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RESUMEN

Se analizaron datos de pronóstico del clima de la Misión de Medición de Lluvias Tropicales (TRMM, por 
su sigla en inglés) y del reanálisis ERA-Interim del Centro Europeo de Pronósticos Meteorológicos a Me-
diano Plazo (ECMWF) utilizando el modelo autorregresivo de segundo orden AR(2) y métodos de análisis 
espectral espacio-tiempo, respectivamente. El análisis mostró resultados de predicción contrastantes para la 
Oscilación Madden-Julien (MJO) y las ondas ecuatoriales acopladas por convección (CCEW) sobre Indo-
nesia. Esta investigación utilizó la misma serie de 13 años de conjuntos de datos de modelos de reanálisis 
diarios TRMM 3B42 V7 y ERA-Interim del Centro Europeo de Pronósticos Meteorológicos a Mediano 
Plazo (ECMWF) para pronósticos de precipitación. Luego se utilizaron tres años (2016 a 2018) de datos de 
pronóstico filtrados 3B42 y ERA-Interim para evaluar la precisión del pronóstico observando los coeficientes 
de correlación para los prospectos de pronóstico desde el día +1 hasta el día +7. Los resultados revelaron que 
los datos de estimación de lluvia del modelo 3B42 proporcionan mejores resultados para los pronósticos más 
cortos, particularmente para los fenómenos MJO, Rossby ecuatorial (ER), Rossby de gravedad mixta (MRG) 
e inercia-gravedad en el número de onda zonal 1 (IG1), pero ofrecen una mala correlación para las ondas 
de Kelvin en todos los pronósticos. Se logró una correlación consistente para todas las ondas a partir del 
modelo filtrado de pronóstico de precipitación ERA-Interim, y a pesar de que dicha correlación fue bastante 
débil en las primeras derivaciones, no alcanzó una correlación negativa en las últimas derivaciones, excepto 
para IG1. También se examinó el diagrama de Taylor para complementar las habilidades de pronóstico para 
ambas fuentes de datos, con el resultado de que el error residual para el pronóstico de precipitación ERA-
Interim filtrado fue bastante pequeño para todos los pronósticos y tipos de onda. Estos hallazgos prueban que 
el modelo de pronóstico de precipitación ERA-Interim sigue siendo un modelo de precipitación adecuado en 
los trópicos para el pronóstico de MJO y CCEW, específicamente en Indonesia.

ABSTRACT

Forecast data from the Tropical Rainfall Measuring Mission (TRMM) and the ERA-Interim reanalysis of the 
European Centre for Medium-Range Weather Forecasts (ECMWF) were analyzed using the second-order 
autoregressive method AR(2) and space-time spectral analysis methods, respectively. Our analysis revealed 
contrasting results for predicting the Madden Julian Oscillation (MJO) and convectively coupled equatorial 
waves (CCEW) over Indonesia. We used the same 13-year series of daily TRMM 3B42 V7 and ERA-Interim 
reanalysis model datasets from the ECMWF for precipitation forecasts. Three years (2016 to 2018) of the 
filtered 3B42 and ERA-Interim forecast data were then used to evaluate forecast accuracy by looking at cor-
relation coefficients for forecast leads from day +1 through day +7. The results show that rainfall estimation 
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data from 3B42 provides better results for the shorter forecast leads, particularly for MJO, equatorial Rossby 
(ER), mixed Rossby-gravity (MRG), and inertia-gravity phenomena in zonal wavenumber 1 (IG1), but gives 
a poor correlation for Kelvin waves for all forecast leads. A consistent correlation for all waves was achieved 
from the filtered ERA-Interim precipitation forecast model, and although this was quite weak for the first 
forecast leads it did not reach a negative correlation in the later forecast leads except for IG1. Furthermore, the 
Taylor diagram was also examined to complement forecasting skills for both data sources, with the result 
that residual error for the filtered ERA-Interim precipitation forecast was quite small during all forecast leads 
and for all wave types. These findings prove that the ERA-Interim precipitation forecast model remains as an 
adequate precipitation model in the tropics for MJO and CCEW forecasting, specifically in Indonesia.

Keywords: MJO, CCEW, forecast, TRMM, ERA-Interim.

