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RESUMEN

En este estudio se evalta el rendimiento del modelo de pronostico e investigacion meteoroldgica de mesoes-
cala (WRF) utilizando combinaciones de tres capas de limite planetario (PBL, por su sigla en inglés) (YSU,
ACM2 y MY]J) y tres esquemas de modelo de superficie terrestre (LSM) (UC, Noah y Noah-MP), con el fin
de identificar los parametros dptimos para la determinacion de la velocidad del viento en una region tropical.
El estado de Bahia en Brasil se selecciona como la ubicacion para el estudio de caso y las simulaciones se
realizan durante un periodo de ocho meses entre 2015 y 2016 (estaciones secas y lluviosas). Los resultados
de las simulaciones se comparan con los datos de observacion obtenidos de tres torres equipadas con ane-
moémetros a alturas de 80, 100, 120 y 150 m, colocadas estratégicamente en cada sitio y evaluadas con los
indices estadisticos MB, RMSE, MAGE, IOA, R, Fac2 y desviacion estandar. Se observa una sobreestimacion
de la velocidad del viento en las simulaciones, a pesar de las similitudes entre las direcciones del viento
simuladas y observadas. Ademas, se observa que las precisiones de las simulaciones correspondientes a
sitios que estan mas cerca del océano son menores. Las estimaciones de velocidad del viento mas precisas
fueron las correspondientes a Mucugé, que se encuentra mas alejado del océano. Finalmente, el analisis de
los resultados obtenidos de cada torre, teniendo en cuenta los periodos con mayor y menor precipitacion,
revela que la combinacion del esquema PBL-YSU con el esquema LSM-RUC arroja los mejores resultados.

ABSTRACT

In this study, the performance of the mesoscale Weather Research and Forecasting (WRF) model is evalua-
ted using combinations of three planetary boundary layers (PBL) (YSU, ACM2, and MY]J) and three land
surface model (LSM) schemes (RUC, Noah and Noah-MP) in order to identify the optimal parameters for
the determination of wind speed in a tropical region. The state of Bahia in Brazil is selected as the location
for the case study and simulations are performed over a period of eight months between 2015 and 2016 (dry
and rainy seasons). The results of the simulations are compared with observational data obtained from three
towers equipped with anemometers at heights of 80, 100, 120 and 150 m, strategically placed at each site and
evaluated with statistical indices: MB, RMSE, MAGE, IOA, R, Fac2 and standard deviation. Overestimation
of wind speed is observed in the simulations, despite similarities between the simulated and observed wind
directions. In addition, the accuracies of simulations corresponding to sites that are closer to the ocean are
observed to be lower. The most accurate wind speed estimates are obtained corresponding to Mucugé, which
is located farthest from the ocean. Finally, analysis of the results obtained from each tower accounting for
periods with higher and lower precipitation reveals that the combination of the PBL-YSU scheme with the
LSM-RUC scheme yields the best results.
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1. Introduction

The utilization of wind energy has increased expo-
nentially over the recent decades and it has been
well-established as a sector of energy. However,
several challenges remain regarding its growth and
development (Draper et al., 2018). For example,
simulation of relevant physical phenomena need to
be improved to ensure better operational practices by
enabling the integration of larger fractions of wind
energy into energy networks, scheduling maintenance
in wind power installations, and defining design
criteria for next-generation turbines and installa-
tions. Current numerical models used by wind-farm
operators to obtain wind estimates utilize series with
typical horizontal grid resolution less than 2 km.
However, estimation accuracy is critical for wind
power operators as improvements by even 1 ms ™! in
wind speed prediction can induce millions of dollars
in savings due to the stiff financial penalties for over-
estimation and underestimation of energy production
(Marjanovic et al., 2014). Therefore, the choice of
physical parameterization and the computational grid
to be utilized in wind energy problems is crucial to
improve the representation of wind energy in the
region under analysis.

The northeast region of Brazil generates the
highest proportion of wind energy in the country,
accounting for 84 % of the national wind production
(ABEEdlica, 2017). In particular, the northeastern
state of Bahia, located in the tropics, is the second
largest producer of wind energy in Brazil and receives
the highest number of wind projects in the country.
Weather forecasting and simulation in the tropics
are challenging as tropical climate is liable to rapid
variation induced by prevalent convection and sea
breeze, and is dominated by local, meso and macro-
scale effects. Winds in the tropics are generally light
and variable, and observations of surface and upper
layers of air that are required for numerical weather
models are also scarce (Surussavadee, 2017a). For
these reasons, despite the considerable investments
that have already been made, the region needs further
in-depth studies based on data obtained using com-
putational tools at various altitudes to obtain better
estimates of wind speed.

The WRF mesoscale model (Skamarock et al.,
2008) is a numerical weather forecasting model that
has been widely used in research and evaluation of
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wind and solar energy production. The physical param-
eterizations required by the model can be classified into
several categories: planetary boundary layer (PBL),
land surface model (LSM), surface layer, microphys-
ics, cumulus, and longwave and shortwave radiation,
each one containing multiple parameterizations avail-
able for modeling. Physical parameterizations are
used to describe physical processes using simplified
equations in order to reduce the number of unknown
factors that influence atmospheric behaviors. Thus,
the choice of the optimal physical parameterization
based on comparisons with data measured in differ-
ent parts of the world is essential to maximize the
diversity of applications of wind energy (Kumar et
al., 2010; Mohan and Bahati, 2011; Soni et al., 2014;
Islam et al., 2015; Imran et al., 2017). The analysis
of these schemes is not trivial and requires multiple
simulations. Most previous studies have focused on
evaluating the performance of forecasting models in
tropical regions (Salvador et al., 2016a). This is an
inherently challenging task due to the intense con-
vective characteristics of these regions, which rapidly
change the state of the atmosphere, and the influence
of sea breezes and local and mesoscale movements
(Hariprasad et al., 2014; Surussavadee, 2017b). In the
said context, this study examines the effectiveness of
different combinations of PBL and LSM schemes in
terms of wind speed estimation.

PBL is parameterized to represent vertical flows
within subgrade scales caused by turbulent transports
throughout the boundary layer, and not merely in the
superficial layer. When a PBL scheme is activated,
explicit vertical diffusion is disabled under the as-
sumption that the process is controlled by the scheme.
The WRF model offers several types of PBL param-
eterization, each of which corresponds to a distinct
parameterization of the flow divergence terms (tur-
bulent part) of the governing atmospheric flow equa-
tions to capture the trends of the variables induced by
these terms. Several previous studies have proposed
optimal PBL parameterization schemes (Hariprasad
et al., 2014; Banks and Baldasano, 2016; Banks ct
al., 2016; Boadh et al., 2016; Salvador et al., 2016b;
Avolio et al., 2017; Imran et al., 2017; Kitagawa et
al., 2017). Further, the WRF model provides certain
LSM schemes to calculate soil temperature profiles,
surface temperature profiles, soil moisture profiles,
snow covers, and canopy properties. LSM is utilized
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in forecasting models because of the importance of
soil surface processes in wind energy applications.
Multiple important processes of the Earth’s surface
are addressed by this parameterization, such as
evapotranspiration from canopy water, evapotrans-
piration from snow, runoffs and melting of snow,
depending on the complexity of the scheme used.
Several comparative studies have demonstrated that
meteorological models are sensitive to the choice of
LSM (Pei et al., 2014; Wharton et al., 2015; Lee et
al., 2016; Jain et al., 2017; Salamanca et al., 2018;
Liuetal., 2019).

