2012) compared the performance of the spatial inter-
polation approach applied to precipitation via seven 
methods, including the deterministic Thiessen poly-
gon method, statistical and geostatistical approaches, 
where regression-based methods performed best.

Several methods have also been proposed to test 
the homogeneity of climatological variables, in-
cluding precipitation (Ducré-Robitaille et al., 2003; 
Wijngaard et al., 2003; Firat et al., 2012).

The effectiveness of each method depends not 
only on the characteristics of the variables presented 
in the study but also on factors such as the nature and 
quality of the data and the mechanism of data loss 
(Radi et al., 2015; Aieb et al., 2019).

In this study, we evaluated the computationally 
tractable methods in practice and reported in the lit-
erature as having the best performance for imputing 
missing precipitation data, as well as methods com-
monly employed in statistical software to compare 
their performance. The climate variable used for the 
analysis in this study was daily precipitation. We con-
sidered two different climatic and orographic regions 
to evaluate the effects of elevation, precipitation 
regime, and percentage of missing data on the Mean 
Absolute Error of imputed values by evaluating the 
homogeneity of meteorological stations. 

This study makes an important contribution to 
identifying the most appropriate methods to impute 
daily precipitation in different climatic regions of 
Mexico, semi-arid and humid, with different oro-
graphic influences by analyzing the consequences 
of using imputation methods that were not explicitly 
designed for precipitation.

2.	 Methods
2.1 Study area and database
The study was conducted in two regions: one semi-ar-
id in the Upper Laja River Basin (CARL for Cuenca 
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Alta del Río Laja in Spanish) and another humid, in 
the state of Tabasco.

The Upper Laja River Basin (CARL) has a total 
area of 6,840 km2. It is in the northeastern part of 
Guanajuato State, Mexico (Fig. 1a). CARL is in the 
southern part of the Mesa Central physiographic 
province, in the Llanuras and Sierras del Norte sub-
provinces of Guanajuato. The basin is composed of a 
plain with an elevation ranging from 1,900 to 2,100 m 
above mean sea level, surrounded by mountains that 
reach 2,850 m above mean sea level. Three climates 
predominate in this area, with variations in tempera-
ture and winter precipitation. These climatic differ-
ences are caused by the humid air from the Pacific 

Ocean and the orography of the area. A warm climate 
predominates in the southern and southwestern parts 
of the Sierra de Guanajuato, while in Sierra de Gua-
najuato and Sierra de San Jose Iturbide, the climate 
is subhumid, and in the lower elevation parts in the 
northern and western part of the basin, the climate 
is dry (Navarro de León et al., 2005). The CARL 
climate in the period of analysis shows an annual 
precipitation of 563.86 mm/year, and the rainy season 
begins in May and ends in October. Typical mean 
monthly precipitation during the rainy season ranges 
from 35 to 86 mm/month. In the dry season, the av-
erage monthly precipitation usually varies between 
8 and 18 mm/month. The average yearly temperature 
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target stations within the study regions, and yellow circles mark auxiliary stations adjacent to the study regions. Each 
station is labeled with the initial S in CARL or T in Tabasco.



36 J. M. Navarro Cespedes et al.

is 17ºC. The period from April to June is the hottest, 
with the average monthly temperatures ranging be-
tween 18ºC and 22ºC; the coldest months are from 
December to February, with the average monthly 
temperatures ranging between 11 ºC and 15 ºC 
(Li et al., 2020).

Tabasco locates in the southern region of Mexico 
(Fig. 1b), in the wettest part of the country, and ex-
tends from the coastal plain of the Gulf of Mexico 
to the mountain ranges of northern Chiapas. It is 
bounded by the states of Campeche, Chiapas, and 
Veracruz and by the Republic of Guatemala to the 
east. Tabasco has an area of 25,267 km2, representing 
1.3% of Mexican territory. A significant part of the 
state is a plain, with a few relatively low elevations 
(400-900 m) in the south (5.84% of the state area). 
Tabasco is in a tropical zone close to the Gulf of 
Mexico, which derives in a warm climate with few 
temperature variations throughout the year. The 
average yearly temperature is 27 ºC, with an aver-
age range from 18.5 to 36 ºC. The average annual 
precipitation in the state is ~2,190 mm/year in the 
analysis period, making it the state with the highest 
annual precipitation in Mexico. 

Daily precipitation data from 1993 to 2017 for 
the semi-arid region and from 1980 to 2012 for the 
humid region were obtained from the repository of 
the Comisión Nacional del Agua (CONAGUA) and 
Servicio Meteorológico Nacional (SMN) (SMN, 
2020). We excluded meteorological stations with 
more than 25% missing data, as recommended by 
several authors (Dong and Peng, 2013; Morales et 
al., 2019).

Within the semi-arid region (CARL), we con-
sidered 23 target meteorological stations within the 
region, as well as 24 auxiliary stations adjacent to the 
basin, which were added to improve the performance 
of the imputation methods (Fig. 1a). Table I presents 
the geographic locations, elevation, percentage of 
missing data, and annual mean precipitation of the 
target and auxiliary meteorological stations in the 
CARL. 

For the humid region (in Tabasco), we analyzed 
29 meteorological stations within the region (Fig. 1b). 
There were 13 auxiliary stations in the area surround-
ing the region, and only 8 had sufficient records 
during the period of analysis, which is only ~30% 
of the target stations. Furthermore, the average 

distance between auxiliary and target stations was 
~70 km. Therefore, we decided not to include the 
auxiliary stations in this region. Table II presents 
the geographic locations, elevation, percentage of 
missing data, and annual mean precipitation of the 
target meteorological stations in Tabasco.

