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RESUMEN

En este estudio se evalúa el rendimiento del modelo de pronóstico e investigación meteorológica de mesoes-
cala (WRF) utilizando combinaciones de tres capas de límite planetario (PBL, por su sigla en inglés) (YSU, 
ACM2 y MYJ) y tres esquemas de modelo de superficie terrestre (LSM) (UC, Noah y Noah-MP), con el fin 
de identificar los parámetros óptimos para la determinación de la velocidad del viento en una región tropical. 
El estado de Bahía en Brasil se selecciona como la ubicación para el estudio de caso y las simulaciones se 
realizan durante un periodo de ocho meses entre 2015 y 2016 (estaciones secas y lluviosas). Los resultados 
de las simulaciones se comparan con los datos de observación obtenidos de tres torres equipadas con ane-
mómetros a alturas de 80, 100, 120 y 150 m, colocadas estratégicamente en cada sitio y evaluadas con los 
índices estadísticos MB, RMSE, MAGE, IOA, R, Fac2 y desviación estándar. Se observa una sobreestimación 
de la velocidad del viento en las simulaciones, a pesar de las similitudes entre las direcciones del viento 
simuladas y observadas. Además, se observa que las precisiones de las simulaciones correspondientes a 
sitios que están más cerca del océano son menores. Las estimaciones de velocidad del viento más precisas 
fueron las correspondientes a Mucugê, que se encuentra más alejado del océano. Finalmente, el análisis de 
los resultados obtenidos de cada torre, teniendo en cuenta los periodos con mayor y menor precipitación, 
revela que la combinación del esquema PBL-YSU con el esquema LSM-RUC arroja los mejores resultados.

ABSTRACT

In this study, the performance of the mesoscale Weather Research and Forecasting (WRF) model is evalua-
ted using combinations of three planetary boundary layers (PBL) (YSU, ACM2, and MYJ) and three land 
surface model (LSM) schemes  (RUC, Noah and Noah-MP) in order to identify the optimal parameters for 
the determination of wind speed in a tropical region. The state of Bahia in Brazil is selected as the location 
for the case study and simulations are performed over a period of eight months between 2015 and 2016 (dry 
and rainy seasons). The results of the simulations are compared with observational data obtained from three 
towers equipped with anemometers at heights of 80, 100, 120 and 150 m, strategically placed at each site and 
evaluated with statistical indices: MB, RMSE, MAGE, IOA, R, Fac2 and standard deviation. Overestimation 
of wind speed is observed in the simulations, despite similarities between the simulated and observed wind 
directions. In addition, the accuracies of simulations corresponding to sites that are closer to the ocean are 
observed to be lower. The most accurate wind speed estimates are obtained corresponding to Mucugê, which 
is located farthest from the ocean. Finally, analysis of the results obtained from each tower accounting for 
periods with higher and lower precipitation reveals that the combination of the PBL-YSU scheme with the 
LSM-RUC scheme yields the best results.
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1.	 Introduction
The utilization of wind energy has increased expo-
nentially over the recent decades and it has been 
well-established as a sector of energy. However, 
several challenges remain regarding its growth and 
development (Draper et al., 2018). For example, 
simulation of relevant physical phenomena need to 
be improved to ensure better operational practices by 
enabling the integration of larger fractions of wind 
energy into energy networks, scheduling maintenance 
in wind power installations, and defining design 
criteria for next-generation turbines and installa-
tions. Current numerical models used by wind-farm 
operators to obtain wind estimates utilize series with 
typical horizontal grid resolution less than 2 km. 
However, estimation accuracy is critical for wind 
power operators as improvements by even 1 ms–1 in 
wind speed prediction can induce millions of dollars 
in savings due to the stiff financial penalties for over-
estimation and underestimation of energy production 
(Marjanovic et al., 2014). Therefore, the choice of 
physical parameterization and the computational grid 
to be utilized in wind energy problems is crucial to 
improve the representation of wind energy in the 
region under analysis.

The northeast region of Brazil generates the 
highest proportion of wind energy in the country, 
accounting for 84 % of the national wind production 
(ABEEólica, 2017). In particular, the northeastern 
state of Bahia, located in the tropics, is the second 
largest producer of wind energy in Brazil and receives 
the highest number of wind projects in the country. 
Weather forecasting and simulation in the tropics 
are challenging as tropical climate is liable to rapid 
variation induced by prevalent convection and sea 
breeze, and is dominated by local, meso and macro-
scale effects. Winds in the tropics are generally light 
and variable, and observations of surface and upper 
layers of air that are required for numerical weather 
models are also scarce (Surussavadee, 2017a). For 
these reasons, despite the considerable investments 
that have already been made, the region needs further 
in-depth studies based on data obtained using com-
putational tools at various altitudes to obtain better 
estimates of wind speed.

The WRF mesoscale model (Skamarock et al., 
2008) is a numerical weather forecasting model that 
has been widely used in research and evaluation of 

wind and solar energy production. The physical param-
eterizations required by the model can be classified into 
several categories: planetary boundary layer (PBL), 
land surface model (LSM), surface layer, microphys-
ics, cumulus, and longwave and shortwave radiation, 
each one containing multiple parameterizations avail-
able for modeling. Physical parameterizations are 
used to describe physical processes using simplified 
equations in order to reduce the number of unknown 
factors that influence atmospheric behaviors. Thus, 
the choice of the optimal physical parameterization 
based on comparisons with data measured in differ-
ent parts of the world is essential to maximize the 
diversity of applications of wind energy (Kumar et 
al., 2010; Mohan and Bahati, 2011; Soni et al., 2014; 
Islam et al., 2015; Imran et al., 2017). The analysis 
of these schemes is not trivial and requires multiple 
simulations. Most previous studies have focused on 
evaluating the performance of forecasting models in 
tropical regions (Salvador et al., 2016a). This is an 
inherently challenging task due to the intense con-
vective characteristics of these regions, which rapidly 
change the state of the atmosphere, and the influence 
of sea breezes and local and mesoscale movements 
(Hariprasad et al., 2014; Surussavadee, 2017b). In the 
said context, this study examines the effectiveness of 
different combinations of PBL and LSM schemes in 
terms of wind speed estimation.

PBL is parameterized to represent vertical flows 
within subgrade scales caused by turbulent transports 
throughout the boundary layer, and not merely in the 
superficial layer. When a PBL scheme is activated, 
explicit vertical diffusion is disabled under the as-
sumption that the process is controlled by the scheme. 
The WRF model offers several types of PBL param-
eterization, each of which corresponds to a distinct 
parameterization of the flow divergence terms (tur-
bulent part) of the governing atmospheric flow equa-
tions to capture the trends of the variables induced by 
these terms. Several previous studies have proposed 
optimal PBL parameterization schemes (Hariprasad 
et al., 2014; Banks and Baldasano, 2016; Banks et 
al., 2016; Boadh et al., 2016; Salvador et al., 2016b; 
Avolio et al., 2017; Imran et al., 2017; Kitagawa et 
al., 2017). Further, the WRF model provides certain 
LSM schemes to calculate soil temperature profiles, 
surface temperature profiles, soil moisture profiles, 
snow covers, and canopy properties. LSM is utilized 
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in forecasting models because of the importance of 
soil surface processes in wind energy applications. 
Multiple important processes of the Earth’s surface 
are addressed by this parameterization, such as 
evapotranspiration from canopy water, evapotrans-
piration from snow, runoffs and melting of snow, 
depending on the complexity of the scheme used. 
Several comparative studies have demonstrated that 
meteorological models are sensitive to the choice of 
LSM (Pei et al., 2014; Wharton et al., 2015; Lee et 
al., 2016; Jain et al., 2017; Salamanca et al., 2018; 
Liu et al., 2019).

Unlike most studies that use 10 m-high surface 
data to validate results, this study uses data from 
towers equipped with anemometers at 80, 100, 120, 
and 150 m located at three different sites (Esplanada, 
Mucuri, and Mucugê). This ensures that the data are 
representative of the true values of wind energy. In 
this sense, the primary objective of this study is the 
identification of optimal parameterizations of PBL 
and LSM schemes using the WRF model to improve 
the evaluation of wind speeds in different regions in 
the state of Bahia, that is characterized by the influ-
ence of dry and rainy seasonality on energy behavior 
in the northeast region of Brazil (Ramos et al., 2013). 
The rest of the study is organized as follows. Certain 
aspects about the parameterizations used in the study 
are discussed in section 2. The methodology used 
in the study is introduced in detail in section 3. The 
numerical results are presented in section 4. Finally, 
the study is concluded in section 5.

2.	 Parameterizations
2.1 PBL schemes
Accurate model representation of PBL processes 
and interactions via parameterization of models is 
essential to realistic simulations. In particular, tur-
bulence is parameterized to infer about the variation 
of atmospheric parameters that are not resolved at 
all grid points. In this study, the performances of 
three PBL schemes are investigated, two nonlocal 
first order closures (YSU and ACM2) and one local 
closure (MYJ).

The YSU parameterization is called a first-order 
closure model, as it does not require additional 
equations to express the effect of turbulence on the 
primary variables. To solve the equation, the term  

is added to the mixed layer to express the turbulent 
diffusion, as follows:
∂C
∂t

=
∂C
∂z [

Kc(
∂C
∂z

− γc) − (w′ c′ )h(
z
h )

3

]
	 (1)

where C denotes heat or momentum, Kc denotes the 
eddy diffusivity coefficient, γc denotes an adjustment 
term for the local gradient, z denotes the elevation 
above the ground, h denotes the PBL height, and 

 denotes the flux at the inversion layer (Xie 
et al., 2012).