Unlike most studies that use 10 m-high surface
data to validate results, this study uses data from
towers equipped with anemometers at 80, 100, 120,
and 150 m located at three different sites (Esplanada,
Mucuri, and Mucugé). This ensures that the data are
representative of the true values of wind energy. In
this sense, the primary objective of this study is the
identification of optimal parameterizations of PBL
and LSM schemes using the WRF model to improve
the evaluation of wind speeds in different regions in
the state of Bahia, that is characterized by the influ-
ence of dry and rainy seasonality on energy behavior
in the northeast region of Brazil (Ramos et al., 2013).
The rest of the study is organized as follows. Certain
aspects about the parameterizations used in the study
are discussed in section 2. The methodology used
in the study is introduced in detail in section 3. The
numerical results are presented in section 4. Finally,
the study is concluded in section 5.

2. Parameterizations

2.1 PBL schemes

Accurate model representation of PBL processes
and interactions via parameterization of models is
essential to realistic simulations. In particular, tur-
bulence is parameterized to infer about the variation
of atmospheric parameters that are not resolved at
all grid points. In this study, the performances of
three PBL schemes are investigated, two nonlocal
first order closures (YSU and ACM2) and one local
closure (MY]J).

The YSU parameterization is called a first-order
closure model, as it does not require additional
equations to express the effect of turbulence on the
primary variables. To solve the equation, the term

is added to the mixed layer to express the turbulent
diffusion, as follows:
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where C denotes heat or momentum, K. denotes the
eddy diffusivity coefficient, y. denotes an adjustment
term for the local gradient, z denotes the elevation
above the ground, h denotes the PBL height, and
(w'e")y, denotes the flux at the inversion layer (Xie
etal., 2012).

The ACM2 parameterization is a mixed local and
nonlocal closure model that addresses nonlocal flows
using a transient matrix. The governing equation is
as follows:
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where Mu denotes the nonlocal upward convective
mixing rate, Md; denotes the downward mixing rate
from the layer i to the layer i-1, C; denotes the scalar
at the layer i, Az; denotes the thickness of the layer
i, and f.,,, determines the contribution of nonlocal
mixing compared to that of local mixing. The par-
titioning factor f,,, is derived from the ratio of the
nonlocal heat flux to the total heat flux at the top
of the surface layer (0.1 /) (Holtslag and Boville,
1993). feony increases rapidly from zero to a stable
or neutral atmosphere and is a near asymptote 0.5
corresponding to unstable atmospheres. f.,,, is de-
fined as follows:
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where a denotes a constant equal to 7.2, k& denotes
the von Karman constant, h denotes the PBL height,
and L denotes the Monin-Obukhov length scale (Xie
etal., 2012).

The MY parameterization is a local closure
scheme, also called the Turbulent Kinetic Energy
(TKE) closure scheme because it determines eddy
diffusion coefficients from prognostic TKE and pro-
vides the turbulent flows corresponding to each point
based on the mean values of atmospheric variables
(Xieetal., 2012). The model expresses the diffusivity
as follows:
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where S, denotes a numerical coefficient, / denotes
the master length scale, and e denotes the TKE.

Each of'the three PBL schemes employs a distinct
technique to diagnose PBL heights (%), which is used
in other physics parameterizations. The YSU scheme
determines /4 as the first neutral level determined by
the bulk Richardson number for unstable conditions
(Hong et al., 2006). The ACM2 scheme follows a
similar method, determining / as the height of the
level where the bulk Richardson number exceeds a
critical value (Pleim, 2007). In contrast, the MYJ
scheme determines / as the height where TKE as-
sumes the minimum value.

2.2 Surface Layer Parameterization

The precise formulation of the surface layer is essential
to determine the interaction between soil and atmo-
sphere, which is required to deduce a more accurate
evolution of the atmosphere for numerical models.
The surface layer determines friction velocity and
surface stress, used in the PBL scheme, as well as the
coefficients used in the LSM scheme to compute heat
and moisture flows. In the presence of water on the
surface, the surface fluxes are calculated within the sur-
face layer scheme itself. Turbulent surface fluxes are
often calculated using the similarity theory proposed
by Monin-Obukhov (Monin and Obukhov, 1954;
Obukhov, 1971), which provides information about the
profiles in the surface layer that aid the determination
of the temperature and humidity at a height of 2 m
and wind characteristics at a height of 10 m, among
other variables. The surface layer scheme operates in
combination with a particular PBL scheme.

The YSU and ACM2 schemes can be coupled with
the MM 5-similarity surface layer scheme (Zhang and
Anthes, 1982) to determine the surface exchange
coefficients of momentum, heat, and moisture. The
coupled schemes utilize the stability functions pro-
posed by Paulson (1970) and consider four stability
schemes. Over the ocean, the Charnock parameter is
used to relate roughness length to friction velocity
and to improve determination of surface fluxes of
heat and moisture. It uses the convective velocity
proposed by Beljaars (1994).

The MY scheme can be coupled with only the
Eta-similarity surface layer scheme, which is also
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based on the similarity theory proposed by Mo-
nin-Obukhov and includes parameterizations of a
viscous sublayer. It calculates surface fluxes using
an interactive method. To estimate temperature and
humidity over land, the effects of the viscous sublayer
are related to the variable roughness height proposed
by Zilitinkevich (1995), whereas to do the same over
the ocean, the viscous sublayer is parameterized
following Janjic (1994). In the case of an unstable
surface layer, the Beljaars (1994) correction is applied
to avoid singularities.

2.3 Land Surface Models

The WRF model provides a few LSMs that compute
heat and moisture fluxes over land, which vary with
respect to complexity and methodology. To assess
their role in the simulations in the Bahia area, the
RUC model, Noah, and Noah-MP LSM schemes
are used.

The RUC model (Smirnova et al., 1997, 2000)
solves equations of energy balance and moisture
on the surface by employing an implicit scheme to
calculate surface flows. It solves the heat diffusion
equation and Richard’s moisture transfer equation by
considering six layers of soil and the phase changes
of water contained in the soil during cold periods.

The Noah model (Chen and Dudhia, 2001) uses
a single linear equation of the surface energy bal-
ance to calculate skin temperature by considering
the ground-vegetation surface. The equations of the
model consider the type of vegetation and the soil
texture. Soil temperature and moisture, as well as
canopy moisture, are predicted corresponding to
four layers. Soil moisture is obtained via Richard’s
equation and the temperature is given by the thermal
diffusion equation. As in the case of the RUC model,
the effect of plant transpiration is considered, but the
resistance of the canopy is determined to be similar
to that obtained via the scheme proposed by Xiu and
Pleim (2001).