2.2 Missing values interpolation methods
2.2.1 NR and NRWC Methods
A common method for the imputation of missing 
data is the Normal Ratio Method (NR), modified by 
Young (1992) to the Normal Ratio with Correlation 
(NRWC). The estimated value V0 for the missing data 
is considered to be a combination of observations with 
different weights, i.e., V0 = (∑n

i=1 Wi Vi) / (∑n
i=1 Wi), 

where Wi is the weight of the th nearest meteorologi-
cal gauge station, Wi is the number of nearby meteo-
rological gauge stations, and Vi is the corresponding 
observation. Weights for the surrounding stations 
used in the estimation algorithm were calculated 
according to Eq. (1):

,Wi = r2
i (

ni − 2
1 − r2

i ) 	 (1)

Where ri represents the correlation coefficient 
between the target station and the ith neighboring sta-
tion, and ni is the number of points used to calculate 
the correlation coefficient (Xia et al., 1999; Sattari 
et al., 2017; Kanda et al., 2018).

2.2.2 IDW Method 
Another method widely used for estimating missing 
values in hydrology and climatology is the Inverse 
Distance Weighting Method (IDW) (Radi et al., 2015; 
Kamaruzaman et al., 2017; Sattari et al., 2017; Kanda 
et al., 2018; Morales et al., 2019). IDW estimation of 
values, based on an observation, is given by Eq. (2):

,θt =
∑n

i=1 θid−k
it

∑n
i=1 d−k

it
	 (2)

where θt is the target station estimation, n the number 
of neighboring stations used in the interpolation, θt 
is the observation at station i, dit is the distance from 
the neighboring station i to the target station t, and 
k is the power parameter, most commonly set to 2, 
3 or 4 (Teegavarapu and Chandramouli, 2005; Ford 
and Quiring, 2014). IDW has been further modified 
by several authors, mainly by adjusting the calcu-
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lation of distance and weighting factors to enhance 
the outcomes. 

2.2.3 CCW Method
Teegavarapu and Chandramouli (2005) proposed 
improvements to the IDW method by replacing the 
weighting factor with the correlation coefficient, as 
follows in Eq. (3):

 ,θm =
∑n

i=1 θirit

∑n
i=1 rit

	 (3)

where rit is the coefficient of correlation (i.e., the 
ratio of covariance of two data sets to the product of 
standard deviations of each data set), derived from 
all available historical time series data between 
the data at target station t and their corresponding 
values recorded at any other neighboring station . 
Teegavarapu and Chandramouli (2005) named this 
new method the Correlation Coefficient Weighting 
Method (CCW) and showed that it was superior to 
the traditional IDW method for interpolating missing 
rainfall values. 

2.2.4 MCCW Method
Suhaila et al. (2008) presented several modifica-
tions to estimate missing precipitation data from the 
weighting factors of the NR, IDW, and CCW meth-
ods. One of them was the Modification of the Cor-
relation Coefficients Weighting Method (MCCW), 
in which they changed the weighting function of the 
CCW method proposed by Teegavarapu and Chan-
dramouli (2005), as shown in Eq. (4):

,Wi =
r p

it

∑N
i=1 r p

it
	 (4)

where rit represents the correlation coefficient of the 
daily precipitation data between the target station 
t and the th neighboring station; N is the length of 
the precipitation time series, and p is a parameter 
between 2 and 6. Larger values of p assign a greater 
influence to the values closer to the target station. The 
most commonly used value for p is 2, according to 
Suhaila et al. (2008).

2.2.5 CIDW Method
Another modification was the Modified Correlation 
Coefficient with Inverse Distance Weighting Method 
(CIDW), which is the consequence of combining the 

IDW and MCCW methods to estimate the missing 
rain values, as expressed in Eq. (5):

,Wi =
r p

itd−2
it

∑N
i = 1
i ≠ t

r p
itd−2

it 	 (5)

where rp
it is the correlation coefficient between the 

target station t and the ith neighboring station with p 
between 2 and 6; dit is the distance between target sta-
tion t and the ith neighboring station. The minimum 
distances between the target station and neighboring 
stations strongly influence the IDW method. Still, the 
correlation factor could also impact the estimation re-
sults, so the proposed CIDW method should improve 
their imputation (Suhaila et al., 2008). 

2.2.6 NRIDW Method 
The last of the modifications was the Modified Nor-
mal Ratio Method with Inverse Distance Method 
(NRIDW), which was the consequence of combining 
the IDW with the NRWC proposed by Young (1992). 
The NRWC method is strongly influenced by positive 
spatial correlation. At the same time, IDW is affected 
by the minimum distance between the target station 
and neighboring stations. Thus, the combination of 
these weighting factors could improve the outcomes 
of the estimation of missing values through the 
weighting factor given by Eq. (6):

,Wi =
(ni − 2)r2

it(1 − r2
it)

−1d
−2

it

∑N
i = 1
i ≠ t

(ni − 2)r2
it(1 − r2

it)
−1d

−2

it

	 (6)

The modified methods performed better than the 
previous versions, according to Suhaila et al. (2008).