The ACM2 parameterization is a mixed local and 
nonlocal closure model that addresses nonlocal flows 
using a transient matrix. The governing equation is 
as follows:
∂Ci

∂t
= fconvMuC1 − fconvMdiCi +

fconvMdi+1Ci+1
∆zi+1
∆zi

+ 
∂
∂z [Kc(1− fconv)

∂Ci

∂z ]
	 (2)

where Mu denotes the nonlocal upward convective 
mixing rate, Mdi denotes the downward mixing rate 
from the layer i to the layer i-1, Ci denotes the scalar 
at the layer i, ∆zi denotes the thickness of the layer 
i, and fconv determines the contribution of nonlocal 
mixing compared to that of local mixing. The par-
titioning factor fconv is derived from the ratio of the 
nonlocal heat flux to the total heat flux at the top 
of the surface layer (0.1 h) (Holtslag and Boville, 
1993). fconv increases rapidly from zero to a stable 
or neutral atmosphere and is a near asymptote 0.5 
corresponding to unstable atmospheres. fconv is de-
fined as follows:

fconv =
[

1 +
k−2/3

0.1a (−
h
L )

−1/3

]

−1

	 (3)

where a denotes a constant equal to 7.2, k denotes 
the von Karman constant, h denotes the PBL height, 
and L denotes the Monin-Obukhov length scale (Xie 
et al., 2012).

The MYJ parameterization is a local closure 
scheme, also called the Turbulent Kinetic Energy 
(TKE) closure scheme because it determines eddy 
diffusion coefficients from prognostic TKE and pro-
vides the turbulent flows corresponding to each point 
based on the mean values of atmospheric variables 
(Xie et al., 2012). The model expresses the diffusivity 
as follows:
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Kc = Scle1/2	 (4)

where Sc denotes a numerical coefficient, l denotes 
the master length scale, and e denotes the TKE.

Each of the three PBL schemes employs a distinct 
technique to diagnose PBL heights (h), which is used 
in other physics parameterizations. The YSU scheme 
determines h as the first neutral level determined by 
the bulk Richardson number for unstable conditions 
(Hong et al., 2006). The ACM2 scheme follows a 
similar method, determining h as the height of the 
level where the bulk Richardson number exceeds a 
critical value (Pleim, 2007). In contrast, the MYJ 
scheme determines h as the height where TKE as-
sumes the minimum value.

2.2 Surface Layer Parameterization
The precise formulation of the surface layer is essential 
to determine the interaction between soil and atmo-
sphere, which is required to deduce a more accurate 
evolution of the atmosphere for numerical models. 
The surface layer determines friction velocity and 
surface stress, used in the PBL scheme, as well as the 
coefficients used in the LSM scheme to compute heat 
and moisture flows. In the presence of water on the 
surface, the surface fluxes are calculated within the sur-
face layer scheme itself. Turbulent surface fluxes are 
often calculated using the similarity theory proposed 
by Monin-Obukhov (Monin and Obukhov, 1954; 
Obukhov, 1971), which provides information about the 
profiles in the surface layer that aid the determination 
of the temperature and humidity at a height of 2 m 
and wind characteristics at a height of 10 m, among 
other variables. The surface layer scheme operates in 
combination with a particular PBL scheme.

The YSU and ACM2 schemes can be coupled with 
the MM5-similarity surface layer scheme (Zhang and 
Anthes, 1982) to determine the surface exchange 
coefficients of momentum, heat, and moisture. The 
coupled schemes utilize the stability functions pro-
posed by Paulson (1970) and consider four stability 
schemes. Over the ocean, the Charnock parameter is 
used to relate roughness length to friction velocity 
and to improve determination of surface fluxes of 
heat and moisture. It uses the convective velocity 
proposed by Beljaars (1994).

The MYJ scheme can be coupled with only the 
Eta-similarity surface layer scheme, which is also 

based on the similarity theory proposed by Mo-
nin-Obukhov and includes parameterizations of a 
viscous sublayer. It calculates surface fluxes using 
an interactive method. To estimate temperature and 
humidity over land, the effects of the viscous sublayer 
are related to the variable roughness height proposed 
by Zilitinkevich (1995), whereas to do the same over 
the ocean, the viscous sublayer is parameterized 
following Janjic (1994). In the case of an unstable 
surface layer, the Beljaars (1994) correction is applied 
to avoid singularities.

2.3 Land Surface Models
The WRF model provides a few LSMs that compute 
heat and moisture fluxes over land, which vary with 
respect to complexity and methodology. To assess 
their role in the simulations in the Bahia area, the 
RUC model, Noah, and Noah-MP LSM schemes 
are used.

The RUC model (Smirnova et al., 1997, 2000) 
solves equations of energy balance and moisture 
on the surface by employing an implicit scheme to 
calculate surface flows. It solves the heat diffusion 
equation and Richard’s moisture transfer equation by 
considering six layers of soil and the phase changes 
of water contained in the soil during cold periods.

The Noah model (Chen and Dudhia, 2001) uses 
a single linear equation of the surface energy bal-
ance to calculate skin temperature by considering 
the ground-vegetation surface. The equations of the 
model consider the type of vegetation and the soil 
texture. Soil temperature and moisture, as well as 
canopy moisture, are predicted corresponding to 
four layers. Soil moisture is obtained via Richard’s 
equation and the temperature is given by the thermal 
diffusion equation. As in the case of the RUC model, 
the effect of plant transpiration is considered, but the 
resistance of the canopy is determined to be similar 
to that obtained via the scheme proposed by Xiu and 
Pleim (2001).

Noah-MP is a land surface model that uses mul-
tiple options to estimate crucial land-atmosphere 
interaction processes (Niu et al., 2011). It considers a 
separate vegetation canopy defined by the canopy top 
and bottom, crown radius, and leaves with prescribed 
dimensions, orientation, density, and radiometric 
properties. The Noah-MP model can be executed by 
prescribing both the horizontal and vertical densities 
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of vegetation using either ground- or satellite-based 
observations. The model is capable of distinguishing 
between different photosynthesis pathways and can 
define vegetation-specific parameters related to plant 
photosynthesis and respiration.

3.	 Methodology
3.1 Study area
This study focuses on the state of Bahia, located in 
northeastern Brazil, between the parallels 08º 31’ 
58” S and 18º 20’ 55” S, and the meridians 46º 37’ 
02” W and 37º 20’ 28” W. The state of Bahia was the 
second largest producer of wind energy in Brazil in 
2017 (7.79 TWh), behind only the state of Rio Grande 
do Norte (13.24 TWh). It also accounted for the sec-
ond-highest factor average capacity in 2017 (48.5%), 
behind the state of Maranhão (68%) (ABEEólica, 
2017). The interior of the state experiences the 
most intense winds concentrated in the dry period, 
unlike the conditions on the coast. Wind direction is 
observed to have little variation, with the east-west 
direction being predominant. Winds in the opposite 
direction are rarely recorded, and when recorded 
they exhibit very low speeds. The predominant 
climate is tropical, with high average temperatures 
and maximum annual temperatures above 30 ºC. 
In the hinterland, the climate is semi-arid, with annual 
rainfall below 800 mm. The rainy season is irregular, 
with prolonged drought events in the interior. The 
humidity on the coastal strip is higher than that in the 
interior and the annual accumulated precipitation ex-
ceeds 1600 mm in some regions (Camargo-Schubert, 
2013). The generation of wind energy can vary in 
periods with more and less rain. In general, during 
periods of greatest drought (when it is not very 
windy), wind energy production suffers a small 
decrease. During the rainy periods (when there are 
more winds) there is a greater production of energy. 
Ramos et al. (2013) showed the influence of dry and 

rainy seasonality on energy behavior in the Northeast 
region of Brazil. Thus, analyses corresponding to the 
dry and rainy periods in each region are interesting, 
as the sites are very different from each other in terms 
of geographical position and seasonality.

The towers with anemometers are located at three 
different sites: the cities of Esplanada, Mucuri, and 
Mucugê. Table I show the summarized geographical 
information of the measurement sites. 

The city of Esplanada is located in the micro-re-
gion of the northern coast of Bahia at an altitude of 
158 masl. Its anemometric tower is located 40 km 
from the sea. Analysis of the climatological normals 
(Fig. 1) available for the Alagoinhas station (closest 
to Esplanada) reveals that the months of December, 
January, February, September, and October are less 
rainy, while May and June are the rainiest months 
in this region.

The city of Mucugê is situated at an altitude of 
983 masl and is one of the municipalities belonging to 
Chapada Diamantina, the central region of the state of 
Bahia, characterized by its mountainous terrain. The 
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Fig. 1. Comparative accumulated precipitation (mm) at 
the Alagoinhas station.

Table I. Geographical information of the measurement sites.

Measurement sites Latitude S Longitude W

Esplanada Tower 11º 50’ 55.22953” 37º 55’ 44.31164”
Mucuri Tower 18º 1’ 31.52” 39º 30’ 51.69”
Mucugê Tower 13º 21’ 01.9289” 41º 31’ 53.76975”
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Mucugê anemometric tower is located approximately 
280 km from the coast of Bahia. Analysis of the cli-
matological normals (Fig. 2) available for the Ituaçu 
station (closest to Mucugê) reveals that the months 
of May, June, July, August, and September are rel-
atively dry, while November, December, January, 
and February are the rainiest months in this region.

Finally, the city of Mucuri is located at an altitude 
of 7 masl. The Mucuri anemometric tower is located 
on a coastal plain, at a distance of 340 m from the 
sea. Analysis of the climatological normals (Fig. 3) 
available for the Caravelas station (closest to Mucu-
ri) reveals that November, December, March, April, 
and May are the rainiest months in this region, while 
January, February, and August represent the driest 

period, considering the most current climatological 
normal (1981-2010).

3.2 Configuration of the WRF model
This study was conducted using the WRF meteo-
rological model, version 3.9.1.1. The WRF model 
was configured using two nested domains with grid 
resolutions of 9 and 3 km, respectively. Inside the 
second domain, which covers the entire state of 
Bahia, three domains were designed with 1 km grid 
resolutions, centered on the three anemometric tow-
ers: Mucugê (Domain 3), Esplanada (Domain 4), and 
Mucuri (Domain 5). Figure 4 depicts the locations 
and distribution of domains in the WRF model. The 
domains were designed with horizontal dimensions 
of 223 × 223 and 420 × 420 grid cells corresponding 
to domains 1 and 2, respectively, and 60 × 60 grid 
cells corresponding to domains 3 to 5. During the 
initialization of WRF, data from the National Centers 
for Environmental Prediction (NCEP) Final Analysis 
(FNL), with a spatial resolution of 0.25º prepared 
operationally every 6 h were used (NCAR, 2015). 
Land use and occupation data were provided by the 
United States Geological Survey (USGS) with a 
resolution of 2’ corresponding to the largest domain 
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Fig. 3. Comparative accumulated precipitation (mm) at 
the Caravelas station.