1. Introduction
As Indonesia is one of the tropical areas with the abil-
ity to influence weather conditions globally (Madden 
and Julian, 1972), many researchers have observed 
weather dynamics in this region. A previous research 
by Tsuda et al. (2006) revealed that some atmospher-
ic waves, for instance, the Kelvin wave and other 
long-period (> 5 days) oscillations, were detected 
in the middle-level to upper-level troposphere over 
Indonesia. Furthermore, a predominance of Kelvin 
waves over Indonesia was also revealed by Kiladis et 
al. (2009). Another study suggested that the Madden 
Julian Oscillation (MJO) triggers Indonesian rainfall 
variability, proven by a strong correlation of rainfall 
distribution during each MJO phase over the Indo-
nesian region (Hidayat and Kizu, 2010). Sobel and 
Maloney (2013) considered the MJO as a “moisture 
mode” rather than a wave, where its formation de-
pends on the prognostic humidity equation, therefore 
only occurs in a humid atmosphere. Meanwhile, prior 
studies suggested that MJO occurs in both wet and 
dry atmosphere, which represent peak and trough 
phases of the wave characteristic (Wheeler and Kila-
dis, 1999; Wheeler and Hendon, 2004). Moreover, 
Wheeler and Kiladis (1999) revealed that MJO is 
a phenomenon that oscillates at a low frequency 
and low wavenumber, but not along any theoretical 
equatorial wave dispersion curves as in convectively 
coupled equatorial waves (CCEW). It has also been 
suggested that both MJO and Kelvin waves over 
Indonesia are strongly correlated with the Austra-
lian-Indonesian monsoon (Wheeler and McBride, 
2005). It is widely recognized that latent heat released 
by tropical precipitation can drive a strong interaction 
up to the level of large-scale atmospheric circulation 
(Holton, 2004). As large-scale weather phenomena, 

equatorial waves including MJO play a significant 
role in the tropics, particularly over Indonesia.

The theories regarding equatorial waves using 
shallow water equations have rapidly developed since 
they were first investigated by Matsuno (1966), who 
defined the equations from motion and mass conser-
vation. A couple of decades later, global monitoring 
and prediction of MJO and CCEW were introduced 
by Wheeler and Weickmann (2001) based on the 
Fourier method to filter various modes of synoptic 
to intraseasonal variability for each specific charac-
teristic of zonal wavenumbers and frequencies. The 
study of Maharaj and Wheeler (2005) into predicting 
MJO used the vector autoregressive (VAR) method, 
applied to all phases of real-time multivariate MJO 
series 1 (RMM1) and series 2 (RMM2). Meanwhile, 
another statistical method for predicting MJO was 
developed by Jiang et al. (2007) using a multivariate 
lag-regression model for two lead principal compo-
nents. In contrast, the numerical weather prediction 
(NWP) model was not able to prevent large errors in 
predicting equatorial waves coupled with convection 
(Zagar et al., 2005). Thus, statistical methods have 
been relied upon to provide better accuracy than 
NWP in terms of equatorial-wave prediction models 
(Wheeler and Weickmann, 2001). Therefore, com-
parison of the statistical autoregressive (AR) method 
with equatorial-wave data filtered from the NWP pre-
diction model is necessary to achieve a more accurate 
MJO and CCEW forecasting method. A localized 
domain was required to achieve the best results, and 
so the complexity of the Indonesian archipelago was 
therefore selected to be the focus area for this study 
(Ramage, 1971). 

The first objective of this study is to seek im-
proved forecasting skills for predicting MJO and 
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CCEW over Indonesia, achieved by comparing 
statistical AR for rainfall-rate estimation data with 
the NWP product. AR(1) and AR(2) methods were 
calculated, but only AR(2) will be described in detail 
for the reason described in the results section. The 
NWP product used in this study was the European 
Centre for Medium-Range Weather Forecasts (ECM-
WF) Re-Analysis Interim (ERA-Interim) short-range 
precipitation forecast model, filtered into MJO and 
CCEW using a space-time spectral analysis method. 
The second objective of this research is to provide 
an assessment of the statistical AR method for pre-
dicting MJO and CCEW in Indonesia using Tropical 
Rainfall Measuring Mission (TRMM) data and the 
NWP model product drawn from the ERA-Interim 
precipitation forecast data. 