2.2.7 NRIDC Method
Azman et al. (2015) presented a combination be-
tween NR, IDW, and the correlation value, which 
they called the Inverse Distance Weighting Method 
of Normal Ratio with Correlation (NRIDC). This 
method modified the NRIDW proposed by Suhaila 
et al. (2008) by including the correlation value. This 
method keeps the original proposal of combining the 
normal ratio, the correlation, and the inverse distance 
in a weighting method, to give more weight to the 
best estimation to impute missing precipitation data. 
The weighting of NRIDC is given by Eq. (7): 
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,Wi =
r p

it
μt

μi
d−2

it

∑N
i = 1
i ≠ t

r p
it

μt

μi
d−2

it
	 (7)

where rp
it is the correlation coefficient between the 

target station t and the th neighboring station with the 
best exponent value of p ≥ 4 (Azman et al., 2015); μt 
is the sample mean of the data available at the target 
station t, μi is the sample mean of the data available 
at the ith neighboring station, and dit is the distance 
between the target station t and the ith neighboring 
station. 

2.2.8 HIDW Method
The Altitude Relationship with the Inverse Distance 
Weighting Method (HIDW) was the consequence of 
the modification proposed by Golkhatmi et al. (2012). 
They also modified the IDW by inserting elevation 
parameters into the weighting function, which was 
optimized using the genetic algorithm. Its weighting 
function is:

 ,Wi =
d−q

it h−S
it

∑N
i=1 d−q

it h−S
it

	 (8)

where hit represents the altitude difference between 
the target station t and the ith neighboring station, 
and q and s represent parameters corresponding to 
distance and elevation, respectively.

2.2.8 GNRIDW and GCIDW Methods
Recently, Morales et al. (2019) proposed two new 
generalized weighting methods: Generalization of 
the Modified Normal Ratio Method with the Inverse 
Distance Method (GNRIDW) and Generalization of 
the Modified Correlation Coefficient with the Inverse 
Distance Weighting Method (GCIDW). GNRIDW 
constitutes a generalization of the NRWC and IDW 
methods, in which the weighting factors are as fol-
lows:

 ,Wi =
(Ni − 2)r2

it(1 − r2
it)

−1d
−q

it
h−S

it

∑N
i=1 (Ni − 2)r2

it(1 − r2
it)

−1d
−q

it
h−S

it

	 (9)

where, in Eq. (9) and Eq. (10), rit, dit and hit repre-
sent the correlation coefficient, distance and altitude 
difference between the target station t and the ith 

neighboring station, respectively; Ni is the length 
of data, q and s represent parameters corresponding 
to distance and elevation, respectively. GCIDW 
constitutes a generalization of the CIDW, IDW, and 
HIDW. It is also distinguished by the inclusion of 
free parameters and an altitude factor, as in Eq. (10):

 .Wi =
r p

itd
−q
it h−S

it

∑N
i=1 r p

itd
−q
it h−S

it
	 (10)

Morales et al. (2019) computed the optimal 
parameters of Eq. (9) and Eq. (10), employing the 
adaptation strategy of the covariance matrix.

2.2.9 MICE Method
The Multivariate Imputation by Chained Equations 
(MICE) package for R software (R Core Team, 
2019) implements a procedure that allows the im-
putation of missing records in a given database. It 
creates multiple imputations (replacement values) 
for multivariate missing data based on the Fully 
Conditional Specification (FCS) method, where each 
incomplete variable is imputed by a separate model. 
MICE specifies the multiple imputation model based 
on each variable for a set of conditional densities 
P (Yj│X, Y–j,R, ϕj), where Yj is the th column in the 
data matrix Y, X is a completely observed covariate 
in the population; Y–j indicates the complement of 
Yj, that is, all columns in Y except Yj, R is a response 
indicator of Y, and ϕj is a parameter. Starting from an 
initial imputation, it generates imputations by iterat-
ing over the conditional densities (van Buuren, 2012). 
This algorithm can impute blends of continuous, 
binary, disordered, categorical, and ordered categori-
cal data. To verify the quality of the imputations, the 
algorithm generates several diagnostic graphs (van 
Buuren and Groothuis-Oudshoorn, 2011).

The Predictive Mean Matching (PMM) method 
is built into the MICE package. This is an attractive 
way to impute multiple missing data of virtually any 
pattern, especially non-normally distributed quanti-
tative variables (Allison, 2015).

2.2.10 ReddPrec Method
Serrano-Notivoli et al. (2017) presented the Red-
dPrec package, developed in R software (R Core 
Team, 2019), and focused on reconstructing daily 
precipitation. The methodology incorporated in this 
package creates daily reference values using all data 
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recorded at the closest stations for each targeted day. 
To do this, multivariate logistic regression is applied 
based on the data of the ten nearest neighbors, con-
sidering the geographic and topographic variables 
as covariates. This method optimizes all available 
information; it does not depend on the length of the 
precipitation series and preserves the local variability 
of precipitation distribution.

2.2.11 EM Method
Available in SPSS software (IBM Corp, 2017), the 
Expectation Maximization (EM) algorithm to fill 
missing data is an interactive method that estimates 
unknown parameters of a data model. In applying this 
method, the missing values are initially calculated 
using the estimated parameters of the model. The 
method is based on the reciprocal dependency be-
tween the model parameters and the missing values. 
It consists of two steps: the conditional expectation 
step and the maximization step. In the first step, the 
conditional expectations of the missing data are cal-
culated given the observed data and the estimates of 
the model parameters. In the second step, maximum 
likelihood estimators of the parameters are found by 
maximizing the expected likelihood of the first step. 
These steps are repeated until the iterations converge 
(Schneider, 2001; Firat et al., 2012).