Fig. 4. Locations and distribution of anemometric towers 
and domains in the WRF model.
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and 30’’ corresponding to the others, which was made 
available to the default installation of the WRF model 
(Skamarock et al., 2008). The simulated winds were 
interpolated for heights of 80, 100, 120 and 150 m 
depending on the vertical profile of the WRF, based 
on hydrostatic pressure (ETA levels).

The simulations were carried out during Decem-
ber, 2015, and January, February, May, June, July, 
September, and October, 2016 (which are the months 
that have a representative percentage of observed 
data [> 75%] every hour). To obtain realistic initial 
conditions, a 24-hh spin-up was used, i.e., the sim-
ulation for each month was initialized from 00:00 
UTC on the last day of the previous month. WRF 
outputs have been stored with hourly frequency, and 
the main model output parameters used were wind 
speed and direction.

The wind speed data acquisition was performed 
at three monitoring towers in the Bahia cities of Es-
planada, Mucuri and Mucugê, as shown in Table I. 
The respective geographic locations are shown in 
Figure 4. Wind velocities are acquired by four ane-
mometers located at different heights in the weather 
towers. The anemometers record a measurement 
at each level every 10 min and record an average 
every 60 min. The simulated data were also filtered 
in a similar way. The data was acquired using the 
Elipse E3 Supervisory Control and Data Acquisition 
(SCADA), which is a realtime SCADA platform for 
mission critical applications, being a well established 
SCADA platform, offering scalability and constant 
evolution for several types of applications, from 
simple HMI interfaces to complex operating centers 
in real time. It was developed to meet current and 

future connectivity the mean hourly values for the 
monitored data were computed. Suspicious or bad 
data (like negative values or a sequence of 20 or more 
equal-valued data) was treated as invalid data, which 
was discarded in order to produce valid samples. The 
anemometers are all Thies First Class.

3.3 Combinations of PBL and LSM schemes
The simulations tested the performances of all nine 
scenarios formed by the various combinations of 
three PBL schemes (MYJ, YSU, and ACM2) and 
three LSM schemes (Noah Land Surface Model 
[NLSM], RUC, and Noah-MP [multi-physics]), as 
presented in Table II. These PBL and LSM parame-
terization schemes were selected since they are the 
most common ones, as in the applications of Pei et 
al. (2014), Wharton et al. (2015), Lee et al. (2016), 
Salamanca et al. (2018), and Liu et al. (2019).

The other parameterization schemes were main-
tained constant during the simulations. The 5-class 
WRF Single-Moment (WSM5) microphysics scheme 
(Hong et al., 2004) was chosen following Kitagawa 
et al. (2017), who studied the Metropolitan Region 
of Salvador (RMS) in the state of Bahia and obtained 
good estimates for the variables of wind speed and 
direction. The Radiative Rapid Transfer Model 
(RRTM) and the Dudhia scheme were selected to 
estimate long-wave and short-wave radiation due 
to their efficiency and satisfactory performance in 
studies of wind resources in various regions of the 
world (Amjad et al., 2015; Mattar and Borvoran, 
2016; Giannaros et al., 2017; Argüeso and Businger, 
2018). Convective processes were represented using 
the Kain-Fritsch cumulus scheme in the external 

Table II. Details of the test scenarios specifying the physical options.

Scenarios 1 2 3 4 5 6 7 8 9

PBL MYJ MYJ MYJ YSU YSU YSU ACM2 ACM2 ACM2
Land surface model NLSM RUC NOAH-MP NLSM RUC NOAH-MP NLSM RUC NOAH-MP
Surface layer Eta Eta Eta MM5 MM5 MM5 MM5 MM5 MM5
Cumulus Kain-Fritsch
Microphysics WSM5
Shortwave radiation Dudhia
Longwave radiation RRTM 

PBL: planetary boundary layer; MYJ: Mellor-Yamada-Janjic PBL scheme; YSU: Yonsei University PBL scheme; 
ACM2: Asymmetric Convective Model 2; NLSM: Noah Land Surface Model; RUC: rapid update cycle; WSM5: the 
5-class WRF single-moment; RRTM: Radiative Rapid Transfer Model.
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domain, while it was disabled corresponding to other 
domains on the basis of the assumption that the ma-
jority of convective circulation is explicitly resolved. 
The physical options used are summarized in Table II, 
depicting the different scenarios.

3.4 Statistical evaluation
The performance of the model was evaluated using 
the statistical metrics of mean bias (MB), root mean 
squared error (RMSE), mean absolute gross error 
(MAGE), agreement index (IOA), and Pearson’s cor-
relation coefficient (R) (Carvalho et al., 2012, 2014; 
Cheng et al., 2013; Zempila et al., 2016; Gunwani 
and Mohan, 2017; Surussavadee, 2017a, b). In ad-
dition, Factor of 2 (Fac2) (Zucatelli et al., 2019) and 
standard deviation (SD) (Penchah et al., 2017) were 
also used. The average error, also called the average 
bias, is defined as follows:

MB =  M̄ − Ō	 (5)

where M̅ denotes the modeled average and O̅ denotes 
the observed average.

Positive values of MB indicate an overestimation 
of the simulated data, while negative values imply 
underestimation. Positive/negative MB values corre-
sponding to wind direction indicate that the modeled 
wind direction exhibits clockwise/counterclockwise 
overcorrection compared to the observations. It 
should be noted that, in the case of wind direction, 
the averages were calculated using scalar values and 
not vector values. The difference between each pair 
of simulated and observed wind directions (Δd) is 
defined as follows (Jiménez and Dudhia, 2013):

dif, WRF −  dobs ≤ 180

Δd = dWRF −  dobs

dif, WRF −  dobs > 180

Δd = dWRF −  dobs − 360

dif, WRF −  dobs < − 180

Δd = dWRF −  dobs + 360
The RMSE expresses the total error of the model 

and exhibits a value of zero in ideal cases.

RMSE =  
1
n

n

∑
i=1

(Mi − Oi)
2
	 (6)

In both of the aforementioned cases, lower val-
ues indicate better agreement between observed 
and modeled data. MAGE calculates the absolute 
mean error between simulated and observed values, 
expressing the average magnitude of the errors in 
the simulations.

MAGE =   1
n

n

∑
i=1

Mi − Oi 	 (7)

As in the case of RMSE, lower values of MAGE 
indicate greater similarity between the observed and 
modeled data series. IOA evaluates how close the 
simulated value is to that observed. The metric ranges 
from –1 to 1, with the value “1” meaning perfect agree-
ment. The term c is a constant relative to the model’s 
output frequency, which was assigned a value of 2 
(Willmott et al., 2012). The variable Pi corresponds to 
the simulated (“predicted”) value for instant (i), with 
Oi indicating the value observed at the same time i 
and O̅ representing the average of the observed values.

IOA

where

, 

≤

= 1 −
∑n

i=1 Pi − Oi

c∑n
i=1 Oi − Ō

n

∑
i=1

Pi − Oi c
n

∑
i=1

Oi − Ō

	 (8)

>when

,IOA =
c∑n

i=1 Oi − Ō

∑n
i=1 Pi − Oi

− 1

n

∑
i=1

Pi − Oi c
n

∑
i=1

Oi − Ō

	 (9)

Pearson’s correlation coefficient is a measure of 
linear association between modeled and observed 
data. Its value is zero in case of no correlation and 
the correlation increases as the value of the coeffi-
cient approaches –1 or +1. Values close to +1 imply 
positive correlation between the two variables, while 
those close to –1 imply negative correlation. It is 
defined as follows:



261Performance evaluation of the WRF model in a tropical region

R =
∑n

i=1 [(Mi − M̄ )(Oi − Ō )]

∑n
i=1 (Mi − M̄ )2 ∑n

i=1 (Oi − Ō )2 	 (10)

Factor of 2 (Fac2) calculates the ratio between the 
simulated (Mi) and observed (Oi) data, indicating the 
percentage of data that should lie within the range 0.5 ≤ 
Mi / Oi ≤ 2. Obviously, its value in the optimal case is 1.

4.	 Numerical results
Figure 5 depicts the average hourly time evolution of 
the observed and simulated wind speeds at elevations 
of 80, 100, 120, and 150 m, at the Mucuri, Esplana-
da, and Mucugê towers, obtained using the differ-
ent combinations of PBL and LSM (see Table II). 
For the construction of hourly averages, all observed 
and simulated data records from the months studied 
were used.

Fig. 5. Average hourly behavior of simulated and observed wind speeds.
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It is evident from Figure 5 that the simulated re-
sults typically closely follow the trend of the curve 
of the observed average hourly values. In particular, 
the data corresponding to Mucugê clearly exhibits 
a greater congruence between the simulated and 
observed curves. It is also verified that the values of 
the average hourly wind speeds vary approximate-
ly between 6 and 10 ms–1 at Mucuri and Mucugê, 
and between 3 and 8 ms–1 at Esplanada.

The analysis of the graphs in Figure 5 reveal a 
globally similar trend among the simulated scenari-
os, indicating that the model is capable of capturing 
the general behavior of the wind speed, despite 

small differences in terms of time and magnitude. 
In order to estimate the scenario that corresponds 
to the best performances, validation was performed 
based on the statistics evaluations. In this section, 
the statistical metrics (MB, RMSE, MAGE, IOA, 
R, Fac2 and SD) are analyzed in order to estimate 
the discrepancies between the simulated and ob-
served wind speed and direction corresponding to 
each case.