2. Data and methods
2.1 Data
A 13-year series of daily TRMM data (3B42 V7 de-
rived) was filtered for MJO and CCEW atmospheric 
phenomena, divided into two datasets. The first data-
set was the 10-year period from January 1, 2006 to 
December 31, 2015 used for the AR model process, 
while the second was a 1-year dataset for 2016, used 
for AR prediction for the same 1-year period. A sim-
ilar dataset clustering method was used to apply two 
consecutive years through 2018, i.e., the first dataset 
was 2007 to 2016 and the second was 2017, as well 
the first dataset was 2008 to 2017, and the second was 
2018. The three latter datasets (2016 to 2018) were 
then used to verify the final results of statistical AR 
and the ERA-Interim precipitation forecast in this 
study. The use of TRMM was considered for several 
reasons, such as continuous data acquisition, finer 
resolution (0.25º × 0.25º), comprehensively merged 
infrared-microwave multi-satellite, and the collection 
and conversion of all available data into precipitation 
estimates (see Huffman et al. [2006] for more detailed 
documentation.)

Meanwhile, a similar long period of total precip-
itation drawn from ECMWF ERA-Interim precipita-
tion forecasts was used to filter for MJO and CCEW, 
also divided into two datasets. The first dataset com-
prises daily total precipitation (summed 12-hourly) 
from ERA-Interim reanalysis data for the period from 
January 1, 2006 to December 31, 2016, while the 

second dataset encompasses daily total precipitation 
from the ERA-Interim forecast model (ds.627) for 
the 1-year period from January 1 to December 31, 
2016. A clustering dataset similar to the statistical 
AR method was attempted for two consecutive years 
(2017-2018) in order to obtain the forecast skill for 
the same period. Both the ERA-Interim reanalysis 
and forecast datasets were used to filter for MJO 
and CCEW phenomena and were then utilized for 
prediction assessment for the years 2016-2018. A dif-
ferent resolution for the ERA-Interim reanalysis and 
forecast dataset was encountered, using a 0.75º grid 
for the reanalysis dataset and a 0.703º × ~0.702º 
grid for the forecast dataset (see Dee et al. [2011] for 
the ERA-Interim dataset and the ERA report series 
for ERA-Interim archive v. 2.0 from the ECMWF 
documentation [Berrisford et al., 2011]).

2.2 Method 
A uniform spatial resolution for all datasets was re-
quired to simplify the computational mathematical 
process using the inverse distance weight method. 
The 0.5º grid resolution was applied to the daily 
3B42 dataset, while the 0.75º grid was applied to 
the ERA-Interim dataset. The main benefit of this 
method is the reduction of delays and costs in running 
the mathematical equations for very large datasets. 
Meanwhile, to filter all datasets into the MJO and 
CCEW atmospheric phenomena, the space-time spec-
tral analysis derived from Wheeler and Kiladis (1999) 
(hereafter known as WK99) was used to obtain 
information for trapped waves at the equator based 
on each wave’s characteristic. This method was per-
formed by converting the time-space domain into a 
frequency-wavenumber domain, in which each wave 
has a specific frequency-wavenumber domain. The 
zonal wavenumber (k) applied in this study was be-
tween –20 and 20 for the whole equatorial globe with 
a latitudinal window (ϕ) between 20º N and 20º S; 
the equivalent depth (he) applied in this study was 
from 8 to 90 m.  

The interannual variability that arises in conjunc-
tion with the maturing of El Nino-Southern Oscilla-
tion (ENSO) over the dateline/Maritime Continent 
has proven to be able to mask the real signs of MJO 
(Wheeler and Hendon, 2004) and so the removal of 
this factor was necessary. On the other hand, Liu et 
al. (2017) suggested that the Indian Ocean Dipole 
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(IOD) is strongly correlated rather than ENSO to the 
MJO forecast skill. Nevertheless, due to the barrier 
effect constraint of the MJO during the passing of 
the Indo-Pacific Maritime Continent (Zhang and 
Ling, 2017; Chen et al., 2020), which has a signifi-
cant connection with the IOD (Liu et al., 2017), the 
calculation in this paper accounts only for the ENSO 
influence. A 13-year weekly Nino3.4 index from the 
National Oceanic and Atmospheric Administration 
was used to apply daily regression against daily 
precipitation of 3B42 and ERA-Interim reanalysis 
and forecast models. Simple linear interpolation 
was applied to the weekly Nino3.4 index to obtain 
a daily Nino3.4 index. The daily regression value 
for ENSO variability was then removed from all 
daily data related to MJO. The Nino3.4 index was 
selected because its locus represents the sea surface 
temperature anomaly over the dateline, where the 
mature phase of ENSO occurs.