Noah-MP is a land surface model that uses mul-
tiple options to estimate crucial land-atmosphere
interaction processes (Niu et al., 2011). It considers a
separate vegetation canopy defined by the canopy top
and bottom, crown radius, and leaves with prescribed
dimensions, orientation, density, and radiometric
properties. The Noah-MP model can be executed by
prescribing both the horizontal and vertical densities
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Table I. Geographical information of the measurement sites.

Measurement sites Latitude S Longitude W
Esplanada Tower 11° 50’ 55.22953” 37°55’44.31164”
Mucuri Tower 18°1°31.52” 39°30°51.69”

Mucugé Tower

13°21°01.9289”

41°31° 53.76975”

of vegetation using either ground- or satellite-based
observations. The model is capable of distinguishing
between different photosynthesis pathways and can
define vegetation-specific parameters related to plant
photosynthesis and respiration.

3. Methodology

3.1 Study area

This study focuses on the state of Bahia, located in
northeastern Brazil, between the parallels 08° 31’
58”7 S and 18° 20’ 55” S, and the meridians 46° 37’
02” W and 37°20° 28” W. The state of Bahia was the
second largest producer of wind energy in Brazil in
2017 (7.79 TWh), behind only the state of Rio Grande
do Norte (13.24 TWh). It also accounted for the sec-
ond-highest factor average capacity in 2017 (48.5%),
behind the state of Maranhdo (68%) (ABEEolica,
2017). The interior of the state experiences the
most intense winds concentrated in the dry period,
unlike the conditions on the coast. Wind direction is
observed to have little variation, with the east-west
direction being predominant. Winds in the opposite
direction are rarely recorded, and when recorded
they exhibit very low speeds. The predominant
climate is tropical, with high average temperatures
and maximum annual temperatures above 30 °C.
In the hinterland, the climate is semi-arid, with annual
rainfall below 800 mm. The rainy season is irregular,
with prolonged drought events in the interior. The
humidity on the coastal strip is higher than that in the
interior and the annual accumulated precipitation ex-
ceeds 1600 mm in some regions (Camargo-Schubert,
2013). The generation of wind energy can vary in
periods with more and less rain. In general, during
periods of greatest drought (when it is not very
windy), wind energy production suffers a small
decrease. During the rainy periods (when there are
more winds) there is a greater production of energy.
Ramos et al. (2013) showed the influence of dry and

rainy seasonality on energy behavior in the Northeast
region of Brazil. Thus, analyses corresponding to the
dry and rainy periods in each region are interesting,
as the sites are very different from each other in terms
of geographical position and seasonality.

The towers with anemometers are located at three
different sites: the cities of Esplanada, Mucuri, and
Mucuggé. Table I show the summarized geographical
information of the measurement sites.

The city of Esplanada is located in the micro-re-
gion of the northern coast of Bahia at an altitude of
158 masl. Its anemometric tower is located 40 km
from the sea. Analysis of the climatological normals
(Fig. 1) available for the Alagoinhas station (closest
to Esplanada) reveals that the months of December,
January, February, September, and October are less
rainy, while May and June are the rainiest months
in this region.
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Fig. 1. Comparative accumulated precipitation (mm) at
the Alagoinhas station.

The city of Mucugg is situated at an altitude of
983 masl and is one of the municipalities belonging to
Chapada Diamantina, the central region of the state of
Bahia, characterized by its mountainous terrain. The
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Mucugé anemometric tower is located approximately
280 km from the coast of Bahia. Analysis of the cli-
matological normals (Fig. 2) available for the Ituagu
station (closest to Mucugé) reveals that the months
of May, June, July, August, and September are rel-
atively dry, while November, December, January,
and February are the rainiest months in this region.
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Fig. 2. Comparative accumulated precipitation (mm) at
the Ttuagu station.

Finally, the city of Mucuri is located at an altitude
of 7 masl. The Mucuri anemometric tower is located
on a coastal plain, at a distance of 340 m from the
sea. Analysis of the climatological normals (Fig. 3)
available for the Caravelas station (closest to Mucu-
ri) reveals that November, December, March, April,
and May are the rainiest months in this region, while
January, February, and August represent the driest
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Fig. 3. Comparative accumulated precipitation (mm) at
the Caravelas station.

period, considering the most current climatological
normal (1981-2010).

3.2 Configuration of the WRF model

This study was conducted using the WRF meteo-
rological model, version 3.9.1.1. The WRF model
was configured using two nested domains with grid
resolutions of 9 and 3 km, respectively. Inside the
second domain, which covers the entire state of
Bahia, three domains were designed with 1 km grid
resolutions, centered on the three anemometric tow-
ers: Mucugé (Domain 3), Esplanada (Domain 4), and
Mucuri (Domain 5). Figure 4 depicts the locations
and distribution of domains in the WRF model. The
domains were designed with horizontal dimensions
0f 223 x 223 and 420 x 420 grid cells corresponding
to domains 1 and 2, respectively, and 60 x 60 grid
cells corresponding to domains 3 to 5. During the
initialization of WRF, data from the National Centers
for Environmental Prediction (NCEP) Final Analysis
(FNL), with a spatial resolution of 0.25° prepared
operationally every 6 h were used (NCAR, 2015).
Land use and occupation data were provided by the
United States Geological Survey (USGS) with a
resolution of 2’ corresponding to the largest domain

ECR OWER

40°W

D01 Municipalities in Bahia
1 D02¢ salvador
O D03* Mucugé Tower

g ng* Esplanada Tower

Y Mucuri Tower

Fig. 4. Locations and distribution of anemometric towers
and domains in the WRF model.
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and 30 corresponding to the others, which was made
available to the default installation of the WRF model
(Skamarock et al., 2008). The simulated winds were
interpolated for heights of 80, 100, 120 and 150 m
depending on the vertical profile of the WRF, based
on hydrostatic pressure (ETA levels).

The simulations were carried out during Decem-
ber, 2015, and January, February, May, June, July,
September, and October, 2016 (which are the months
that have a representative percentage of observed
data [> 75%] every hour). To obtain realistic initial
conditions, a 24-hh spin-up was used, i.e., the sim-
ulation for each month was initialized from 00:00
UTC on the last day of the previous month. WRF
outputs have been stored with hourly frequency, and
the main model output parameters used were wind
speed and direction.

The wind speed data acquisition was performed
at three monitoring towers in the Bahia cities of Es-
planada, Mucuri and Mucugg, as shown in Table 1.
The respective geographic locations are shown in
Figure 4. Wind velocities are acquired by four ane-
mometers located at different heights in the weather
towers. The anemometers record a measurement
at each level every 10 min and record an average
every 60 min. The simulated data were also filtered
in a similar way. The data was acquired using the
Elipse E3 Supervisory Control and Data Acquisition
(SCADA), which is a realtime SCADA platform for
mission critical applications, being a well established
SCADA platform, offering scalability and constant
evolution for several types of applications, from
simple HMI interfaces to complex operating centers
in real time. It was developed to meet current and

future connectivity the mean hourly values for the
monitored data were computed. Suspicious or bad
data (like negative values or a sequence of 20 or more
equal-valued data) was treated as invalid data, which
was discarded in order to produce valid samples. The
anemometers are all Thies First Class.