Tables III, IV, and V present the values of the sta-
tistical metrics obtained by comparing the simulated 
and observed data on wind speed corresponding to 
the Mucuri, Esplanada, and Mucugê towers, respec-

Table III. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Mucuri tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs

15
0 

m

MB 0.846 0.454 0.742 0.854 0.885 1.024 –0.131 0.406 –0.227
OhitS 3 5 4 2 1 0 8 6 7
RMSE 3.187 3.339 3.629 3.139 2.833 3.170 3.029 2.895 2.951
OhitS 2 1 0 4 8 3 5 7 6
MAGE 2.261 2.430 2.614 2.256 2.070 2.226 2.289 2.135 2.234
OhitS 3 1 0 4 8 6 2 7 5
IOA 0.512 0.475 0.436 0.513 0.553 0.511 0.506 0.539 0.517
OhitS 4 1 0 5 8 3 2 7 6
R 0.518 0.450 0.378 0.521 0.584 0.512 0.471 0.530 0.472
OhitS 5 1 0 6 8 4 2 7 3
Fac2 87.8% 85.9% 85.3% 88.7% 89.1% 88.1% 87.1% 88.7% 87.2%
OhitS 4 1 0 7 8 5 2 7 3
SD 3.413 3.449 3.457 3.440 3.229 3.341 3.161 3.146 2.954 2.849
OhitS 3 1 0 2 5 4 6 7 8

12
0 

m

MB 0.781 0.425 0.653 0.747 0.786 0.915 –0.169 0.341 –0.266
OhitS 2 5 4 3 1 0 8 6 7
RMSE 3.146 3.282 3.559 3.005 2.735 3.071 2.946 2.801 2.866
OhitS 2 1 0 4 8 3 5 7 6
MAGE 2.258 2.388 2.576 2.192 2.003 2.220 2.238 2.081 2.189
OhitS 2 1 0 5 8 4 3 7 6
IOA 0.507 0.478 0.437 0.521 0.563 0.515 0.511 0.545 0.522
OhitS 2 1 0 5 8 4 3 7 6
R 0.508 0.448 0.372 0.520 0.593 0.506 0.476 0.538 0.482
OhitS 5 1 0 6 8 4 2 7 3
Fac2 86.9% 85.5% 84.4% 88.4% 88.6% 87.8% 86.0% 88.4% 86.9%
OhitS 4 1 0 7 8 5 2 7 4
SD 3.308 3.349 3.345 3.230 3.126 3.175 3.025 3.022 2.834 2.859
OhitS 2 0 1 3 5 4 6 7 8

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.



Table III. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Mucuri tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs
10

0 
m

MB 0.649 0.368 0.485 0.668 0.726 0.823 –0.158 0.330 –0.259
OhitS 3 5 4 2 1 0 8 6 7
RMSE 3.080 3.226 3.460 2.890 2.663 2.976 2.907 2.762 2.829
OhitS 2 1 0 5 8 3 4 7 6
MAGE 2.222 2.354 2.528 2.133 1.953 2.164 2.215 2.064 2.172
OhitS 2 1 0 6 8 5 3 7 4
IOA 0.513 0.484 0.446 0.532 0.572 0.526 0.514 0.547 0.524
OhitS 2 1 0 6 8 5 3 7 4
R 0.501 0.448 0.367 0.530 0.604 0.511 0.477 0.540 0.485
OhitS 4 1 0 6 8 5 2 7 3
Fac2 86.0% 85.2% 83.7% 88.5% 88.7% 87.4% 85.8% 88.6% 86.9%
OhitS 3 1 0 6 8 5 2 7 4
SD 3.203 3.256 3.201 3.089 3,070 3.058 2.947 2.954 2.769 2.866
OhitS 1 0 2 3 4 5 8 7 6

80
 m

MB 0.071 –0.245 –0.431 0.577 0.667 0.714 –0.142 0.322 –0.251
OhitS 8 6 3 2 1 0 7 4 5
RMSE 2.540 2.685 2.835 2.767 2.593 2.865 2.858 2.717 2.783
OhitS 8 6 1 4 7 0 2 5 3
MAGE 1.914 2.058 2.172 2.058 1.913 2.091 2.187 2.043 2.146
OhitS 7 5 1 5 8 3 2 6 0
IOA 0.580 0.549 0.524 0.549 0.581 0.542 0.521 0.552 0.530
OhitS 7 5 1 5 8 3 0 6 2
R 0.585 0.540 0.483 0.547 0.616 0.524 0.483 0.546 0.493
OhitS 7 4 1 5 8 3 1 6 2
Fac2 87.3% 86.7% 84.3% 88.3% 88.7% 86.8% 85.1% 87.5% 86.7%
OhitS 5 3 0 7 8 4 1 6 3
SD 2.827 2.808 2.690 2.968 3.029 2.951 2.873 2.894 2.710 2.876
OhitS 6 5 0 3 2 4 8 7 1

Sum of scores 108 65 22 128 179 94 107 184 128

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.

Table IV. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Esplanada tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs

15
0 

m

MB 0.613 –0.160 0.292 0.614 0.730 0.737 –0.171 0.152 –0.506
OhitS 3 7 5 2 1 0 6 8 4
RMSE 2.007 2.193 1.934 2.098 1.898 2.029 2.151 1.990 2.074
OhitS 5 0 7 2 8 4 1 6 3
MAGE 1.448 1.679 1.486 1.574 1.453 1.521 1.673 1.491 1.625
OhitS 7 0 6 3 8 4 1 5 2
IOA 0.446 0.384 0.455 0.423 0.467 0.442 0.386 0.453 0.404
OhitS 5 0 7 3 8 4 1 6 2
R 0.492 0.409 0.465 0.509 0.530 0.511 0.398 0.423 0.400
OhitS 5 2 4 6 8 7 0 3 1
Fac2 93.9% 88.9% 93.2% 93.1% 94.6% 94.2% 89.6% 92.2% 90.1%
OhitS 6 0 5 4 8 7 1 3 2
SD 2.133 2.242 1.976 2.245 1.912 2.068 2.154 1.980 1.961 1.708
OhitS 3 1 6 0 8 4 2 5 7

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.
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Table IV. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Esplanada tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs

12
0 

m

MB 0.721 –0.026 0.378 0.752 0.824 0.831 –0,003 0.319 –0.372
OhitS 3 7 4 2 1 0 8 6 5
RMSE 2.062 2.174 1.993 2.138 1.934 2.081 2.115 1.992 2.023
OhitS 4 0 6 1 8 3 2 7 5
MAGE 1.540 1.668 1.535 1.609 1.486 1.576 1.648 1.493 1.586
OhitS 5 0 6 2 8 4 1 7 3
IOA 0.434 0.389 0.438 0.411 0.456 0.423 0.396 0.453 0.419
OhitS 5 0 6 2 8 4 1 7 3
R 0.476 0.400 0.438 0.489 0.520 0.480 0.390 0.408 0.391
OhitS 5 2 4 7 8 6 0 3 1
Fac2 92.4% 87.5% 91.8% 91.5% 93.2% 92.2% 88.3% 90.7% 88.9%
OhitS 7 0 5 4 8 6 1 3 2
SD 2.115 2.208 1.975 2.186 1.877 2.009 2.097 1.917 1.906 1.700
OhitS 2 0 5 1 8 4 3 6 7

10
0 

m

MB 0.750 0.049 0.354 0.833 0.882 0.869 0.134 0.456 –0.251
OhitS 3 8 5 2 0 1 7 4 6
RMSE 2.078 2.139 2.010 2.148 1.954 2.101 2.076 1.989 1.978
OhitS 3 1 5 0 8 2 4 6 7
MAGE 1.557 1.651 1.547 1.623 1.504 1.598 1.617 1.492 1.551
OhitS 4 0 6 1 7 3 2 8 5
IOA 0.436 0.403 0.441 0.413 0.456 0.422 0.416 0.461 0.439
OhitS 4 0 6 1 7 3 2 8 5
R 0.473 0.404 0.422 0.486 0.527 0.466 0.401 0.416 0.399
OhitS 6 2 4 7 8 5 1 3 0
Fac2 90.6% 86.1% 90.1% 89.4% 91.4% 90.5% 87.4% 89.6% 88.0%
OhitS 7 0 5 3 8 6 1 4 2
SD 2.109 2.161 1.956 2.139 1.877 1.969 2.053 1.878 1.871 1.713
OhitS 2 0 5 1 7 4 3 6 8

80
 m

MB 0.606 –0.022 0.120 0.829 0.880 0.824 0.202 0.533 –0.184
OhitS 3 8 7 1 0 2 5 4 6
RMSE 1.990 2.055 1.898 2.092 1.935 2.062 2.033 1.975 1.942
OhitS 4 1 8 0 7 2 3 5 6
MAGE 1.495 1.593 1.476 1.589 1.489 1.572 1.583 1.488 1.524
OhitS 5 0 8 1 6 3 2 7 4
IOA 0.482 0.447 0.488 0.449 0.484 0.455 0.451 0.484 0.471
OhitS 5 0 8 1 7 3 2 7 4
R 0.494 0.433 0.454 0.503 0.554 0.473 0.431 0.446 0.423
OhitS 6 2 4 7 8 5 1 3 0
Fac2 88.8% 84.9% 88.3% 87.7% 90.0% 88.5% 86.1% 88.5% 87.0%
OhitS 7 0 4 3 8 6 1 6 2
SD 2.067 2.081 1.868 2.067 1.891 1.913 2.017 1.859 1.845 1.770
OhitS 1 0 6 2 5 4 3 7 8

Sum of scores 125 41 157 69 184 106 65 153 110

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.
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Table V. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Mucugê tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs

15
0 

m

MB 0.700 0.364 0.698 0.420 0.519 0.528 0.138 0.159 –0.289
OhitS 0 5 1 4 3 2 8 7 6
RMSE 2.932 3.237 2.857 2.682 2.567 2.496 2.874 2.781 2.622
OhitS 1 0 3 5 7 8 2 4 6
MAGE 2.280 2.559 2.229 2.144 2.026 1.943 2.272 2.197 2.088
OhitS 2 0 3 5 7 8 1 4 6
IOA 0.450 0.409 0.485 0.505 0.532 0.552 0.476 0.493 0.519
OhitS 1 0 3 5 7 8 2 4 6
R 0.614 0.519 0.619 0.649 0.650 0.662 0.598 0.609 0.621
OhitS 2 0 4 6 7 8 1 3 5
Fac2 88.4% 84.1% 88.8% 89.2% 91.5% 92.3% 86.2% 87.4% 87.7%
OhitS 4 0 5 6 7 8 1 2 3
SD 3.700 3.650 3.491 3.467 3.275 3.220 3.536 3.448 3.253 2.691
OhitS 0 1 3 4 6 8 2 5 7