To perform MJO and CCEW prediction statisti-
cally from 3B42 dataset a simple AR method in the 
form of Eq. (1) (Wilks, 2006) was applied without 
any modification but selecting only for order values 
(i.e., the order of 1 and 2):

Xt+1 −  μ = ∑
K

k=1
∅k(Xt−k+1 − μ) + εt+1 (1)

where Xt+1 is the next value in the time series or 
the next predicted value, Xt+1 – μ is the anomaly of the 
next predicted value, K is an autoregressive order 
which is also a weighted sum of the previous K 
anomalies, εt+1 is a residual or a random component, 
Øk is the autoregressive coefficient, and μ is the mean 
of the time series.

Estimated data for daily precipitation from the 
first (2006-2015), the second (2007-2016) and the 
last 3B42 10-year datasets (2008-2017) was filtered 

to capture signals for each wave using the WK99 
method. These data was then used as model fitting for 
each grid. The aim of splitting the process into three 
10-year periods was to make a more equal filtering 
process within the transformation of space-time into 
the frequency-wavenumber during a filtering process 
for each period. Another aim was to facilitate each 
year’s (from 2016 to 2018) evaluation (though not 
shown and described in this paper). The three 10-year 
3B42 datasets were filtered using the same method 
and were then used as past data for forecasting the 
future value of each grid. After the AR(1) and AR(2) 
models had been fitted for each grid of the three 10-
year datasets, a forecast process was applied using 
each model fit and past data for each grid. This pro-
cess was repeated for each day from January 1 to 
December 31, 2016 and consecutively for the next 
two years for forecast leads of 1 to 7 days. The pro-
cess is marked for each grid as ForecastDAY(model_fit, 

past_data, forecast_lead) in Figure 1. AR(1) was also tested 
for the 3B42 dataset in this study, but as it compared 
poorly with AR(2) in forecast calculations (figures 
not shown) it will not be described further in detail.

Meanwhile, to assess daily precipitation forecasts 
from ERA-Interim data related to MJO and CCEW, 
the corresponding data period to the daily 3B42 data-
set was selected for daily total precipitation from the 
ERA-Interim data. The data-filtering process using 
the WK99 method was applied from January 1 to 
December 31, 2016 for two clustered datasets, as 
already mentioned. A similar method was also applied 
for the periods 2007-2017 and 2008-2018. The three 
10-year ERA-Interim reanalysis datasets were com-
bined with the 1-year ERA-Interim forecast-model 
dataset for 2016, 2017 and 2018, consecutively. Daily 
repetitions of wave filtering were applied to the actual 
initial forecast times, from January 1 to December 

Past data

ForecastDAY

Model fitting
1 January

2006
31 December

2015
31 December

2018

(model_fit,past_data,forecast_lead)

Fig. 1. Schematic representation of the filtered 3B42-AR process to forecast 
MJO and CCEW at a certain grid and certain day for 1- to 7-day forecast 
leads (vertical solid gray arrow) using model fitting (solid gray line) and 
past data (dashed black line). The forecast process covers January 1, 2016 
to December 31, 2018.
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31, 2016 as well for the next two consecutive years, 
using a combined dataset consisting of the 10-year 
reanalysis dataset and the 1- to 7-day forecast leads 
for the same period. The last filtered day for each 
1-year iteration, which was a filtered ERA-Interim 
precipitation forecast dataset, was then collected 
into the 2016, 2017, and 2018 filtered ERA-Interim 
precipitation forecast data. Thus, 1096 days (from 
2016 to 2018) of iterating filter processes were run 
to obtain 1- to 7-day forecast leads by employing 
ERA-Interim total precipitation forecast data (Fig. 2).

Furthermore, a verification process was performed 
using a 3-year 3B42 daily precipitation dataset from 
January 1, 2016 to December 31, 2018. As 3B42-
TRMM is a good proxy for real precipitation on 
the surface, it was therefore employed to evaluate 
both forecast calculations (Huffman et al., 2006; 
Irfan et al., 2019). To adjust the initial time of the 
verification process to the prediction process, a full 
2006-2015 dataset combined with the 2016 dataset 
was run to obtain the last day analysis of MJO and 
CCEW atmospheric data as if in the real operational 
mode. The same method was applied to the next two 
batch periods consecutively. Then, the 1096 days of 
analyzed data for each filtered wave were compared 
to 1096 days of forecast data obtained from the pre-
vious prediction processes for both the 3B42-TRMM 
and the ERA-Interim precipitation forecast datasets, 
in order to identify the accuracy for both processes. 