3.3 Combinations of PBL and LSM schemes

The simulations tested the performances of all nine
scenarios formed by the various combinations of
three PBL schemes (MYJ, YSU, and ACM2) and
three LSM schemes (Noah Land Surface Model
[NLSM], RUC, and Noah-MP [multi-physics]), as
presented in Table II. These PBL and LSM parame-
terization schemes were selected since they are the
most common ones, as in the applications of Pei et
al. (2014), Wharton et al. (2015), Lee et al. (2016),
Salamanca et al. (2018), and Liu et al. (2019).

The other parameterization schemes were main-
tained constant during the simulations. The 5-class
WREF Single-Moment (WSMS5) microphysics scheme
(Hong et al., 2004) was chosen following Kitagawa
et al. (2017), who studied the Metropolitan Region
of Salvador (RMS) in the state of Bahia and obtained
good estimates for the variables of wind speed and
direction. The Radiative Rapid Transfer Model
(RRTM) and the Dudhia scheme were selected to
estimate long-wave and short-wave radiation due
to their efficiency and satisfactory performance in
studies of wind resources in various regions of the
world (Amjad et al., 2015; Mattar and Borvoran,
2016; Giannaros et al., 2017; Argiieso and Businger,
2018). Convective processes were represented using
the Kain-Fritsch cumulus scheme in the external

Table II. Details of the test scenarios specifying the physical options.

Scenarios 1 2 3 5 6 7 8 9
PBL MYJ MYJ MYJ YSU YSU YSU ACM2 ACM2 ACM2
Land surface model NLSM RUC NOAH-MP NLSM RUC NOAH-MP NLSM RUC NOAH-MP
Surface layer Eta Eta Eta MM5 MMS5 MMS5 MM5 MM5 MMS5
Cumulus Kain-Fritsch

Microphysics WSMS5

Shortwave radiation Dudhia

Longwave radiation RRTM

PBL: planetary boundary layer; MYJ: Mellor-Yamada-Janjic PBL scheme; YSU: Yonsei University PBL scheme;
ACM2: Asymmetric Convective Model 2; NLSM: Noah Land Surface Model; RUC: rapid update cycle; WSMS: the
5-class WRF single-moment; RRTM: Radiative Rapid Transfer Model.
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domain, while it was disabled corresponding to other
domains on the basis of the assumption that the ma-
jority of convective circulation is explicitly resolved.
The physical options used are summarized in Table II,
depicting the different scenarios.

3.4 Statistical evaluation

The performance of the model was evaluated using
the statistical metrics of mean bias (MB), root mean
squared error (RMSE), mean absolute gross error
(MAGE), agreement index (IOA), and Pearson’s cor-
relation coefficient (R) (Carvalho et al., 2012, 2014;
Cheng et al., 2013; Zempila et al., 2016; Gunwani
and Mohan, 2017; Surussavadee, 2017a, b). In ad-
dition, Factor of 2 (Fac2) (Zucatelli et al., 2019) and
standard deviation (SD) (Penchah et al., 2017) were
also used. The average error, also called the average
bias, is defined as follows:

MB = M-0 Q)

where M denotes the modeled average and O denotes
the observed average.

Positive values of MB indicate an overestimation
of the simulated data, while negative values imply
underestimation. Positive/negative MB values corre-
sponding to wind direction indicate that the modeled
wind direction exhibits clockwise/counterclockwise
overcorrection compared to the observations. It
should be noted that, in the case of wind direction,
the averages were calculated using scalar values and
not vector values. The difference between each pair
of simulated and observed wind directions (4d) is
defined as follows (Jiménez and Dudhia, 2013):

if, dygr—d, < |180|

Ad = dygp = dyps

Ad = dWRF_ d

obs

- 360
if, dWRF - dobs < - 180
Ad = dWRF -d bs + 360

0

The RMSE expresses the total error of the model
and exhibits a value of zero in ideal cases.

1 ¢ 2
RMSE = \/ — ; (M- 0,) (6)

In both of the aforementioned cases, lower val-
ues indicate better agreement between observed
and modeled data. MAGE calculates the absolute
mean error between simulated and observed values,
expressing the average magnitude of the errors in
the simulations.

MAGE = %Z |M,- 0, ™

As in the case of RMSE, lower values of MAGE
indicate greater similarity between the observed and
modeled data series. IOA evaluates how close the
simulated value is to that observed. The metric ranges
from—1 to 1, with the value “1” meaning perfect agree-
ment. The term c is a constant relative to the model’s
output frequency, which was assigned a value of 2
(Willmott et al., 2012). The variable P; corresponds to
the simulated (“predicted”) value for instant (i), with
O; indicating the value observed at the same time i
and Orepresenting the average of the observed values.

Z;lzl |Pi_0i|
<X, |0-0| (8)

where i |Pl~—0i| < ci |0i—0|
i=1 i=1

I0A =1 -

XL, |0,-0] )

I0A = 1

Z‘4:l=1|Pi_0i| ’
when i IPI.—OI.‘ > Ci |0i—0|
i=1 i=1

Pearson’s correlation coefficient is a measure of
linear association between modeled and observed
data. Its value is zero in case of no correlation and
the correlation increases as the value of the coeffi-
cient approaches —1 or +1. Values close to +1 imply
positive correlation between the two variables, while
those close to —1 imply negative correlation. It is
defined as follows:

©)
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4. Numerical results

Factor of 2 (Fac2) calculates the ratio between the
simulated (M;) and observed (0;) data, indicating the
percentage of data that should lie within the range 0.5 <
M;/ O;<2.Obviously, its value in the optimal case is 1.
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Figure 5 depicts the average hourly time evolution of
the observed and simulated wind speeds at elevations
of 80, 100, 120, and 150 m, at the Mucuri, Esplana-
da, and Mucugé towers, obtained using the differ-
ent combinations of PBL and LSM (see Table II).
For the construction of hourly averages, all observed
and simulated data records from the months studied
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Fig. 5. Average hourly behavior of simulated and observed wind speeds.
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It is evident from Figure 5 that the simulated re-
sults typically closely follow the trend of the curve
of the observed average hourly values. In particular,
the data corresponding to Mucugé clearly exhibits
a greater congruence between the simulated and
observed curves. It is also verified that the values of
the average hourly wind speeds vary approximate-
ly between 6 and 10 ms™' at Mucuri and Mucugg,
and between 3 and 8 ms ! at Esplanada.

The analysis of the graphs in Figure 5 reveal a
globally similar trend among the simulated scenari-
os, indicating that the model is capable of capturing
the general behavior of the wind speed, despite

N. B. P. Souza et al.

small differences in terms of time and magnitude.
In order to estimate the scenario that corresponds
to the best performances, validation was performed
based on the statistics evaluations. In this section,
the statistical metrics (MB, RMSE, MAGE, 10A,
R, Fac2 and SD) are analyzed in order to estimate
the discrepancies between the simulated and ob-
served wind speed and direction corresponding to
each case.