12
0 

m

MB 0.857 0.440 0.812 0.581 0.647 0.640 0.311 0.321 –0.169
OhitS 0 5 1 4 2 3 7 6 8
RMSE 2.915 3.184 2.842 2.654 2.547 2.486 2.829 2.745 2.559
OhitS 1 0 2 5 7 8 3 4 6
MAGE 2.255 2.513 2.216 2.113 2.004 1.934 2.229 2.160 2.029
OhitS 1 0 3 5 7 8 2 4 6
IOA 0.440 0.402 0.473 0.498 0.523 0.540 0.470 0.486 0.517
OhitS 1 0 2 5 7 8 3 4 6
R 0.600 0.502 0.602 0.639 0.640 0.648 0.558 0.596 0.607
OhitS 3 0 4 6 7 8 1 2 5
Fac2 89.0% 84.1% 88.6% 89.6% 91.5% 92.4% 86.9% 88.2% 88.6%
OhitS 5 0 4 6 7 8 1 2 4
SD 3.567 3.523 3.366 3.336 3.158 3.097 3.421 3.328 3.123 2.605
OhitS 0 1 3 4 6 8 2 5 7

10
0 

m

MB 0.779 0.306 0.692 0.517 0.553 0.517 0.264 0.261 –0.262
OhitS 0 5 1 4 2 4 6 8 7
RMSE 2.864 3.142 2.793 2.620 2.507 2.435 2.811 2.728 2.557
OhitS 1 0 3 5 7 8 2 4 6
MAGE 2.210 2.473 2.172 2.079 1.963 1.891 2.209 2.143 2.033
OhitS 1 0 3 5 7 8 2 4 6
IOA 0.450 0.412 0.483 0.506 0.533 0.550 0.475 0.491 0.517
OhitS 1 0 3 5 7 8 2 4 6
R 0.584 0.484 0.585 0.624 0.627 0.636 0.572 0.578 0.590
OhitS 3 0 4 6 7 8 1 2 5
Fac2 89.4% 84.4% 88.8% 90.1% 91.8% 92.7% 87.3% 88.6% 89.0%
OhitS 5 0 3 6 7 8 1 2 4
SD 3.449 3.408 3.261 3.222 3.053 2.979 3.323 3.224 3.017 2.607
OhitS 0 1 3 5 6 8 2 4 7

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.
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tively. Superior results have been highlighted in bold 
and, to evaluate simulations results, the objective hit 
Score (OhitS) (Penchah et al., 2017) was used. As 
mentioned previously, low values are better for MB, 
RMSE and MAGE, and high values are better for 
IOA, R, and Fac2 in terms of prediction accuracy. In 
the OhitS method, for SD, each parameterization that 
has the closest result to the corresponding observation 
gets an 8 score. The second-best parameterization 
gets a 7 score, and so on, the worst result gets a 0 
score. For MB, RMSE and MAGE, parameterizations 
gain scores from 8 to 0 for minimum to maximum, re-
spectively. For IOA, R and Fac2, the opposite occurs.

Based on the comparison between measurements 
obtained in the three towers, the common parame-
terization with the highest score was obtained by 
scenario 5 (S5) (parameterization YSU and RUC): 
184 points in Esplanada, 179 points in Mucuri, and 
173 points in Mucugê. In the meantime, scenario 6 
(S6) showed the best performance corresponding to 
Mucugê (parameterizations YSU and NOAH-MP). 
However, the results obtained by this scenario were 
as good as those obtained by scenario 5 in all cases. 
The underestimation of wind speed only occurred 

in the simulations performed with ACM2-Noah-MP 
for all levels and towers, and with ACM2-LSM at 
all levels for Mucuri and at 120 and 150 m in height 
for Esplanada. Tyagi et al. (2018) also found that 
ACM2 underestimated wind speed, while MYJ and 
YSU overestimated this parameter.

These metrics were also evaluated corresponding 
to the variable of wind direction. Corresponding to 
Mucugê, as in the case of wind speed, the combination 
of the YSU scheme and the NOAH-MP soil surface 
scheme (S6) produced the best estimates. However, 
Esplanada and Mucuri exhibited different results 
compared to the case of wind speed. Corresponding 
to Mucuri, the combination of MYJ atmospheric 
boundary layer parameterization and the Noah (S1) 
model performed better overall compared to other 
combinations. Finally, corresponding to Esplanada, 
scenario 3 (S3), which comprises the combination of 
MYJ and NOAH-MP, obtained a better result than 
the other combinations.

From the perspective of wind energy, wind speed 
is a more important variable than wind direction. 
This can be primarily attributed to the existence of 
a system that guides the wind turbine rotor in the 

Table V. Results of statistical metrics corresponding to the comparison between simulated and observed wind speed 
data at Mucugê tower.

Height S1 S2 S3 S4 S5 S6 S7 S8 S9 Obs

80
 m

MB 0.736 0.209 0.582 0.499 0.503 0.417 0.268 0.246 –0.307
OhitS 0 8 1 3 2 4 6 7 5
RMSE 2.786 3.056 2.703 2.589 2.475 2.376 2.794 2.708 2.547
OhitS 2 0 4 5 7 8 1 3 6
MAGE 2.145 2.408 2.099 2.047 1.928 1.843 2.188 2.123 2.025
OhitS 2 0 4 5 7 8 1 3 6
IOA 0.454 0.416 0.491 0.503 0.532 0.553 0.469 0.485 0.509
OhitS 1 0 4 5 7 8 2 3 6
R 0.567 0.466 0.568 0.605 0.609 0.620 0.548 0.554 0.566
OhitS 4 0 5 6 7 8 1 2 3
Fac2 89.7% 84.9% 88.8% 90.3% 91.5% 92.6% 87.3% 88.7% 89.1%
OhitS 5 0 3 6 7 8 1 2 4
SD 3.285 3.245 3.097 3.093 2.936 2.836 3.204 3.099 2.892 2.557
OhitS 0 1 4 5 6 8 2 3 7

Sum of scores 46 27 86 141 173 205 66 107 159

MB: mean bias; RMSE: root mean squared error; MAGE: mean absolute gross error; IOA: agreement index; R: 
Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; Obs: 
observed. The best results are highlighted in bold.
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direction of the wind and the automatic regulation of 
the slopes of the blades to optimize the incidence 
of wind. Thus, the results obtained from the analy-
sis of wind speed is more pertinent to simulations 
with high resolution domain for the entire state of 
Bahia, given that it produces a high amount of wind 
energy. Based on the aforementioned discussion, 
further analyses of the parametrization performance 
of the combination of the CLP-YSU and LSM-RUC 
schemes in terms of wind speed follow.

Figures 6, 7, and 8 illustrate the wind roses 
obtained using YSU and RUC (scenario 5) as pa-
rameterizations of PBL and LSM, respectively, 
corresponding to the three towers: Mucuri (Fig. 6), 
Esplanada (Fig. 7) and Mucugê (Fig. 8), based on all 
data generated during the simulated months.

It is evident from the wind rose diagrams that 
the studied regions exhibit high potential for wind 
power generation with intermediate and high wind 
speed values between 6 to 9 ms–1 (yellow) and above 
9 ms–1 (brown), respectively. It is also apparent that 
the wind speed was slightly overestimated at all 
three towers. This agrees with the observations of 
Giannaros et al. (2017), who highlighted the tendency 
of the WRF model to overestimate the frequency 
of strong winds; Stucki et al. (2016), who reported 
that the WRF model tends to overestimate average 
winds; and Carvalho et al. (2014), who also reported 
similar results.

As this study uses data from towers located at 
three different sites equipped with anemometers at 
varying heights (80, 100, 120 and 150 m), its observa-
tions can be considered to be representative in terms 
of wind energy. Thus, it is interesting to compare 
these data with the vertical profiles of wind obtained 
via the simulations. Figures 9, 10, and 11 depict the 
vertical profiles of the monthly average wind speeds 
simulated using scenario 5 (YSU and RUC), for two 
representative months each corresponding to the dry 
and rainy periods, compared to data observed at the 
Esplanada, Mucugê, and Mucuri towers, respectively. 
Table VI specifies the two representative months for 
dry and rainy periods for each tower.

Data corresponding to Esplanada is observed to 
be well characterized with two very distinct periods 
and abundant rain during the months of May and 
June (see Fig. 1). The average monthly speed is 
overestimated by the WRF model at all heights during 

May (Fig. 9b); however, the maximum difference be-
tween simulated and observed data is observed to be 
0.64 ms–1. During the less rainy period in January, 
the difference is observed to be 1.34 ms–1 and the 
tendency of overestimation is also observed (Fig. 9a).

Data corresponding to Mucugê (the farthest 
from the sea) is also well characterized with two 
very distinct periods and very little rain during the 
months of July and August (see Fig. 2). The average 
monthly speed is overestimated by the WRF model 
at all heights during July, with a maximum difference 
of 1.34 ms–1 (Fig. 10b). During the rainiest period in 
January, the maximum difference is observed to be 
0.22 ms–1, but a slight tendency of overestimation 
persists (Fig. 10a).

Data corresponding to Mucuri (the closest to the 
sea) has been uniform in terms of annual rainfall 
over the most recent decades (see Fig. 3); however, 
January and February are representative of the dry 
season in the region. During this period, the average 
monthly speed is overestimated by the WRF model 
at all heights during January, with a maximum dif-
ference of 1.66 ms–1 (Fig. 11a). During May, which 
is representative of the rainy season in the region, 
the maximum difference is observed to be 0.27 ms–1 
(Fig. 11b).

Therefore, consideration of only the months ana-
lyzed disaggregated from the others reveals a greater 
tendency of overestimation of the monthly average 
wind speed corresponding to the dry season.