2.2.12 RG Method
Available in SPSS software (IBM Corp, 2017), Linear 
Regression (RG) is a statistical technique that models 
the relationship between a response variable and one 
or more input or predictor variables. The result of 
regression analysis is often the generation of a model 
that can be used to estimate or predict future values of 
the response variable. This technique is widely used 
partly due to the straightforward interpretation of the 
desired model, and it is commonly used to impute 
time series of climatological variables (Jimenez et al., 
2014). This method requires two steps: one to estimate 
the relationship between predictors and missing values 
and another to use a trend equation to fill in the empty 
data (Aieb et al., 2019).

2.3 Performance and homogeneity evaluation
2.3.1 Performance indicators
Several indicators have been used in the literature to 
evaluate the performance of missing data imputation 

methods. These are the Similarity Index (Suhaila et 
al., 2008), the Variance Ratio (Ford and Quiring, 
2014), the Coefficient of Correlation (Azman et al., 
2015), the Coefficient of Determination (Norazizi and 
Deni, 2019), the Mean Absolute Error (MAE) and 
the Root Mean Square Error (RMSE). The MAE 
and RMSE have been the most frequently used indi-
cators (Ford and Quiring, 2014). Although both have 
been used to evaluate method performance for many 
years, there has yet to be a consensus on the most 
appropriate metric for evaluating model errors (Chai 
and Draxler, 2014). RMSE provides a measure of the 
mean value of the errors of the estimates. Its outcome 
is in the units as the original observations. However, 
this indicator should be avoided when there are large 
measurement errors since these values significantly 
affect the result when squared. Therefore, RMSE is 
considered sensitive to outliers, which is why several 
authors have rejected it (Willmott and Matsuura, 
2005; Willmott et al., 2009). MAE provides an out-
come that can be interpreted directly since, like the 
output of the previous indicator, it has the same units 
as the original variable (precipitation). Therefore, in 
this research, we used MAE to compare the perfor-
mance between different missing data imputation 
methods since we are using precipitation records 
without first excluding possible outliers.

The value of the MAE is given by Eq. (11):

,MAE =
1
n

n

∑
i=1

x̂i − xi 	 (11)

where n is the total number of observations, x̑i is the 
estimated value, and xi is the observed value related 
to the corresponding meteorological variable in the 
target station i.

2.3.2 Homogeneity test of data
Homogeneous climatic series can be defined as 
those influenced only by climate variations (Firat et 
al., 2012). Several methods have been proposed to 
analyze the homogeneity of climatological variables. 

The Standard Normal Homogeneity Test (SNHT), 
the Buishand test, and the Pettitt test assume the null 
hypothesis that annual values Yi of the test variable 
Y are independent and identically distributed, as 
opposed to the alternative hypothesis that a step-
wise shift in the mean is present. These tests are 
able to locate the year where a break is most likely 
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(Wijngaard et al., 2003) to appear. SNHT allows the 
determination of the inhomogeneous structure at the 
beginning and/or at the end of the time series (Firat 
et al., 2012). In contrast, the Buishand range test and 
the Pettitt test detect a point of change in the observed 
time series and detect inhomogeneous structures with 
more sensitivity in the middle of a time series (Firat 
et al., 2012; Guajardo Panes et al., 2017). The SNHT 
and the Buishand range tests assume that the Yi values 
are normally distributed, where Yi (i is the year from 
1 to n) is the annual series to be tested, but the Pettitt 
test does not take into account this consideration 
(Wijngaard et al., 2003).

SNHT is a likelihood ratio test, and it is performed 
on a ratio or difference between the candidate station 
and reference series (Peterson et al., 1998). The com-
parison of the mean of the first k years of the record 
with that of the last n – k years is obtained by using 
the statistic T(k), given by Eq. (12): 

,T(k) = k(z̄1)
2 + (n − k)(z̄2)

2 	 (12)

where ̄z1 = 1
k

k

∑
i=1

(Yi − Ȳ )/s, ̄z2 = 1
n − k

n

i=k+1
(Yi − Ȳ )/s∑  and s 

is the standard deviation. If a break is located at the year 
K, then T(k) reaches a maximum near the year k = K. 
The test statistic T0 is defined by T0 = m a x

1≤k≤n
T(k) (Wi-

jngaard et al., 2003).
The Buishand range test can be used with vari-

ables having any type of distribution (Guajardo Panes 
et al., 2017). In Eq. (13), the statistic S*

k represents 
the Buishand test, where Yi (i is the year from 1 to n) 
is the annual series to be tested, and Y̅ is the mean.

, S*k =
k

∑
i=1

(Yi − Ȳ) 	 (13)

with k = 1,…, n; S*
0 = 0. When the series is homoge-

neous, the values of S*
k will fluctuate around zero, as 

there are no systematic deviations of the values of Yi 
with respect to the mean. If a break is present in the 
year k = K, then, S*

k reaches a maximum (negative 
shift) or minimum (positive shift) near that year. The 
significance of the shift can be tested through the 
adjusted range R of Eq. (14):

, R =
(

ma x
0≤k≤n

S*k − min
0≤k≤n

S*k )
/s 	 (14)

where s represents the standard deviation (Wijngaard 
et al., 2003). 

The Pettitt test is a non-parametric rank test (Gua-
jardo Panes et al., 2017) that detects a point of change 
in the observed time series and is more sensitive for 
detecting inhomogeneous structures in the middle of 
a time series (Firat et al., 2012). In Eq. 15, the ranges 
r1,…,rn of each year are used to calculate the statistic 
Xk of the Pettitt test:

,Xk = 2
k

∑
i=1

ri − k(n + 1) 	 (15)

with k = 1,…, n. If a break occurs in the year k = E, 
then the statistic is maximal or minimal near the year 
k = E: XE = m a x

1≤k≤n
Xk  (Wijngaard et al., 2003).