Tables III, I'V, and V present the values of the sta-
tistical metrics obtained by comparing the simulated
and observed data on wind speed corresponding to
the Mucuri, Esplanada, and Mucugé towers, respec-

Table III. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed

data at Mucuri tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.846  0.454 0.742 0854 0885 1.024 -0.131 0406 -0.227
OhitS 3 5 4 2 1 0 8 6 7
RMSE 3.187 3339 3629 3.139 2.833 3.170 3.029 2.895 2951
OhitS 2 1 0 4 8 3 5 7 6
MAGE 2261 2430 2614 2256 2070 2226 2289 2135 2234
OhitS 3 1 0 4 8 6 2 7 5

§ I0OA 0.512 0475 0436 0513 0553 0511 0506 0539 0517
@ OhitS 4 1 0 5 8 3 2 7 6
R 0.518 0.450 0378 0521 0584 0512 0471 0530 0472
OhitS 5 1 0 6 8 4 2 7 3
Fac2 87.8% 859% 853% 88.7% 89.1% 88.1% 87.1% 88.7% 87.2%
OhitS 4 1 0 7 8 5 2 7 3
SD 3.413 3449 3457 3440 3229 3341 3.161 3.146 2954  2.849
OhitS 3 1 0 2 5 4 6 7 8
MB 0.781 0425 0.653 0.747 0786 0915 -0.169 0341 —0.266
OhitS 2 5 4 3 1 0 8 6 7
RMSE 3.146 3282 3559  3.005 2735  3.071 2946 2.801  2.866
OhitS 2 1 0 4 8 3 5 7 6
MAGE 2258 2388 2576 2192  2.003 2220 2238 2081 2.189
OhitS 2 1 0 5 8 4 3 7 6
£ I0A 0.507 0.478 0437 0521 0563 0515 0511 0545 0522
& OhitS 2 1 0 5 8 4 3 7 6
~ R 0.508 0.448 0372 0520 0593 0506 0476 0538  0.482
OhitS 5 1 0 6 8 4 2 7 3
Fac2 86.9% 85.5% 84.4% 88.4% 88.6% 87.8% 86.0% 88.4% 86.9%
OhitS 4 1 0 7 8 5 2 7 4
SD 3308 3349 3345 3230 3.126 3.175 3.025 3.022 2.834 2.859
OhitS 2 0 1 3 5 4 6 7 8

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:

observed. The best results are highlighted in bold.



Table I1I. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed
data at Mucuri tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.649 0368 0485 0.668 0.726 0823 -0.158 0330 —0.259
OhitS 3 5 4 2 1 0 8 6 7
RMSE 3.080 3226 3460 2890 2.663 2976 2907 2.762  2.829
OhitS 2 1 0 5 8 3 4 7 6
MAGE 2222 2354 2528 2133 1953 2164 2215 2064 2172
OhitS 2 1 0 6 8 5 3 7 4

g I0A 0.513 0484 0446 0532 0572 0526 0514 0547 0524
S OhitS 2 1 0 6 8 5 3 7 4
R 0.501 0448 0367 0.530 0.604 0511 0477 0540 0.485
OhitS 4 1 0 6 8 5 2 7 3
Fac2 86.0% 85.2% 83.7% 88.5% 88.7% 87.4% 85.8% 88.6% 86.9%
OhitS 3 1 0 6 8 5 2 7 4
SD 3203 3256 3201  3.089 3,070 3.058 2947 2954 2769  2.866
OhitS 1 0 2 3 4 5 8 7 6
MB 0.071 -0.245 -0431 0577 0667 0714 -0.142 0322 -0.251
OhitS 8 6 3 2 1 0 7 4 5
RMSE 2.540 2.685 2.835 2767 2593 2865 2.858 2717 2.783
OhitS 8 6 1 4 7 0 2 5 3
MAGE 1914 2058 2.172 2058 1913 2091 2.187 2.043  2.146
OhitS 7 5 1 5 8 3 2 6 0
g I0A 0.580 0.549 0524 0549 0.581 0542 0521 0552  0.530
£ OhitS 7 5 1 5 8 3 0 6 2
R 0.585  0.540 0.483 0547 0.616 0524 0483 0546  0.493
OhitS 7 4 1 5 8 3 1 6 2
Fac2 87.3% 86.7% 843% 883% 88.7% 86.8% 85.1% 87.5% 86.7%
OhitS 5 3 0 7 8 4 1 6 3
SD 2.827 2808 2.690 2968 3.029 2951 2873 2894 2710 2.876
OhitS 6 5 0 3 2 4 8 7 1
Sum of scores 108 65 22 128 179 94 107 184 128

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:
observed. The best results are highlighted in bold.

Table IV. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed
data at Esplanada tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.613 -0.160 0.292 0.614 0.730 0.737 -0.171 0.152 —0.506
OhitS 3 7 5 2 1 0 6 8 4
RMSE 2.007  2.193 1.934 2098 1.898 2.029 2151 1.990  2.074
OhitS 5 0 7 2 8 4 1 6 3
MAGE 1.448 1.679 1486 1.574 1453 1521 1.673 1.491 1.625
OhitS 7 0 6 3 8 4 1 5 2
E I0A 0.446 0384 0455 0423 0467 0442 0386 0453 0.404
‘2 OhitS 5 0 7 3 8 4 1 6 2
R 0.492 0409 0465 0509 0530 0511 0398 0423 0.400
OhitS 5 2 4 6 8 7 0 3 1
Fac2 93.9% 88.9% 932% 93.1% 94.6% 942% 89.6% 922% 90.1%
OhitS 6 0 5 4 8 7 1 3 2
SD 2,133 2242 1976 2245 1912 2068 2.154 1980 1.961 1.708
OhitS 3 1 6 0 8 4 2 5 7