Having identified the best performing combi-
nation to be the YSU-RUC scheme, the superiority 
of its performance can be verified with respect to 
each location, in terms of the distance from the sea 
(Table VII), based on the evaluated statistics corre-
sponding to all the simulated months. Unlike tables 
III, IV and V that compare 9 scenarios, in table VII 
the three towers are compared, therefore, the scores 
ranged between 2 and 0. SD was analyzed by the dif-
ference between simulated and observed SD (diffSD).

An analysis of Table VII and Figure 5 reveals 
that proximity to the sea degrades the accuracy of 
simulation. Mucugê is observed to exhibit a greater 
congruence between simulated and observed wind 
speeds (Fig. 5). This tower, located in the center of 
the state of Bahia (280 km from the sea), exhibits 
a statistically similar performance to that at Espla-
nada (40 km from the coast), and corresponds to 
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Fig. 6. Comparison of wind roses obtained using the YSU and RUC schemes from the Mucuri tower 
based on observations at heights of (a) 150 m, (b) 120 m, and (c) 100 m.
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tower based on observations at heights of (a) 150 m, (b) 120 m, and (c) 100 m.
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Fig. 9. Vertical profiles of the monthly average wind speed measured by the Esplanada 
tower and simulated using WRF with the parameters of scenario 5 in (a) January, and 
(b) May.
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tower and simulated using WRF with the parameterization of scenario 5 in (a) January, 
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Fig. 11. Vertical profiles of the monthly average wind speed measured by the Mucuri 
tower and simulated using WRF with the parameterization of scenario 5 in (a) January, 
and (b) May.
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Table VI. Representative months for dry and rainy periods 
for each tower.

Esplanada Mucuri Mucugê

Month Rainy May May January
Dry January January July
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models. Further, the adequate simulation of the flow 
characteristics related to the breeze inlet marine 
life in coastal regions persists as one of the major 
challenges for meteorological models (Shin e Hong, 
2011; Cheng et al., 2012; de León and Orfila, 2013). 
It should be noted that the model interpreted the 
grid cell containing the Mucuri tower as land, which 
refutes the hypothesis that its poor performance is 
induced by the mistaken identification of the site as 
oceanic (given its close proximity to the sea), and 
supports the hypothesis that proximity to the sea 
negatively influences the performance of simula-
tions. Tyagi et al. (2018) found a similar result by 

a better performance than that recorded at Mucuri 
(tower closest to the sea, 340 m). This phenomenon 
can be explained by the differentiated behavior of 
the model in regions close to large bodies of water 
compared to more inland areas. At places near the 
sea, variations in atmospheric conditions are more 
localized in time and space, due to ill-understood 
effects of land and sea breezes that are not accounted 
for by atmospheric models (Salvador et al., 2016b). 
Proximity to the sea, the interactions between atmo-
spheric flow in the marine boundary layer, and the 
development of a boundary layer on the continent 
remain critical factors in the predictions of such 

Height Esplanada Mucuri Mucugê

15
0 

m

MB 0.730 0.885 0.519
OhitS 1 0 2
RMSE 1.898 2.833 2.567
OhitS 2 0 1
MAGE 1.453 2.070 2.026
OhitS 2 0 1
IOA 0.467 0.553 0.532
OhitS 0 2 1
R 0.530 0.584 0.650
OhitS 0 1 2
Fac2 94.6% 89.1% 91.5%
OhitS 2 0 1
diffSD 0.204 0.379 0.584
OhitS 2 1 0

12
0 

m

MB 0.824 0.786 0.647
OhitS 0 1 2
RMSE 1.934 2.735 2.547
OhitS 2 0 1
MAGE 1.486 2.003 2.004
OhitS 2 1 0
IOA 0.456 0.563 0.523
OhitS 0 2 1
R 0.520 0.593 0.640
OhitS 0 1 2
Fac2 93.2% 88.6% 91.5%
OhitS 2 0 1
diffSD 0.177 0.267 0.552
OhitS 2 1 0

Height Esplanada Mucuri Mucugê

10
0 

m

MB 0.882 0.726 0.553
OhitS 0 1 2
RMSE 1.954 2.663 2.507
OhitS 2 0 1
MAGE 1.504 1.953 1.963
OhitS 2 1 0
IOA 0.456 0.572 0.533
OhitS 0 2 1
R 0.527 0.604 0.627
OhitS 0 1 2
Fac2 91.4% 88.7% 91.8%
OhitS 1 0 2
diffSD 0.164 0.204 0.447
OhitS 2 1 0

80
 m

MB 0.880 0.667 0.503
OhitS 0 1 2
RMSE 1.935 2.593 2.475
OhitS 2 0 1
MAGE 1.489 1.913 1.928
OhitS 2 1 0
IOA 0.484 0.581 0.532
OhitS 0 2 1
R 0.554 0.616 0.609
OhitS 0 2 1
Fac2 90.0% 88.7% 91.5%
OhitS 1 0 2
diffSD 0.122 0.152 0.379
OhitS 2 1 0

Sum of scores 31 23 30

Table VII. Wind speed statistics obtained using the YSU and RUC schemes.

MB: mean bias; RMSE: root mean squared error;  MAGE: mean absolute gross error; IOA: agreement index; 
R: Pearson’s correlation coefficient; Fac2: Factor of 2; SD: standard deviation; Ohits: objective hit score; S: station; 
Obs: observed. The best results are highlighted in bold.
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indicating that inland locations are better simulated 
than sea locations, and indicated the reasons for this 
difference in the fact that performance is likely re-
lated to difficulty in reproducing vertical variability 
at sea, where very shallow PBL development may 
not be entirely reproduced. In addition, simulated 
PBL depths at sea locations exhibit a larger bias 
with respect to observations at inland locations with 
well-developed convective boundary layers.

Assessment of the wind speed statistics corre-
sponding to periods of more and less rain also reveals 
scenario 5 (YSU and RUC) to be well-performing. It 
is interesting to note that the most accurate estimates 
for wind speed corresponding to the period of less 
rain in the simulated months in Mucugê (May, June, 
July, and September), were identical to the one ob-
tained via aggregate analysis (parameterizations YSU 
and NOAH-MP [S6]). Analysis of the rainy period 
(January and February) also revealed better estimates 
corresponding to scenario 5 (YSU and RUC). Follow-
ing the disaggregation of the two periods (more and 
less rain) at Esplanada, the data corresponding to the 
least rainy period (December, January, February, Sep-
tember, and October) continued to support the finding 
that scenario 5 exhibited the best performance, while 
better indicators were obtained corresponding to the 
rainy period (May and June) using scenario 1 (MYJ 
and NLSM). Corresponding to Mucuri, scenario 5 
(YSU and RUC) continued to emerge as the best 
option for the drier month (January), while the rainy 
months (December and May) were better character-
ized by scenario 8 (ACM2 and RUC). However, the 
results obtained by these scenarios were as good as 
those obtained by scenario 5 in all cases. Thus, the 
aforementioned results corroborate the choice of 
the combination of the PBL-YSU scheme with the 
LSM-RUC scheme for application in the forecast of 
wind energy production for the region.

5.	 Summary and conclusions
This study aimed to evaluate the performance of the 
various combinations of three PBL parameterization 
schemes and three LSM parameterization schemes, 
using the WRF model for a tropical region, in order 
to identify the optimal parameters to be applied in 
the analysis of wind energy production based on 
numerical modeling.

The WRF model was verified to be capable of 
capturing the general behavior of wind speed. The 
combination of the YSU and RUC parameterization 
schemes exhibited the best performance. As expected, 
the simple scheme of thermal diffusion of the soil, 
RUC, was better adapted to the case of Bahia, as this 
region does not experience snowy climate. The RUC 
scheme was also observed to fit into the intermediate 
level of complexity.

It is important to highlight that wind speed was over-
estimated in the simulations and, in general, estimated 
wind directions were quite similar to the observed data. 
Further, it was observed that proximity to the ocean 
degraded the accuracy of the simulations. Thus, the 
towers at Mucugê and Esplanada, which were farthest 
from the sea, exhibited the best results for all statistical 
metrics with respect to wind speed. However, the av-
erage hourly time evolution of observed and simulated 
wind speeds at Mucugê exhibited less dissonance.

Finally, the disaggregated analysis of the results 
corresponding to rainy and dry periods at each tower 
revealed YSU-RUC to be the clear front-runner. This 
fact supports the application of the combination of 
CLP-YSU and LSM-RUC to the high-resolution 
simulation of wind energy production for the entire 
state of Bahia. This should be the next step in order 
to obtain a high-resolution wind map with verified 
parameterization that exhibits good results.

Acknowledgments
The authors are grateful to the Supercomputing Center 
for Industrial Innovation (CIMATEC) for providing 
the necessary computational structure to perform the 
simulations; and to the Research Support Foundation 
of the State of Bahia (FAPESB) and the Coordination 
for the Improvement of Higher Education Personnel 
(CAPES) for partially financing the work.

References
ABEEólica. 2017. Boletim anual de geração eólica. Asso-

ciação Brasileira de Energia Eólica e Novas Tecnolo-
gias. Available at: http://abeeolica.org.br/wp-content/
uploads/2018/04/Boletim-Anual-de-Geracao-2017.pdf 
(accessed on June 21, 2019).