Since the calculation (especially for the statistical 
method) was more independent for one grid based on 
the previous dataset as historical data in a certain grid 
point, the verification result between the summer and 
winter seasons was not distinguished in this paper. 
Another reason is that this paper aimed to point out 
the comparison between two methods, thus we ruled 
out both the phases and the seasons

3. Results
Three years (2016 to 2018) were selected to examine 
the forecasting accuracy of both processes using the 
verification calculation equations already described. 
Figure 3 shows the various sensitivities of the filtered 
3B42-AR(2) forecast using a correlation between the 
filtered 3B42-AR(2) process and the filtered 3B42 
data for each wave. Figure 3 shows that the highest 
forecasting efficiency of the filtered 3B42-AR(2) 
calculations was for MJO forecast results, in which 
the maximum correlation reaches 0.99 over East 
Nusa Tenggara at day +1, and settled at a correlation 
coefficient of more than 0.9 until day +7, as clearly 
indicated in Figure 5a. Although the lowest correla-
tion pattern was located over the most equatorial 
Indonesian region, the correlation coefficient value 
was still greater than 0.9. The results of Kelvin wave 
forecast filtered 3B42-AR(2) calculations exhibit the 
lowest forecast skill, where the correlation coefficient 

Reanalysis data

Reanalysis data

1 to 7 days
forecast lead data

ForecastDAY

ForecastDAY

1 January
2006

31 December
2015

31 December
2018

Fig. 2. Schematic representation of the filtered ERA-Interim precipitation forecast 
process for MJO and CCEW using a precipitation reanalysis dataset (dashed gray 
line) and precipitation forecast model dataset of 1- to 7-day forecast leads (dashed 
black line) to forecast at a certain day for 1- to 7-day forecast leads (vertical solid 
gray arrow) using the WK99 filtering method. The forecast process time period 
is the same as in Figure 1.
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weakens until day +4 and then slightly rises from day 
+5 through day +7, as shown in figure 5-a. Figure 
3-b indicates that most of the Indonesian region, par-
ticularly over the southern hemisphere and equator, 
exhibit the highest correlation pattern during day +1 
and then weakens during day +2. Nevertheless, the 
correlation coefficient indicates below 0.5 and even 
reaches a negative value over Sumatra and Borneo 
at day +2 forecast lead.

Other satisfactory results of the filtered 3B42-
AR(2) process are exhibited by Equatorial Rossby 
(ER), Mixed Rossby-Gravity (MRG), and iner-
tia-gravity data in zonal wavenumber 1 (IG1), as 
shown in Figure 5a. However, from the same figure, 
the ER forecast results indicate a slightly weakening 
lapse compared with MRG and IG1. The last two 
waves even reach a negative correlation value during 
day +5 through day +7, as shown in Figure 3d, e. In 
spite of this, there is a strong coefficient correlation 
pattern for ER over southern Papua, with the weak 
correlation predominantly occuring in the Indone-
sian region particularly over northern Sumatra and 
southern Sulawesi during day +5 through day +7 
(Fig. 3c). Furthermore, Figure 3d indicates that a 
weak correlation locus is present in the most south-
erly part of the Indonesian region, particularly over 
Bali, West Nusa Tenggara and East Nusa Tenggara 
during day +1 through day +7 for MRG. Even though 
a higher correlation was observed over the northern 
part of Indonesia during day +3 through day +5, the 
correlation coefficient value is still less than 0.7 at 
day +3 and less than 0.3 at day +5. Figure 3e shows a 
strong correlation that appears to be predominant over 
Indonesia at day +1. However, a lower correlation 
coefficient is observed over southern Borneo as well 
as over central and southern Sulawesi at day +3 and 
continues to weaken until day +7.