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:
observed. The best results are highlighted in bold.
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Table I'V. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed
data at Esplanada tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.721 —-0.026 0378  0.752  0.824  0.831 0,003 0319 -0.372
OhitS 3 7 4 2 1 0 8 6 5
RMSE 2062 2174 1993 2138 1934 2081 2115 1992 2023
OhitS 4 0 6 1 8 3 2 7 5
MAGE 1540 1.668 1535 1.609 1486 1576 1.648 1.493  1.586
OhitS 5 0 6 2 8 4 1 7 3

g I0A 0434 0389 0438 0411 0456 0423 0396 0453 0419
& OhitS 5 0 6 2 8 4 1 7 3
R 0476 0400 0438 0489  0.520 0480 0390 0408 0391
OhitS 5 2 4 7 8 6 0 3 1
Fac2 92.4% 875% 91.8% 91.5% 93.2% 92.2% 883% 90.7%  88.9%
OhitS 7 0 5 4 8 6 1 3 2
SD 2115 2208 1975 2.18 1.877 2.009 2.097 1917 1906 1.700
OhitS 2 0 5 1 8 4 3 6 7
MB 0.750  0.049 0354 0833 0.882 0.869 0.134 0456 -0.251
OhitS 3 8 5 2 0 1 7 4 6
RMSE 2078 2.139 2010 2.148 1954 2.101 2.076 1989 1.978
OhitS 3 1 5 0 8 2 4 6 7
MAGE  1.557 1.651 1547 1.623 1504 1598 1.617 1.492 1551
OhitS 4 0 6 1 7 3 2 8 5
g I0A 0.436 0403 0441 0413 0456 0422 0416 0461  0.439
S OhitS 4 0 6 1 7 3 2 8 5
R 0473 0404 0422 048 0.527 0466 0401 0416  0.399
OhitS 6 2 4 7 8 5 1 3 0
Fac2 90.6% 86.1% 90.1% 89.4% 91.4% 90.5% 87.4% 89.6%  88.0%
OhitS 7 0 5 3 8 6 1 4 2
SD 2109  2.161 1956 2.139 1.877 1969 2.053 1.878 1871 1.713
OhitS 2 0 5 1 7 4 3 6 8
MB 0.606 —0.022 0.120 0.829 0.880 0.824 0202 0533 —0.184
OhitS 3 8 7 1 0 2 5 4 6
RMSE 1.990 2.055 1.898 2.092 1935 2.062 2.033 1975 1.942
OhitS 4 1 8 0 7 2 3 5 6
MAGE 1495 1593 1.476 1589 1489 1572 1583 1.48% 1.524
OhitS 5 0 8 1 6 3 2 7 4
£ I0A 0.482 0447 0488 0449 0484 0455 0451 0484 0471
S OhitS 5 0 8 1 7 3 2 7 4
R 0.494 0433 0454 0503 0554 0473 0431 0446  0.423
OhitS 6 2 4 7 8 5 1 3 0
Fac2 88.8% 84.9% 883% 87.7% 90.0% 88.5% 86.1% 88.5%  87.0%
OhitS 7 0 4 3 8 6 1 6 2
SD 2067 2.081 1.868 2.067 1.891 1913 2017 1859 1.845 1.770
OhitS 1 0 6 2 5 4 3 7 8
Sum of scores 125 41 157 69 184 106 65 153 110

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:
observed. The best results are highlighted in bold.
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Table V. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed
data at Mucugé tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.700 0364  0.698 0420 0.519 0.528 0.138 0.159 -0.289
OhitS 0 5 1 4 3 2 8 7 6
RMSE 2932 3237 2857 2.682 2567 2496 2874 2781 @ 2.622
OhitS 1 0 3 5 7 8 2 4 6
MAGE 2280 2559 2229 2144 2026 1943 2272 2.197 2.088
OhitS 2 0 3 5 7 8 1 4 6

g I0A 0450 0409 0485 0505 0532 0552 0476 0493  0.519
v OhitS 1 0 3 5 7 8 2 4 6
R 0.614 0519 0.619 0.649 0.650 0.662 0.598 0.609 0.621
OhitS 2 0 4 6 7 8 1 3 5
Fac2 88.4% 84.1% 88.8% 89.2% 91.5% 923% 86.2% 87.4% 87.7%
OhitS 4 0 5 6 7 8 1 2 3
SD 3.700  3.650 3.491  3.467 3275 3220 3536 3448 3253  2.691
OhitS 0 1 3 4 6 8 2 5 7
MB 0.857 0.440 0812 0.581 0.647 0.640 0.311 0321 -0.169
OhitS 0 5 1 4 2 3 7 6 8
RMSE 2915 3.184 2842 2654 2547 2.486 2829 2745  2.559
OhitS 1 0 2 5 7 8 3 4 6
MAGE 2255 2513 2216  2.113 2,004 1934 2229 2160 2.029
OhitS 1 0 3 5 7 8 2 4 6
g I0A 0.440 0.402 0473 0498 0523 0540 0470 0.486  0.517
A OhitS 1 0 2 5 7 8 3 4 6
R 0.600 0502 0.602 0.639 0.640 0.648 0.558 0.596  0.607
OhitS 3 0 4 6 7 8 1 2 5
Fac2 89.0% 84.1% 88.6% 89.6% 91.5% 92.4% 86.9% 882% 88.6%
OhitS 5 0 4 6 7 8 1 2 4
SD 3.567 3523 3366 3336 3.158 3.097 3421 3328 3.123  2.605
OhitS 0 1 3 4 6 8 2 5 7
MB 0.779 0306  0.692 0.517 0553 0517 0264 0.261 —0.262
OhitS 0 5 1 4 2 4 6 8 7
RMSE 2.864 3.142 2793 2,620 2.507 2435 2811 2728  2.557
OhitS 1 0 3 5 7 8 2 4 6
MAGE 2210 2473 2172 2.079 1963 1.891 2209 2.143 2.033
OhitS 1 0 3 5 7 8 2 4 6
g I0A 0450 0412 0483 0506 0.533 0550 0475 0491  0.517
S  OhitS 1 0 3 5 7 8 2 4 6
R 0.584 0484 0585 0.624 0.627 0.636 0572  0.578  0.590
OhitS 3 0 4 6 7 8 1 2 5
Fac2 89.4% 84.4% 88.8% 90.1% 91.8% 92.7% 873% 88.6% 89.0%
OhitS 5 0 3 6 7 8 1 2 4
SD 3449 3408  3.261 3222 3.053 2979 3323 3224 3.017 2.607
OhitS 0 1 3 5 6 8 2 4 7

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:
observed. The best results are highlighted in bold.
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Table V. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed

data at Mucugé tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
MB 0.736 0209 0582 0499 0.503 0417 0268 0246 -0.307
OhitS 0 8 1 3 2 4 6 7 5
RMSE 2786  3.056 2703 2.589 2475 2376 2794 2708  2.547
OhitS 2 0 4 5 7 8 1 3 6
MAGE  2.145 2408 2.099 2047 1928 1.843 2.188 2.123 2.025
OhitS 2 0 4 5 7 8 1 3 6

g 10A 0454 0416 0491 0503 0.532  0.553 0469 0485  0.509
S OhitS 1 0 4 5 7 8 2 3 6
R 0.567 0.466 0568 0.605 0.609 0.620 0.548 0.554  0.566
OhitS 4 0 5 6 7 8 1 2 3
Fac2 89.7% 84.9% 88.8% 90.3% 91.5% 92.6% 87.3% 88.7% 89.1%
OhitS 5 0 3 6 7 8 1 2 4

SD 3.285 3245 3.097 3.093 2936 2.836 3204 3.099 2.892  2.557
OhitS 0 1 4 5 6 8 2 3 7
Sum of scores 46 27 86 141 173 205 66 107 159

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R:
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs:

observed. The best results are highlighted in bold.

tively. Superior results have been highlighted in bold
and, to evaluate simulations results, the objective hit
Score (OhitS) (Penchah et al., 2017) was used. As
mentioned previously, low values are better for MB,
RMSE and MAGE, and high values are better for
I0A, R, and Fac2 in terms of prediction accuracy. In
the OhitS method, for SD, each parameterization that
has the closest result to the corresponding observation
gets an 8 score. The second-best parameterization
gets a 7 score, and so on, the worst result gets a 0
score. For MB, RMSE and MAGE, parameterizations
gain scores from 8 to 0 for minimum to maximum, re-
spectively. For [OA, R and Fac2, the opposite occurs.