Wijngaard et al. (2003) and Guajardo Panes et al. 
(2017) classified stations as reliable or useful, mod-
erately reliable or doubtful, and unreliable or suspect 
according to the number of tests that rejected the null 
hypothesis. The reliable class includes the stations 
for which none or, at most, one of the tests rejected 
the null hypothesis. The moderately reliable class 
had the stations for which two tests rejected the null 
hypothesis, and the unreliable class included those for 
which the three tests rejected the null hypothesis. The 
results of each test were evaluated for a significance 
level of 5%.

2.4 Comparison strategy
To evaluate MAE values in each case, we compared 
the performance of data imputation methods by first 
creating a subset of the test data. This subset is se-
lected from all periods in which there are no missing 
data at the target and auxiliary stations. We used each 
of the two study regions as a test case to evaluate the 
imputation methods.

The first case used the target stations (within the 
region) and auxiliary stations (within 30 km of the 
region’s border) associated with the semi-arid region 
(CARL). The period with the fewest missing records 
was from January 1993 to December 2017. All meth-
ods proposed in this study were evaluated to compare 
their performance in predicting missing values.

The second case used only the target stations 
within the humid region (Tabasco) (see 2.1 Study 
area and database for the explanation of stations’ 
exclusion). The weighting methods were previously 
compared in the state of Tabasco by Morales et al. 
(2019), who found that the GCIDW method had the 
lowest MAE value. Therefore, only the methods EM, 
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GCIDW, MICE, ReddPrec, and RG were evaluated, 
and their performance was compared. The analysis 
period from January 1980 to December 2012 was 
selected to reduce the percentage of missing records. 

3.	 Results and discussion
3.1 Prediction of missing precipitation data
3.1.1 Semi-arid region: Upper Laja River Basin 
(CARL)
The MAE values of the 23 stations are in Table III, 
where the lowest MAE values are identified in bold 
for each imputation method. The ReddPrec method 
was optimal at nine stations (~39%); GCIDW was 
optimal at eight stations (~35%); NR was optimal 
at three stations (~13%), and NRIDC, HIDW, and 
EM were optimal at 1 station each (~4%). Overall, 
the weighting methods (led by the GCIDW method) 
performed best, with average MAE values ≤ 1.60 
mm/day. This was followed closely by the ReddPrec 
method, with an average MAE of 1.63 mm/day. The 
rest of the methods had MAE values ≥ 2.28 mm/day. 
It is worth mentioning that the EM and RG methods 
imputed negative values, and attempting to force 
these values to zero should be done with caution, as 
this can modify the mean and shape of the imputed 
precipitation distribution. In addition, the MAE val-
ues of both methods decreased after forcing negative 
values to zero, but not enough to change the optimal 
values presented in Table III.

Figure 2A1 shows the minimum imputed values 
of selected methods, in which only RG and EM 
methods imputed negative values. Negative values 
do not correspond to the physics of precipitation 
phenomena, resulting in the suggestion by Teega-
varapu (2012) that these methods are not suitable 
for precipitation. 

As shown in figure 2A2, there were no relevant 
differences between maximum imputed and observed 
values except for station S065, where ReddPrec 
overpredicted the observed value by 7.9 mm (~10%).

Figure 2A3 shows that the mean precipitation of 
imputed and observed values had no relevant differ-
ences except for the RG method. It is important to 
note that the mean values of RG and EM methods 
were evaluated after forcing negative values to zero. 
Doing so changed the mean annual precipitation from 
555 mm/year to 599 mm/year for the RG method and 

from 553 mm/year to 554 mm/year for the EM meth-
od. The RG method generally tended to overpredict 
the mean observed precipitation in all meteorological 
stations, with an average difference of ~6.2%.

In addition, in figure 2A4, the standard deviation 
of the observed and imputed values (negative values 
of EM and RG methods were forced to zero) among 
different methods showed appreciable differences at 
some stations: e.g., S241, S155, S141, S107, S065, 
S061, S053, S042, and S015. These stations had in 
common a percentage of missing data greater than 
12% (see Table I), except for station S141, which had 
less than 4% missing data. 

Up to this point, it is unclear why certain methods 
performed better at some climatological stations than 
others or why the standard deviation of imputed 
values had larger dispersion between different meth-
ods at different stations. We further explored these 
questions using the GCIDW and ReddPrec methods 
as representative optimal methods to simplify the 
analysis.

Spearman’s rank correlation test is a nonpara-
metric approach used to describe the strength and 
direction of the relationship between two random 
variables (Lyerly, 1952). In this study, it was applied 
with key variables and MAE values to identify which 
variables significantly affected (p<0.05) the perfor-
mance of GCIDW and ReddPrec methods. Results 
are provided in Table IV. From this analysis, it is pos-
sible to suggest a decrease in methods performance, 
represented by MAE values, when the dispersion of 
precipitation data increases (see Fig. 2B3). In addi-
tion, the higher the percentage of missing data at the 
meteorological stations, the greater the dispersion of 
the standard deviation in the imputed values among 
different methods (see Fig. 2B2).

Figure 2B1 shows that the increase in mean 
annual precipitation volume is related to a greater 
standard deviation of daily precipitation. However, 
the increase in annual precipitation does not correlate 
with the rise in elevation.