Figures 3 and 5a show that the forecasting accu-
racy results obtained from the correlation coefficients 
between filtered 3B42-AR(2) calculations indicate 
a daily weakening trend. The results seem to be 
different for the forecasts obtained for the filtered 
ERA-Interim precipitation, where a persistent trend is 
exhibited from day +1 through day +7 for all waves, 
as shown in Figures 4 and 5b, both of which show 
that the correlation coefficient values for each wave, 
particularly for MJO, ER, MRG, and IG1, are weaker 
than the correlation coefficient values obtained from 

the filtered 3B42-AR(2) calculation. However, a con-
sistent correlation without reaching negative values 
makes this process more reliable in the later forecast 
lead times than the filtered 3B42-AR(2) process, 
except for the IG1 result, which will be described 
later. This persistent trend is presumably due to a 
consistent distribution pattern of total precipitation 
for each different lead time from the ERA-Interim 
precipitation forecast model, even though there is a 
discrepancy of precipitation-value distribution for 
each forecast lead. Thus, wavenumber and frequen-
cy domain gathered from this consistent oscillation 
pattern from the ERA-Interim precipitation forecast 
model were then filtered and classified as MJO and 
CCEW wave characteristics using the WK99 filter 
method.

Moreover, a moderate correlation (more than 
0.5) is observed over most of the Indonesian region, 
particularly for MJO, Kelvin waves, and ER forecast 
results. However, a weak correlation is still observed 
over the western and eastern part of Papua, central 
Sumatra, and southern Sulawesi for Kelvin waves 
(Fig. 4b) and over the most equatorial Indonesian 
region for ER (Fig. 4c). A less significant correlation 
seems to be predominant over Indonesia for MRG 
forecast results, which still indicates a positive 
correlation (Fig. 4d), but seemingly less reliable if 
compared to the filtered 3B42-AR(2) calculation, 
where the correlation is higher than 0.6 during day +1 
through day +3, as shown in Figure 3d. Meanwhile, 
a negative correlation is observed over most of the 
Indonesia area, particularly over southern Sulawesi, 
Bali, West Nusa Tenggara, and the southern part of 
Papua (Fig. 4e), making the filtered ERA-Interim 
precipitation forecast process less reliable as a fore-
casting calculation for IG1 when compared with the 
filtered 3B42-AR(2) calculation, particularly at day 
+1 (Fig. 3e).

The root mean square error (RMSE) was then 
calculated to obtain an error value for providing an-
other forecasting accuracy assessment in addition to 
the correlation coefficient method. From Table I, we 
notice that the RMSE average for all waves continues 
to increase from day +1 through day +2, with a daily 
RMSE mean of approximately 0.14 for the filtered 
3B42-AR(2) process. Meanwhile, a constant RMSE 
mean for all waves from day +1 through day +7 is 
revealed for the filtered ERA-Interim precipitation 
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forecast calculation, which is coherent with Figures 4 
and 5 for the reason already mentioned. Nevertheless, 
there is a greater RMSE for the filtered 3B42-AR(2) 
calculation as compared to filtered ERA-Interim 
precipitation forecast calculations for each day, with 
an RMSE mean difference of approximately 1.21 
from both calculations for each day. This means that 
residuals (prediction errors) for the filtered AR(2) 
calculation seem to be larger than for the filtered 
ERA-Interim precipitation forecast calculation; thus, 
using a filtered ERA-Interim precipitation forecast 
process is preferable for reducing errors in predicting 
MJO and CCEW over Indonesia in terms of differ-
ent forecast leads. Furthermore, Table II shows that 
a greater residual RMSE is also exhibited for the 
filtered 3B42-AR(2) calculation compared with the 
filtered ERA-Interim precipitation forecast calcu-
lation, as indicated by the RMSE of each different 

wave averaged for 1- to 7-day forecast leads. Thus, 
a filtered ERA-Interim precipitation forecast process 
is the most reliable calculation process for MJO and 
CCEW when compared with the filtered 3B42-AR(2) 
process. RMSE results for both processes indicate 
that if errors are averaged for all different waves 
(Table I) or for all different forecast leads (Table II), 

Table I. RMSE for the filtered 3B42-AR(2) process as predicted values against the filtered 
3B42 observation dataset as observed values, and the filtered ERA-Interim precipitation 
forecast process as predicted values against the filtered 3B42 observation dataset.

day +1 day +2 day +3 day +4 day +5 day +6 day +7

AR(2) 0.85 1.10 1.32 1.54 1.63 1.69 1.72
ERA 0.20 0.20 0.20 0.20 0.20 0.20 0.20

(AR)2: statistic autoregression method 2; ERA: ERA-Interim reanalysis.

Table II. As in Table I, but averaged for different forecast 
leads (i.e., 1 to 7 days) for each wave type.

MJO Kelvin ER MRG IG1

AR(2) 0.22 2.77 1.24 1.41 1.39
ERA 0.21 0.19 0.22 0.20 0.16

(AR)2: statistic autoregression method 2; ERA: ERA-
Interim reanalysis.