Based on the comparison between measurements
obtained in the three towers, the common parame-
terization with the highest score was obtained by
scenario 5 (S5) (parameterization YSU and RUC):
184 points in Esplanada, 179 points in Mucuri, and
173 points in Mucuggé. In the meantime, scenario 6
(S6) showed the best performance corresponding to
Mucugé (parameterizations YSU and NOAH-MP).
However, the results obtained by this scenario were
as good as those obtained by scenario 5 in all cases.
The underestimation of wind speed only occurred

in the simulations performed with ACM2-Noah-MP
for all levels and towers, and with ACM2-LSM at
all levels for Mucuri and at 120 and 150 m in height
for Esplanada. Tyagi et al. (2018) also found that
ACM?2 underestimated wind speed, while MYJ and
YSU overestimated this parameter.

These metrics were also evaluated corresponding
to the variable of wind direction. Corresponding to
Mucugg, as in the case of wind speed, the combination
of the YSU scheme and the NOAH-MP soil surface
scheme (S6) produced the best estimates. However,
Esplanada and Mucuri exhibited different results
compared to the case of wind speed. Corresponding
to Mucuri, the combination of MYJ atmospheric
boundary layer parameterization and the Noah (S1)
model performed better overall compared to other
combinations. Finally, corresponding to Esplanada,
scenario 3 (S3), which comprises the combination of
MYJ and NOAH-MP, obtained a better result than
the other combinations.

From the perspective of wind energy, wind speed
is a more important variable than wind direction.
This can be primarily attributed to the existence of
a system that guides the wind turbine rotor in the
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direction of the wind and the automatic regulation of
the slopes of the blades to optimize the incidence
of wind. Thus, the results obtained from the analy-
sis of wind speed is more pertinent to simulations
with high resolution domain for the entire state of
Bahia, given that it produces a high amount of wind
energy. Based on the aforementioned discussion,
further analyses of the parametrization performance
of the combination of the CLP-YSU and LSM-RUC
schemes in terms of wind speed follow.

Figures 6, 7, and 8 illustrate the wind roses
obtained using YSU and RUC (scenario 5) as pa-
rameterizations of PBL and LSM, respectively,
corresponding to the three towers: Mucuri (Fig. 6),
Esplanada (Fig. 7) and Mucugg (Fig. 8), based on all
data generated during the simulated months.

It is evident from the wind rose diagrams that
the studied regions exhibit high potential for wind
power generation with intermediate and high wind
speed values between 6 to 9 ms™! (yellow) and above
9 ms~' (brown), respectively. It is also apparent that
the wind speed was slightly overestimated at all
three towers. This agrees with the observations of
Giannaros et al. (2017), who highlighted the tendency
of the WRF model to overestimate the frequency
of strong winds; Stucki et al. (2016), who reported
that the WRF model tends to overestimate average
winds; and Carvalho et al. (2014), who also reported
similar results.

As this study uses data from towers located at
three different sites equipped with anemometers at
varying heights (80, 100, 120 and 150 m), its observa-
tions can be considered to be representative in terms
of wind energy. Thus, it is interesting to compare
these data with the vertical profiles of wind obtained
via the simulations. Figures 9, 10, and 11 depict the
vertical profiles of the monthly average wind speeds
simulated using scenario 5 (YSU and RUC), for two
representative months each corresponding to the dry
and rainy periods, compared to data observed at the
Esplanada, Mucugé, and Mucuri towers, respectively.
Table VI specifies the two representative months for
dry and rainy periods for each tower.

Data corresponding to Esplanada is observed to
be well characterized with two very distinct periods
and abundant rain during the months of May and
June (see Fig. 1). The average monthly speed is
overestimated by the WRF model at all heights during

May (Fig. 9b); however, the maximum difference be-
tween simulated and observed data is observed to be
0.64 ms™'. During the less rainy period in January,
the difference is observed to be 1.34 ms™' and the
tendency of overestimation is also observed (Fig. 9a).

Data corresponding to Mucugé (the farthest
from the sea) is also well characterized with two
very distinct periods and very little rain during the
months of July and August (see Fig. 2). The average
monthly speed is overestimated by the WRF model
at all heights during July, with a maximum difference
of 1.34 ms™! (Fig. 10b). During the rainiest period in
January, the maximum difference is observed to be
0.22 ms!, but a slight tendency of overestimation
persists (Fig. 10a).

Data corresponding to Mucuri (the closest to the
sea) has been uniform in terms of annual rainfall
over the most recent decades (see Fig. 3); however,
January and February are representative of the dry
season in the region. During this period, the average
monthly speed is overestimated by the WRF model
at all heights during January, with a maximum dif-
ference of 1.66 ms™! (Fig. 11a). During May, which
is representative of the rainy season in the region,
the maximum difference is observed to be 0.27 ms ™!
(Fig. 11b).

Therefore, consideration of only the months ana-
lyzed disaggregated from the others reveals a greater
tendency of overestimation of the monthly average
wind speed corresponding to the dry season.

Having identified the best performing combi-
nation to be the YSU-RUC scheme, the superiority
of its performance can be verified with respect to
each location, in terms of the distance from the sea
(Table VII), based on the evaluated statistics corre-
sponding to all the simulated months. Unlike tables
III, IV and V that compare 9 scenarios, in table VII
the three towers are compared, therefore, the scores
ranged between 2 and 0. SD was analyzed by the dif-
ference between simulated and observed SD (diffSD).

An analysis of Table VII and Figure 5 reveals
that proximity to the sea degrades the accuracy of
simulation. Mucugé is observed to exhibit a greater
congruence between simulated and observed wind
speeds (Fig. 5). This tower, located in the center of
the state of Bahia (280 km from the sea), exhibits
a statistically similar performance to that at Espla-
nada (40 km from the coast), and corresponds to
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Fig. 6. Comparison of wind roses obtained using the YSU and RUC schemes from the Mucuri tower
based on observations at heights of (a) 150 m, (b) 120 m, and (c) 100 m.
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YSU and RUC schemes
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Fig. 7. Comparison of wind roses obtained using the YSU and RUC schemes from the Esplanada
tower based on observations at heights of (a) 150 m, (b) 120 m, and (c) 100 m.
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Fig. 8. Comparison of wind roses obtained using the YSU and RUC schemes from the Mucugé

tower based on observations at heights of (a) 120 m, and (b) 100 m.
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Fig. 9. Vertical profiles of the monthly average wind speed measured by the Esplanada

tower and simulated using WRF with the parameters of scenario 5 in (a) January, and

(b) May.
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Fig. 10. Vertical profiles of the monthly average wind speed measured by the Mucugé
tower and simulated using WRF with the parameterization of scenario 5 in (a) January,
and (b) July.
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Fig. 11. Vertical profiles of the monthly average wind speed measured by the Mucuri
tower and simulated using WRF with the parameterization of scenario 5 in (a) January,
and (b) May.