Amjad M, Zafar Q, Khan F, Sheikh MM. 2015. Evalua-
tion of weather research and forecasting model for the 

http://abeeolica.org.br/wp-content/uploads/2018/04/Boletim-Anual-de-Geracao-2017.pdf
http://abeeolica.org.br/wp-content/uploads/2018/04/Boletim-Anual-de-Geracao-2017.pdf


274 N. B. P. Souza et al.

assessment of wind resource over Gharo, Pakistan. 
International Journal of Climatology 35: 1821-1832. 
https://doi.org/10.1002/joc.4089

Argüeso D, Businger S. 2018. Wind power characteristics 
of Oahu, Hawaii. Renewable Energy 128: 324-336. 
https://doi.org/10.1016/j.renene.2018.05.080

Avolio E, Federico S, Miglietta MM, Lo Feudo T, Cali-
donna CR, Sempreviva AM. 2017. Sensitivity analysis 
of WRF model PBL schemes in simulating bound-
ary-layer variables in southern Italy: An experimental 
campaign. Atmospheric Research 192: 58-71. https://
doi.org/10.1016/j.atmosres.2017.04.003

Banks RF, Baldasano JM. 2016. Impact of WRF model 
PBL schemes on air quality simulations over Catalonia, 
Spain. Science of the Total Environment 572: 98-113. 
https://doi.org/10.1016/j.scitotenv.2016.07.167

Banks RF, Tiana-Alsina J, Baldasano JM, Rocadenbosch 
F, Papayannis A, Solomos S, Tzanis CG. 2016. Sensi-
tivity of boundary layer variables to PBL schemes in 
the WRF model based on surface meteorological obser-
vations, lidar, and radiosondes during the HygrA-CD 
campaign. Atmospheric Research 176-177: 185-201. 
https://doi.org/10.1016/j.atmosres.2016.02.024

Beljaars ACM. 1994. The parametrization of surface fluxes 
in large-scale models under free convection. Quartely 
Journal of the Royal Meteorological Society 121: 255-
270. https://doi.org/10.1002/qj.49712152203

Boadh R, Satyanarayana ANV, Rama Krishna TVBPS, 
Madala S. 2016. Sensitivity of PBL schemes of 
the WRF-ARW model in simulating the boundary 
layer flow parameters for their application to air 
pollution dispersion modeling over a tropical sta-
tion. Atmósfera 29: 61-81. https://doi.org/10.20937/
ATM.2016.29.01.05

Camargo-Schubert. 2013. Atlas eólico: Bahia. Camar-
go-Schubert, Bahia. Available at: http://www.infraestru-
tura.ba.gov.br/arquivos/File/publicacoes/atlaseolicoba-
hia2013.pdf (accessed on September 15, 2018).

Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS. 
2012. A sensitivity study of the WRF model in wind 
simulation for an area of high wind energy. Environ-
mental Modelling and Software 33: 23-34. https://doi.
org/10.1016/j.envsoft.2012.01.019

Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS. 
2014. Sensitivity of the WRF model wind simulation 
and wind energy production estimates to planetary 
boundary layer parameterizations for onshore and 
offshore areas in the Iberian Peninsula. Applied 

Energy 135: 234-246. https://doi.org/10.1016/j.apen-
ergy.2014.08.082

Chen F, Dudhia J. 2001. Coupling an Advanced Land 
Surface-Hydrology model with the Penn State-NCAR 
MM5 modeling system. Part I: Model implementation 
and sensitivity. Monthly Weather Review 129: 569-585. 
https://doi.org/10.1175/1520-0493(2001)129<0569:-
CAALSH>2.0.CO;2

Cheng FY, Chin SC, Liu TH. 2012. The role of bound-
ary layer schemes in meteorological and air quality 
simulations of the Taiwan area. Atmospheric En-
vironment 54: 714-727. https://doi.org/10.1016/j.
atmosenv.2012.01.029

Cheng WYY, Liu Y, Zhang Y, Mahoney WP, Warner TT. 
2013. The impact of model physics on numerical wind 
forecasts. Renewable Energy 55: 347-356. https://doi.
org/10.1016/j.renene.2012.12.041

De León SP, Orfila A. 2013. Numerical study of the 
marine breeze around Mallorca Island. Applied 
Ocean Research 40: 26-34. https://doi.org/10.1016/j.
apor.2012.12.003

Draper M, Guggeri A, Mendina M, Usera G, Campganolo 
F. 2018. A large eddy simulation-actuator line model 
framework to simulate a scaled wind energy facility 
and its application. Journal of Wind Engineering and 
Industrial Aerodynamics 182: 146-159. https://doi.
org/10.1016/j.jweia.2018.09.010

Giannaros TM, Melas D, Ziomas I. 2017. Performance 
evaluation of the Weather Research and Forecast-
ing (WRF) model for assessing wind resource in 
Greece. Renewable Energy 102: 190-198. https://doi.
org/10.1016/j.renene.2016.10.033

Gunwani P, Mohan M. 2017. Sensitivity of WRF mod-
el estimates to various PBL parameterizations in 
different climatic zones over India. Atmospheric 
Research 194: 43-65. https://doi.org/10.1016/j.at-
mosres.2017.04.026

Hariprasad KBRR, Srinivas CV, Singh AB, Rao SVB, 
Baskaran R, Venkatraman B. 2014. Numerical simu-
lation and intercomparison of boundary layer structure 
with different PBL schemes in WRF using experi-
mental observations at a tropical site. Atmospheric 
Research 145-146: 27-44. https://doi.org/10.1016/j.
atmosres.2014.03.023

Holtslag AAM, Boville BA. 1993. Local versus nonlocal 
boundary-layer diffusion in a global climate model. 
Journal of Climate 6: 1825-2842. https://doi.org/10.1
175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2

https://doi.org/10.1002/joc.4089
https://doi.org/10.1016/j.renene.2018.05.080
https://doi.org/10.1016/j.atmosres.2017.04.003
https://doi.org/10.1016/j.atmosres.2017.04.003
https://doi.org/10.1016/j.scitotenv.2016.07.167
https://doi.org/10.1016/j.atmosres.2016.02.024
https://doi.org/10.1002/qj.49712152203
https://doi.org/10.20937/ATM.2016.29.01.05
https://doi.org/10.20937/ATM.2016.29.01.05
http://www.infraestrutura.ba.gov.br/arquivos/File/publicacoes/atlaseolicobahia2013.pdf
http://www.infraestrutura.ba.gov.br/arquivos/File/publicacoes/atlaseolicobahia2013.pdf
http://www.infraestrutura.ba.gov.br/arquivos/File/publicacoes/atlaseolicobahia2013.pdf
https://doi.org/10.1016/j.envsoft.2012.01.019
https://doi.org/10.1016/j.envsoft.2012.01.019
https://doi.org/10.1016/j.apenergy.2014.08.082
https://doi.org/10.1016/j.apenergy.2014.08.082
https://doi.org/10.1175/1520-0493(2001)129
https://doi.org/10.1016/j.atmosenv.2012.01.029
https://doi.org/10.1016/j.atmosenv.2012.01.029
https://doi.org/10.1016/j.renene.2012.12.041
https://doi.org/10.1016/j.renene.2012.12.041
https://doi.org/10.1016/j.apor.2012.12.003
https://doi.org/10.1016/j.apor.2012.12.003
https://doi.org/10.1016/j.jweia.2018.09.010
https://doi.org/10.1016/j.jweia.2018.09.010
https://doi.org/10.1016/j.renene.2016.10.033
https://doi.org/10.1016/j.renene.2016.10.033
https://doi.org/10.1016/j.atmosres.2017.04.026
https://doi.org/10.1016/j.atmosres.2017.04.026
https://doi.org/10.1016/j.atmosres.2014.03.023
https://doi.org/10.1016/j.atmosres.2014.03.023
https://doi.org/10.1175/1520-0442(1993)006
https://doi.org/10.1175/1520-0442(1993)006


275Performance evaluation of the WRF model in a tropical region

Hong SY, Dudhia J, Chen SH. 2004. A revised approach 
to ice microphysical processes for the bulk parameter-
ization of clouds and precipitation. Monthly Weather 
Review 132: 103-120. https://doi.org/10.1175/1520-0
493(2004)132<0103:ARATIM>2.0.CO;2

Hong SY, Noh Y, Dudhia JA. 2006. A new vertical diffu-
sion package with an explicit treatment of entrainment 
process. Monthly Weather Review 134: 2318-2341. 
https://doi.org/10.1175/MWR3199.1

Imran HM, Kala J, Ng AWM, Muthukumaran S. 2017. An 
evaluation of the performance of a WRF multi-physics 
ensemble for heatwave events over the city of Mel-
bourne in the southeast Australia. Climate Dynamics 
50: 2553-2586. https://doi.org/10.1007/s00382-017-
3758-y

Islam T, Srivastava PK, Rico-Ramírez MA, Dai Q, Gup-
ta M, Singh SK. 2015. Tracking a tropical cyclone 
through WRF–ARW simulation and sensitivity of 
model physics. Natural Hazards 76: 1473-1495. https://
doi.org/10.1007/s11069-014-1494-8

Jain S, Panda J, Rath SS, Devara PCS. 2017. Evaluat-
ing land surface models in WRF simulations over 
DMIC region. Indian Journal of Science and Tech-
nology 10: 1-24. https://doi.org/10.17485/ijst/2017/
v10i18/103522

Janjic ZI. 1994. The step-mountain eta coordinate mod-
el: further developments of the convection, viscous 
sublayer, and turbulence closure schemes. Monthly 
Weather Review 122: 927-945. https://doi.org/10.11
75/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

Jiménez PA, Dudhia J. 2013. On the ability of the WRF 
model to reproduce the surface wind direction over 
complex terrain. Journal of Applied Meteorology and 
Climatology 52: 1610-1617. https://doi.org/10.1175/
JAMC-D-12-0266.1

Kitagawa YKL, Nascimento EGS, Souza NBP, Zucatelli 
PJ, Aylas GYR, Moreira DM, Salvador N. 2017. 
Assessment of the sensitivity of the WRF model 
using different PBL schemes over the Metropolitan 
Region of Salvador. XXXVIII Ibero-Latin American 
Congress on Computational Methods in Engineering 
(CILAMCE 2017). https://doi.org/10.20906/CPS/
CILAMCE2017-0647

Kumar RA, Dudhia J, Bhowmik SKR. 2010. Evaluation 
of physics options of the Weather Research and Fore-
casting (WRF) model to simulate high impact heavy 
rainfall events over Indian monsoon region. Geofizika 
27:101-125.