1
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Fig. 5. Temporal correlation between (a) the filtered 3B42-AR(2) process and the filtered 3B42 observation dataset 
and (b) the filtered ERA-Interim precipitation forecast process against the filtered 3B42 observation datasetfor MJO, 
Kelvin, ER, MRG, and IG1 (indicated by different line patterns) at 1- to 7-day forecast leads.
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a better forecast accuracy is achieved for filtered 
ERA-Interim precipitation forecast calculations. On 
the other hand, a higher correlation is gained for all 
wave types (except Kelvin waves) at the beginning 
of forecast leads, except for MJO, which is consistent 
at a higher magnitude at all forecast leads with the 
filtered 3B42-AR(2) calculation (Fig.5-a). 

In addition, the Taylor diagram was also examined 
in this study to evaluate the forecast skill, both for 
filtered 3B42-AR and for filtered ERA-Interim precipi-
tation forecasts. The Taylor diagram was developed by 
Taylor (2001) to assess different model skills in terms 
of their correlation, RMSE and standard deviation. 
The MJO forecast skill from filtered 3B42-AR(2) 
calculations in Figure 6 shows the highest correlation 
(> 0.95) and weakest RMSE (< 1), which also lies 
close to the reference standard deviation. On the other 
hand, the Kelvin wave shows the lowest correlation of 
about less than 0.2, a relatively high RMSE (< 3) and 
the greatest standard deviation difference compared to 
other waves. Meanwhile, the ER coefficient correlation 
and RMSE show a constant degradation and a constant 
increase, respectively, from day +1 through day +7. 
However, the ER has a similar standard deviation 
between the filtered 3B42-AR(2) output and the ref-
erence. MRG and IG1 also exhibit a constant decrease 
of the correlation coefficient and a constant increase of 
RMSE and the standard deviation difference from the 
reference. ER and IG1 show a similar pattern except 
for the beginning forecast time, where IG has a high-
er coefficient correlation of about 0.95 and standard 
deviation closer to the reference than MRG.

The Taylor diagram for ERA-Interim precipitation 
forecast calculations in Figure 7 shows a similar value 
from day +1 through day +7 for all waves, following 
Figures 4 and 5. Similar to other results, MJO indi-
cates the highest correlation, while IG1 shows the 
weakest correlation. However, RMSE for all waves 
shows a slight difference, where IG1 exhibits the 
lowest RMSE (< 0.17) while ER has the highest (> 
0.22), which is also coherent with results in Table II. 
Meanwhile, the standard deviation shows a quite 
similar value for all waves except for ER, whch has 
a closer standard deviation from the reference. 

From the Taylor diagram, which is also in line with 
Figures 3 to 5, it becomes clearer that even though 
the correlation coefficient from the filtered 3B42-
AR(2) calculations shows a better result, the error and 

differences from the reference are higher than the result 
from ERA-Interim precipitation forecast calculations. 
Simply put, the wave perturbation pattern forecast for 
all waves (except Kelvin) is much better for the filtered 
3B42-AR(2) calculations. Nevertheless, the wave fore-
cast magnitude shows a better result for ERA-interim 
precipitation forecast calculation.