Table VI. Representative months for dry and rainy periods
for each tower.

Esplanada Mucuri  Mucugé

Rainy May May January

Month Dry January  January July
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Table VII. Wind speed statistics obtained using the YSU and RUC schemes.

Height Esplanada Mucuri Mucugé Height Esplanada Mucuri Mucugé
MB 0.730 0.885 0.519 MB 0.882 0.726 0.553
OhitS 1 0 2 OhitS 0 1 2
RMSE 1.898 2.833 2.567 RMSE 1.954 2.663 2.507
OhitS 2 0 1 OhitS 2 0 1
MAGE 1453 2.070 2.026 MAGE  1.504 1.953 1.963
OhitS 2 0 1 OhitS 2 1 0

E 10A 0467 0553 0532 E 10a 0456 0572 0533
©  OhitS 0 2 1 S  OhitS 0 2 1
R 0.530 0.584 0.650 R 0.527 0.604 0.627
OhitS 0 1 2 OhitS 0 1 2
Fac2 94.6% 89.1% 91.5% Fac2 91.4% 88.7% 91.8%
OhitS 2 0 1 OhitS 1 0 2
diffSD  0.204 0.379 0.584 diffSD  0.164 0.204 0.447
OhitS 2 1 0 OhitS 2 1 0
MB 0.824 0.786 0.647 MB 0.880 0.667 0.503
OhitS 0 1 2 OhitS 0 1 2
RMSE 1.934 2.735 2.547 RMSE 1.935 2.593 2.475
OhitS 2 0 1 OhitS 2 0 1
MAGE  1.486 2.003 2.004 MAGE  1.489 1.913 1.928
OhitS 2 1 0 OhitS 2 1 0
g I0A 0.456 0.563 0.523 £ I0A 0.484 0.581 0.532
A OhitS 0 2 1 &  OhitS 0 2 1
R 0.520 0.593 0.640 R 0.554 0.616 0.609
OhitS 0 1 2 OhitS 0 2 1
Fac2 93.2% 88.6% 91.5% Fac2 90.0% 88.7% 91.5%
OhitS 2 0 1 OhitS 1 0 2
diffSD  0.177 0.267 0.552 diffSD  0.122 0.152 0.379
OhitS 2 1 0 OhitS 2 1 0
Sum of scores 31 23 30

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index;
R: Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station;

Obs: observed. The best results are highlighted in bold.

a better performance than that recorded at Mucuri
(tower closest to the sea, 340 m). This phenomenon
can be explained by the differentiated behavior of
the model in regions close to large bodies of water
compared to more inland areas. At places near the
sea, variations in atmospheric conditions are more
localized in time and space, due to ill-understood
effects of land and sea breezes that are not accounted
for by atmospheric models (Salvador et al., 2016b).
Proximity to the sea, the interactions between atmo-
spheric flow in the marine boundary layer, and the
development of a boundary layer on the continent
remain critical factors in the predictions of such

models. Further, the adequate simulation of the flow
characteristics related to the breeze inlet marine
life in coastal regions persists as one of the major
challenges for meteorological models (Shin e Hong,
2011; Chengetal., 2012; de Le6n and Orfila, 2013).
It should be noted that the model interpreted the
grid cell containing the Mucuri tower as land, which
refutes the hypothesis that its poor performance is
induced by the mistaken identification of the site as
oceanic (given its close proximity to the sea), and
supports the hypothesis that proximity to the sea
negatively influences the performance of simula-
tions. Tyagi et al. (2018) found a similar result by
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indicating that inland locations are better simulated
than sea locations, and indicated the reasons for this
difference in the fact that performance is likely re-
lated to difficulty in reproducing vertical variability
at sea, where very shallow PBL development may
not be entirely reproduced. In addition, simulated
PBL depths at sea locations exhibit a larger bias
with respect to observations at inland locations with
well-developed convective boundary layers.

Assessment of the wind speed statistics corre-
sponding to periods of more and less rain also reveals
scenario 5 (YSU and RUC) to be well-performing. It
is interesting to note that the most accurate estimates
for wind speed corresponding to the period of less
rain in the simulated months in Mucugé (May, June,
July, and September), were identical to the one ob-
tained via aggregate analysis (parameterizations YSU
and NOAH-MP [S6]). Analysis of the rainy period
(January and February) also revealed better estimates
corresponding to scenario 5 (YSU and RUC). Follow-
ing the disaggregation of the two periods (more and
less rain) at Esplanada, the data corresponding to the
least rainy period (December, January, February, Sep-
tember, and October) continued to support the finding
that scenario 5 exhibited the best performance, while
better indicators were obtained corresponding to the
rainy period (May and June) using scenario 1 (MYJ
and NLSM). Corresponding to Mucuri, scenario 5
(YSU and RUC) continued to emerge as the best
option for the drier month (January), while the rainy
months (December and May) were better character-
ized by scenario 8 (ACM2 and RUC). However, the
results obtained by these scenarios were as good as
those obtained by scenario 5 in all cases. Thus, the
aforementioned results corroborate the choice of
the combination of the PBL-YSU scheme with the
LSM-RUC scheme for application in the forecast of
wind energy production for the region.

5. Summary and conclusions

This study aimed to evaluate the performance of the
various combinations of three PBL parameterization
schemes and three LSM parameterization schemes,
using the WRF model for a tropical region, in order
to identify the optimal parameters to be applied in
the analysis of wind energy production based on
numerical modeling.

The WRF model was verified to be capable of
capturing the general behavior of wind speed. The
combination of the YSU and RUC parameterization
schemes exhibited the best performance. As expected,
the simple scheme of thermal diffusion of the soil,
RUC, was better adapted to the case of Bahia, as this
region does not experience snowy climate. The RUC
scheme was also observed to fit into the intermediate
level of complexity.

It is important to highlight that wind speed was over-
estimated in the simulations and, in general, estimated
wind directions were quite similar to the observed data.
Further, it was observed that proximity to the ocean
degraded the accuracy of the simulations. Thus, the
towers at Mucugé and Esplanada, which were farthest
from the sea, exhibited the best results for all statistical
metrics with respect to wind speed. However, the av-
erage hourly time evolution of observed and simulated
wind speeds at Mucugg exhibited less dissonance.

Finally, the disaggregated analysis of the results
corresponding to rainy and dry periods at each tower
revealed YSU-RUC to be the clear front-runner. This
fact supports the application of the combination of
CLP-YSU and LSM-RUC to the high-resolution
simulation of wind energy production for the entire
state of Bahia. This should be the next step in order
to obtain a high-resolution wind map with verified
parameterization that exhibits good results.
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