3.1.2 Humid region: state of Tabasco
The methods EM, GCIDW, MICE, ReddPrec, and 
RG, were selected to evaluate and compare their 
performance in a humid region (Tabasco). In this 
section, auxiliary stations were not considered due 
to limited availability (see section 2.1). 
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Fig. 2. LEFT (A1 to A4): Comparison of the model-interpolated values and the observed daily precipitation in the 
CARL (semi-arid region). The comparison is divided into descriptive values as (A1) minimum (PP_Min), (A2) max-
imum (PP_Max), (A3) mean (PP_Mean), and (A4) standard deviation (PP_Std) of precipitation. RIGHT (B1 to B3): 
Comparison of key variables with significant Spearman’s rank correlation in Table IV: (B1) annual mean precipitation 
and dispersion (Std), (B2) missing data and standard deviation of methods (Std of methods), and (B3) Mean Absolute 
Error and standard observed precipitation of ReddPrec and GCIDW methods, that were selected as representative 
methods to simplify the analysis.

Table IV. Spearman’s rank correlation (rs) applied to annual mean precipitation (Precipitation), percentage of station 
missing data (% of missing data), meteorological station elevation (Elevation), the standard deviation of observed 
data (Std [observed data]), dispersion of standard deviation of methods (Dispersion [std of methods]), mean absolute 
error of methods (MAE method) in the CARL (semi-arid region), where significant correlations have a p-value less 
than 0.05. NOTE: ReddPrec and GCIDW methods were selected as representative methods to simplify the analysis.

Key Variables Test
variables

% of missing 
data

Elevation Std
(observed 

data)

Dispersion 
(std of 

methods)

MAE 
GCIDW

MAE 
ReddPrec

Precipitation rs –0.403 0.041 0.930 –0.287 0.528 0.572
p-value 0.057 0.854 0.000 0.184 0.010 0.004

%
missing data

rs   0.204 –0.421 0.930 –0.715 –0.559
p-value   0.350 0.047 0.000 0.000 0.006

Elevation rs     –0.034 0.258 –0.034 0.122
p-value     0.879 0.235 0.879 0.579

Std
(observed data)

rs       –0.294 0.574 0.532
p-value       0.172 0.005 0.010
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The MAE values from Table V show that the 
GCIDW method was optimal in ~59% of the sta-
tions (average MAE 6.0 mm/day), EM was optimal 
in ~24%, and ReddPrec was optimal in ~17%. The 
RG and MICE methods were not analyzed further 
because they were not optimal for any station. 
These numbers confirm a performance reduction of 
ReddPrec when there are insufficient target stations 
or auxiliary stations are not considered. However, 
the EM method (average MAE of 6.5 mm/day) per-
formed better than the ReddPrec method (average 
MAE of 9.8 mm/day), suggesting that it was not only 
the inclusion of auxiliary stations that influenced the 
performance of these methods, but also the precip-
itation regime. 

The EM method predicted negative values 
(Fig. 3A1) for the semi-arid region. Negative val-
ues from the EM and RG methods were forced 
to zero to evaluate descriptive statistics shown in 
Figure 3A3 and Figure 3A4. The average MAE 
value of the EM method decreased to 6.46 mm/day 
after forcing negative values to zero, but not enough 
to change the optimal values presented in Table V. 
Maximum (Fig. 3A2) and mean (Fig. 3A3) precip-
itation values showed no relevant differences with 
the observed values, except for standard deviation 
(Fig. 3A4) at stations T07, T08, T09, T11, T15, T21, 

T47, T60, T75, T76 and T77, which had a percentage 
of missing data in the range of 10-24%.

The ReddPrec method significantly overpredicted 
the observed maximum daily precipitation at stations 
T04, T09, T47, T60, and T76 with a difference of 51-
220 mm/day. In addition, the observed mean daily 
precipitation was overpredicted at stations T09 and 
T47 with values of 1.15 mm/day and 1.44 mm/day 
(see Fig. 3A2 and Fig. 3A3), as was the observed 
standard deviation at stations T09 and T47 with an 
average difference of ~6 mm/day (see Fig. 3A4).

The GCIDW method predicted the observed maxi-
mum and mean daily precipitation with no significant 
differences (see Fig. 3A2 and Fig. 3A3). Nevertheless, 
there was a considerable difference with the observed 
standard deviation of precipitation; the standard devi-
ation of precipitation was underpredicted in 45% of 
stations, with a difference of 0.5-2.5 mm/day.

The effect of key variables on the performance 
of the methods is summarized in Table VI, where 
again, the percentage of missing data has a significant 
correlation with the dispersion of GCIDW, EM, and 
ReddPrec standard deviation (Fig. 3B2). Elevation 
did not have a significant correlation with the MAE 
values; the explanation is probably due to the low 
height of the stations, which varies between 2 m and 
83 m with an average of 23 m (see Table II).

Table V. Mean Absolute Error (MAE) values of the imputation methods for precipitation in Tabasco (humid region), 
where the optimal method is highlighted in bold (minimum value of MAE). The units of MAE values are mm/day.