4. Conclusion and discussion
The time-series autoregressive forecasting method 
weighting previous k anomalies associated with 
k-time, as in Eq. (1), reveals a higher level of accu-
racy for AR(2) MJO forecasting compared with other 
waves using correlation coefficient calculation. This 
is probably caused by the AR(2) calculation being 
based on previous t-1 and t-2 predictor lag values, for 
which MJO has a prolonged oscillation period (40-50 
days) and a low frequency (Madden and Julian, 1972). 
On the other hand, the shorter period (< 10 days) of 
other waves (Kiladis et al., 2009) may cause higher 
forecast accuracy for MJO at longer forecast leads 
when compared with other waves (Figs. 3 and 5a). 
This result is coherent with a previous study which 
revealed that a strong correlation (> 0.8) was exhibit-
ed in the early part (up to day 5) of forecast leads for 
MJO using a statistical-multivariate lag-regression 
model, particularly during the southern summer (Ji-
ang et al., 2007). A similar result for MJO forecasts 
was also achieved by Wheeler and Weickmann (2001) 
with a strong correlation (of more than 0.8) over the 
Indonesian region, particularly during the southern 
summer. This was obtained using an extended fre-
quency-wavenumber spectral analysis derived from 
the WK99 method. Meanwhile, from the same fig-
ures, even though less accuracy is indicated for other 
waves at longer forecast leads, these are still fairly 
good until day +2 or +3, probably due to the strong 
weighted influence of t-1 to t-2 for the AR(2) process. 
A similar result from the same paper by Wheeler and 
Weickmann (2001) also revealed that Kelvin waves 
had a less significant correlation (< 0.4) at day +4, 
even though more significant than the correlation 
result exhibited in this study, which is less than 0.1 
from the filtered 3B42-AR(2) process. However, this 
calculation result is less significant compared with the 
filtered ERA-Interim precipitation forecast process, 
with correlation lower than 0.6.
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Fig. 7. As in Figure 6, but for the filtered ERA-Interim precipitation forecast process against the 
filtered 3B42 observation dataset.
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The most recent study by Yang et al. (2021) 
exhibited a higher correlation than the result of this 
research, that is > 0.6 at least day +4 for Kelvin 
waves and day +6 for MRG and meridional mode 
waves number n = 1 and n = 2 ER. Meanwhile, the 
correlation obtained in this study shows a similar cor-
relation value within day +3 for ER and MRG waves 
using the filtered 3B42-AR(2) process, and for all 
forecast times for ER using the filtered ERA-Interim 
precipitation forecast process. Maybe the references 
data is one of the causes of this significant difference. 
Yang et al. (2021) utilized the analysis dataset from 
the same NWP model as a reference, while this study 
used a TRMM product as a reference, which is also 
a proxy of surface precipitation. Another reason is a 
different reference parameter. Yang et al. (2021) ex-
amined wind at 850 hPa, while this study examined 
a rainfall estimation that includes a complex mech-
anism compared to other atmospheric parameters. 
However, both studies suggest that the predictability 
of the Kelvin wave exhibited a weaker forecast skill 
compared to other wave types.

The increase in error magnitude calculated by 
RMSE for the filtered 3B42-AR(2) calculations 
for day +1 through day +7 (Table I) is presumably 
caused by the increase in the residual engaged in 
the next predicted value. This residual increases 
continuously from the first day of forecast lead 
to the last, as contained in Eq. (1), particularly 
for waves with a short period and a high fre-
quency. Compared to other waves, the RMSE 
residual obtained for MJO is quite small for 
the filtered 3B42-AR(2) calculation (Table II), 
probably for the same reason, the prolonged oscil-
lation period of MJO compared with other waves. 
From the same table it can be seen that the RMSE 
residuals for the filtered ERA-Interim precipitation 
forecast calculations are quite small during all fore-
cast leads and for all wave types. This is probably 
caused by the consistent distribution pattern of the 
total precipitation-covered area for each different 
lead time from the ERA-Interim precipitation fore-
cast, even though there is a diverse amount of total 
precipitation accumulation for each lead time, as 
already mentioned. RMSE calculation results also 
correspond to the correlation coefficient, where a 
consistent correlation for all wave types is exhibited 
at all forecast lead times. Even though fairly weak at 

the beginning of the forecast leads compared with the 
AR(2) results, they do not become negative for the 
final forecast leads except for IG1. This finding 
also indicates that the ERA-Interim precipitation 
model is an adequate for the tropics, especially over 
Indonesia and associated with the MJO and CCEW 
forecast models. 

The filtered 3B42-AR(2) forecast shows better 
wave perturbation patterns for all waves (except 
Kelvin), but the magnitude of waves shows a better 
result for the filtered ERA-interim precipitation 
forecast even though it still cannot be compared to 
other forecasts. The reason is that previous studies 
have not been able to assess correlation, RMSE and 
standard deviation using the Taylor diagram. Thus, 
this finding becomes a novelty of this study. This 
finding also corresponds to a previous study which 
revealed that there is a significant improvement 
in overall precipitation forecasting accuracy from 
weather prediction models in the tropics at the present 
compared with the past decade, particularly for the 
ERA-Interim forecast model (Janowiak et al. 2010). 
The most speculative reason mentioned in the same 
paper is an advancement of cumulus convection 
schemes which enhances intraseasonal variability in 
the numerical models. Nevertheless, the discontinuity 
of ERA-Interim dataset since September 2019 arises 
a limitation for this paper. The author emphasizes the 
importance of proposing a similar method for other 
ongoing datasets to take advantage of this paper's 
findings.
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