Station EM RG ReddPrec MICE GCIDW Station EM RG ReddPrec MICE GCIDW

T02 5.01 6.50 6.63 5.99 4.71 T40 5.22 7.98 5.98 8.20 5.22
T04 6.92 11.93 13.74 11.74 6.07 T42 8.13 16.22 11.76 15.71 6.25
T06 5.33 7.50 6.65 7.40 5.51 T44 5.27 16.23 9.31 15.76 4.04
T07 6.19 11.22 5.09 10.51 6.04 T47 9.43 12.42 13.29 13.00 7.52
T08 6.80 11.46 11.28 11.28 7.97 T50 5.18 8.72 8.79 8.08 4.25
T09 6.20 8.99 20.47 9.13 6.16 T54 5.13 10.03 6.43 9.29 5.04
T11 9.24 14.09 9.72 14.33 7.21 T60 4.91 11.01 6.18 10.42 5.03
T15 8.29 11.81 15.44 11.59 7.45 T61 5.77 18.50 15.08 19.23 4.23
T19 6.72 13.29 8.45 12.32 5.87 T70 7.92 15.36 12.83 14.54 6.62
T21 7.55 10.92 6.85 10.34 6.15 T75 9.04 11.90 7.06 12.37 7.61
T30 5.74 11.87 8.33 11.47 5.77 T76 7.10 11.91 5.99 11.41 7.17
T34 5.29 8.33 22.91 8.70 4.73 T77 9.46 10.94 8.57 12.30 8.34
T36 7.45 10.48 6.21 10.65 5.92 T78 6.59 9.70 6.07 9.10 6.85
T37 4.88 10.16 14.91 9.09 5.25 T84 5.08 10.51 4.49 9.36 4.81
T39 4.54 9.97 6.10 9.16 6.29

Average 6.56 11.38 9.81 11.12 6.00
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Annual precipitation volume was significantly 
positively correlated with the standard deviation of 
daily precipitation (Fig. 3B1). However, it is impossi-
ble to suggest a decrease in performance, represented 
by MAE values, with increasing precipitation dis-
persion and missing data percentage (see Fig. 3B3). 

3.1.3 Precipitation regime influence over MAE va-
lues in the semi-arid and humid regions
Given the results analyzed in the semi-arid and humid 
regions, where key variables with significant correla-
tion were analyzed separately by climate region, it is 

also relevant to analyze both climate regions together 
to show the evolution of MAE values for GCIDW, 
ReddPrec, EM, MICE, and RG methods in function 
of the mean annual precipitation of each meteorolog-
ical station (see Fig. 4).

In Figure 4, it is possible to observe that the per-
formance of the GCIDW and EM methods gradually 
decreased as the precipitation regime increased, up 
to a threshold of ~2000 mm/year, at which the per-
formance of these methods stabilizes with a slight 
tendency to improve. On the other hand, the RG and 
MICE methods showed a clear tendency to decrease 

A1 B1

A2

B2

A3

B3

A4

Fig 3. LEFT (A1 to A4): Comparison of the model interpolated values and the ob-
served daily precipitation in Tabasco (humid region). The comparison is divided into 
descriptive values as (A1) minimum (PP_Min), (A2) maximum (PP_Max), (A3) mean 
(PP_Mean), and (A4) standard deviation (PP_Std) of precipitation. RIGHT (B1 to B3): 
Comparison of key variables with significant Spearman’s rank correlation in Table VI: 
(B1) annual mean precipitation and dispersion (Std), (B2) missing data and standard 
deviation of methods (Std of methods), and (B3) Mean Absolute Error and standard 
observed precipitation of ReddPrec and GCIDW methods, which were selected as 
representative methods to simplify the analysis.
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in performance as the annual mean precipitation in-
creases. Finally, there was a significant correlation 
between the MAE value of the ReddPrec method 
and the annual mean precipitation (see Table IV and 
Table VI); however, this linear correlation is less 
evident in the humid region than in the semi-arid 
region, especially in the range between 1500-2500 
mm/year, where MAE values are higher than 14 mm/

day at stations T09, T15, T34 and T37 which visually 
do not follow a linear correlation (see Fig. 4).

3.2 Homogeneity analysis
In this section, the SNHT, Pettitt, and Buishand range 
tests were applied to analyze the homogeneity of the 
precipitation time series, completed with the optimal 
imputation methods for each analysis region. Each 
method was evaluated with a confidence level of 
95%.

3.2.1 Semi-arid region: Upper Laja River Basin 
(CARL)
Table VII summarizes the p-values and the years 
of four stations (17.4%) in which the homogeneity 
tests detected changes in precipitation, including 
two stations (S061 and S141) where three homoge-
neity methods coincided in detecting the year 2001 
as the year of change. The year 2001 was also the 
most frequent in terms of changes in homogeneity. 
This change in the homogeneity could be related to 
the modernization of the equipment and instrumen-
tation of the meteorological stations from 2001 to 
2006 (CONAGUA, 2012). 78.3% of stations were 
homogeneous, without changes in precipitation. The 
homogeneity test was applied individually for 14 
imputation methods. The results showed the same 
number of reliable stations for all 14 but with some 

Table VI. Spearman’s rank correlation (rs) applied to annual mean precipitation (Precipitation), percentage of station 
missing data (% of missing data), meteorological station elevation (Elevation), the standard deviation of observed 
data (Std [observed data]), dispersion of standard deviation of methods (Dispersion [std of methods]), mean absolute 
error of methods (MAE method) in Tabasco (humid region), where significant correlations have a p-value less than 
0.05. NOTE: ReddPrec, GCIDW, and EM methods were selected as representative methods to simplify the analysis.

Key variable Test 
variables

% of 
missing 

data

Elevation Std 
(observed 

data)

Dispersion
(Std of 

methods)

MAE 
GCIDW

MAE 
ReddPrec

MAE EM

Precipitation rs –0.126 0.341 0.930 0.013 0.291 0.373 0.506
p-value 0.515 0.070 0.000 0.948 0.125 0.047 0.006

% of missing 
data

rs –0.250 –0.005 0.793 0.345 0.038 0.312
p-value 0.191 0.979 0.000 0.068 0.843 0.099

Elevation rs 0.259 –0.118 0.038 0.104 0.083
p-value 0.176 0.543 0.846 0.591 0.668

Std (observed 
data)

rs 0.043 0.343 0.283 0.526
p-value 0.825 0.069 0.136 0.004

Fig 4. Comparison of the MAE values for selected meth-
ods and the annual mean precipitation of meteorological 
stations in the semi-arid region (CARL) and the humid 
region (Tabasco). 
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differences concerning the year of change in the 
unreliable or moderately reliable stations.

3.2.2 Humid region: state of Tabasco
Table VIII shows p-values and the years of three 
stations (10.3%) in which the homogeneity tests de-
tected changes in precipitation. Twenty-six stations 
(89.7%) were classified as reliable, with the precipita-
tion data corresponding to homogeneous conditions.

4.	 Conclusions
A comparison of 15 missing data imputation methods 
was presented to analyze their performance in two 
different climatic and orographic regions. Meteoro-
logical stations from a semi-arid region, the Upper 
Laja River Basin (CARL) in Guanajuato, were used 
with auxiliary stations outside their limits to improve 
methods performance. On the other hand, in the hu-
mid region, the state of Tabasco, we included only 
meteorological stations within the region’s limits. 
Daily preciptation from 1993 to 2017 was used 
for the semi-arid region and from 1980 to 2012 for 
the humid region. Stations with more than 25% of 

missing data were excluded, but possible outliers in 
the observed data were retained.

In the semi-arid region of the CARL, the methods 
with the best performance on average were those 
from the family of weighting imputation methods, 
which gave the lowest mean MAE values (MAE ≤ 
1.6 mm/day), led by the GCIDW method with an 
average MAE value of 1.46 mm/day. Then the Red-
dPrec method followed closely with an average MAE 
value = 1.63 mm/day. The rest of the methods had an 
average MAE value of ≥ 2.28 mm/day. The RG and 
EM methods imputed negative values of precipita-
tion. After forcing negative values to zero, the MAE 
values were reduced (from MAE value ≥ 2.28 mm/
day to MAE ≥ 1.9 mm/day). Still, the RG method 
incremented the average precipitation significantly 
(from 555 mm/year with negative values to 599 mm/
year, forcing negative values to zero). ReddPrec and 
GCIDW were the optimal methods in nine and eight 
stations, respectively, out of 23 stations. 

The methods EM, GCIDW, MICE, ReddPrec, and 
RG, were compared in the humid region (Tabasco). 
In this region, GCIDW was optimal in ~59% of sta-
tions, EM in ~24%, and ReddPrec in ~17%, with av-

Table VII. Comparison of precipitation homogeneity test results in the CARL (semi-arid region). Only 
stations where homogeneity tests result in Unreliable or Moderately reliable are shown.

Station
PETTITT test SNHT BUISHAND test

Classification of 
homogeneityp-value Year of 

shift
p-value Year of 

shift
p-value Year of 

shift

S051 0.0270 2001 0.0193 2001 Moderately reliable
S061 0.0026 2001 2.2E-16 2001 0.0003 2001 Unreliable
S140 0.0336 2000 0.0199 2000 Moderately reliable
S141 0.0047 2001 0.0087 2001 0.0252 2001 Unreliable

Table VIII. Comparison of precipitation homogeneity test results in Tabasco (humid region). 
Only stations where homogeneity tests detect a year of change in precipitation are shown.

Station
PETTITT test SNHT BUISHAND test

Classification of 
homogeneityp-value Year of 

shift
p-value Year of 

shift
p-value Year of

shift

T75 0.0388 1995 0.0017 1995 Moderately reliable
T77 0.0388 2004 0.0001 2009 0.0374 2004 Unreliable
T78 0.0185 1997 0.0464 1997 0.0033 1997 Unreliable
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erage MAE values of ~6.0 mm/day, 6.5 mm/day, and 
~9.8 mm/day, respectively. ReddPrec performance 
was significantly lower than GCIDW and EM, 
where the analysis of results suggested that the 
performance of the ReddPrecc method decreased 
considerably with increasing mean annual precip-
itation, which was exacerbated by the absence of 
auxiliary stations. In contrast, the EM and GCIDW 
methods performed better with increasing mean 
annual precipitation. 

From the calculations of both climate regions, 
a significant correlation was observed between the 
MAE values and mean annual precipitation in which 
the methods’ performance was lower in the humid 
region (Tabasco) compared to the semi-arid region 
(CARL). The most plausible explanation for this 
difference is the greater dispersion of mean annual 
precipitation in Tabasco (1340-3640 mm/year) com-
pared to the CARL (360-900 mm/year). Nevertheless, 
this analysis did not consider the influence of the 
sampling error of meteorological stations, which 
becomes more significant as precipitation increases.

To explore why methods performance increases at 
some climatological stations and decreases at others, 
Spearman’s rank correlation was applied between 
key variables and MAE values of methods. There 
was a significant negative correlation between the 
percentage of missing data and MAE values (in the 
semi-arid region) and a significant positive correla-
tion between precipitation regime and dispersion 
of predictions between methods (in both climatic 
regions). Thus, the percentage of missing data and 
precipitation range have crucial repercussions on 
the methods’ performance. This suggests that as-
sumptions and methodologies implemented in each 
imputation method become more relevant when there 
is more missing data and precipitation dispersion (a 
higher precipitation regime). 

The analysis of homogeneity in different climat-
ic regions confirmed that the optimal missing data 
imputation methods are adequate to maintain the 
homogeneity of data, with some differences in the 
year of the shift in some meteorological stations.
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