Lee CB, Kim J, belorid m, zhao p. 2016. perfor-
mance evaluation of Four Different Land Surface 
Models in WRF. Asian Journal of Atmospheric 
Environment 10: 42-50. https://doi.org/10.5572/
ajae.2016.10.1.042

Liu L, Ma Y, Menenti M, Zhang X, Ma W. 2019. Eval-
uation of WRF modeling in relation to different land 
surface schemes and initial and boundary conditions: A 
snow event simulation over the Tibetan plateau. Journal 
of Geophysical Research: Atmospheres 124: 209-226. 
https://doi.org/10.1029/2018JD029208

Marjanovic N, Wharton S, Chow FK. 2014. Investigation 
of model parameters for high-resolution wind energy 
forecasting: Case studies over simple and complex 
terrain. Journal of Wind Engineering and Industrial 
Aerodynamics 134: 10-24. https://doi.org/10.1016/j.
jweia.2014.08.007

Mattar C, Borvoran D. 2016. Offshore wind power sim-
ulation by using WRF in the central coast of Chile. 
Renewable Energy 94: 22-31. https://doi.org/10.1016/j.
renene.2016.03.005

Mohan M, Bahati S. 2011. Analysis of WRF model 
performance over subtropical region of Delhi, India. 
Advances in Meteorology 2011: 1-13. https://doi.
org/10.1155/2011/621235

Monin AS, Obukhov AM. 1954. Basic laws of turbulent 
mixing in the atmosphere. Trudy Instituta Teoretich-
eskoi Geofiziki, Akademiya Nauk SSSR 24: 163-187 
(in Russian).

NCAR/UCAR. 2015.  NCEP GDAS/FNL 0.25 degree 
global tropospheric analyses and forecast grids. Re-
search Data Archive, National Center for Atmospheric 
Research/ University Corporation for Atmospheric 
Research. Available at: https://doi.org/10.5065/
D65Q4T4Z (accessed on January 23, 2017).

Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage 
M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari 
M, Xia Y. 2011. The community Noah land surface 
model with multiparameterization options (Noah-MP): 
1. Model description and evaluation with local-scale 
measurements. Journal of Geophysical Research 116: 
D12109. https://doi.org/10.1029/2010JD015139

Obukhov AM. 1971. Turbulence in an atmosphere with 
a non-uniform temperature. Boundary-Layer Meteo-
rology 2: 7-29. https://doi.org/10.1007/BF00718085

Paulson CA. 1970. The mathematical representa-
tion of wind speed and temperature profiles in 
the unstable atmospheric surface layer. Journal 

https://doi.org/10.1175/1520-0493(2004)132
https://doi.org/10.1175/1520-0493(2004)132
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1007/s00382-017-3758-y
https://doi.org/10.1007/s00382-017-3758-y
https://doi.org/10.1007/s11069-014-1494-8
https://doi.org/10.1007/s11069-014-1494-8
https://doi.org/10.17485/ijst/2017/v10i18/103522
https://doi.org/10.17485/ijst/2017/v10i18/103522
https://doi.org/10.1175/1520-0493(1994)122
https://doi.org/10.1175/1520-0493(1994)122
https://doi.org/10.1175/JAMC-D-12-0266.1
https://doi.org/10.1175/JAMC-D-12-0266.1
https://doi.org/10.20906/CPS/CILAMCE2017-0647
https://doi.org/10.20906/CPS/CILAMCE2017-0647
https://doi.org/10.5572/ajae.2016.10.1.042
https://doi.org/10.5572/ajae.2016.10.1.042
https://doi.org/10.1029/2018JD029208
https://doi.org/10.1016/j.jweia.2014.08.007
https://doi.org/10.1016/j.jweia.2014.08.007
https://doi.org/10.1016/j.renene.2016.03.005
https://doi.org/10.1016/j.renene.2016.03.005
https://doi.org/10.1155/2011/621235
https://doi.org/10.1155/2011/621235
https://doi.org/10.5065/D65Q4T4Z
https://doi.org/10.5065/D65Q4T4Z
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1007/BF00718085


276 N. B. P. Souza et al.

of Applied Meteorology 9: 857-861. https://doi.
org/10.1175/1520-0450(1970)009<0857:TM-
ROWS>2.0.CO;2

Pei L, Moore N, Zhong S, Luo L, Hyndman DW, Heilman 
WE, Gao Z. 2014. WRF Model sensitivity to land sur-
face model and cumulus parameterization under short-
term climate extremes over the southern Great Plains 
of the United States. Journal of Climate 27: 7703-7724. 
https://doi.org/10.1175/JCLI-D-14-00015.1

Penchah MM, Malakooti H, Satkin M. 2017. Evaluation of 
planetary boundary layer simulations for wind resource 
study in east of Iran. Renewable Energy 111: 1-10. 
https://doi.org/10.1016/j.renene.2017.03.040

Pleim JE. 2007. A combined local and nonlocal closure 
model for the atmospheric boundary layer. Part II: 
Application and evaluation in a mesoscale meteoro-
logical model. Journal of Applied Meteorology and 
Climatology 46: 1396-1409. https://doi.org/10.1175/
JAM2534.1

Ramos DNS, Lyra RFF, Júnior RSS. 2013. Previsão do 
vento utilizando o modelo atmosférico WRF para o 
estado de Alagoas. Revista Brasileira de Meteoro-
logia 28: 163-172. https://doi.org/10.1590/S0102-
77862013000200005

Salamanca F, Zhang Y, Berlage M, Chen F, Mahalov A, 
Miao S. 2018. Evaluation of the WRF-Urban Modeling 
System coupled to Noah and Noah-MP land surface 
models over a semiarid urban environment. Journal of 
Geophysical Research: Atmospheres 123: 2387-2408. 
https://doi.org/10.1002/2018JD028377

Salvador N, Loriato AG, Santiago A, Albuquerque TTA, 
Reis NC, Santos JM, Landulfo E, Moreira G, Lopes 
F, Held G, Moreira DM. 2016a. Estudo da camada 
limite interna térmica em condições de brisa do mar, 
utilizando diferentes parametrizações: Aplicação do 
modelo WRF na região da Grande Vitória. Revista 
Brasileira de Meteorologia 31: 593-609. https://doi.
org/10.1590/0102-7786312314b20150093

Salvador N, Reis NC, Santos JM, Albuquerque TTA, Lo-
riato AG, Delbarre H, Augustin P, Sokolov A, Moreira 
DM. 2016b. Evaluation of weather research and 
forecasting model parameterizations under sea-breeze 
conditions in a North Sea coastal environment. Journal 
of Meteorological Research 30: 998-1018. https://doi.
org/10.1007/s13351-016-6019-9

Shin HH, Hong SY. 2011. Intercomparison of planetary 
boundary-layer parameterizations in the WRF model 
for a single day from CASES-99. Boundary-Layer 

Meteorology 139: 261-281. https://doi.org/10.1007/
s10546-010-9583-z

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker 
DM, Duda MG, Huang XY, Wang W, Powers JG. 
(2008). A description of the Advanced Research WRF 
version 3 (No. NCAR/TN-475+STR). University 
Corporation for Atmospheric Research. https://doi.
org/10.5065/D68S4MVH

Smirnova TG, Brown JM, Benjamin SG. 1997. Perfor-
mance of different soil model configurations in simu-
lating ground surface temperature and surface fluxes. 
Monthly Weather Review 125: 1870-1884. https://
doi.org/10.1175/1520-0493(1997)125<1870:PODS-
MC>2.0.CO;2

Smirnova TG, Brown JM, Benjamin SG, Kim D. 2000. 
Parameterization of cold-season processes in the MAPS 
land-surface scheme. Journal of Geophysical Research 
105: 4077-4086. https://doi.org/10.1029/1999JD901047

Soni M, Payra S, Sinha P, Verma S. 2014. A performance 
evaluation of WRF model using different physical 
parameterization scheme during winter season over a 
semi-arid region, India. International Journal of Earth 
and Atmospheric Science 1: 104-114.

Stucki P, Dierer S, Welker C, Gomez-Navarro JJ, Raible 
CC, Martius O, Brönnimann S. 2016. Evaluation of 
downscaled wind speeds and parameterized gusts for 
recent and historical windstorms in Switzerland. Tellus 
A 68: 31820. https://doi.org/10.3402/tellusa.v68.31820

Surussavadee C. 2017a. Evaluation of tropical near-sur-
face wind forecasts using ground observations. The 
8th International Renewable Energy Congress (IREC 
2017). https://doi.org/10.1109/IREC.2017.7926006

Surussavadee C. 2017b. Evaluation of WRF near-surface 
wind simulations in tropics employing different plan-
etary boundary layer schemes. The 8th International 
Renewable Energy Congress (IREC 2017). https://doi.
org/10.1109/IREC.2017.7926005

Tyagi B, Magliulo V, Finardi S, Gasbarra D, Carlucci G, 
Toscano P, Zaldei A, Riccio A, Calori G, D’Allura 
A, Gioli B. 2018. Performance analysis of planetary 
boundary layer parameterization schemes in WRF 
modeling set up over southern Italy. Atmosphere 9: 
272. https://doi.org/10.3390/atmos9070272

Wharton S, Simpson M, Osuna JL, Newman JF, Biraud 
SC. 2015. Role of surface energy exchange for simu-
lating wind turbine inflow: A case study in the southern 
Great Plains, USA. Atmosphere 6: 21-49. https://doi.
org/10.3390/atmos6010021

https://doi.org/10.1175/1520-0450(1970)009
https://doi.org/10.1175/1520-0450(1970)009
https://doi.org/10.1175/JCLI-D-14-00015.1
https://doi.org/10.1016/j.renene.2017.03.040
https://doi.org/10.1175/JAM2534.1
https://doi.org/10.1175/JAM2534.1
https://doi.org/10.1590/S0102-77862013000200005
https://doi.org/10.1590/S0102-77862013000200005
https://doi.org/10.1002/2018JD028377
https://doi.org/10.1590/0102-7786312314b20150093
https://doi.org/10.1590/0102-7786312314b20150093
https://doi.org/10.1007/s13351-016-6019-9
https://doi.org/10.1007/s13351-016-6019-9
https://doi.org/10.1007/s10546-010-9583-z
https://doi.org/10.1007/s10546-010-9583-z
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175/1520-0493(1997)125
https://doi.org/10.1175/1520-0493(1997)125
https://doi.org/10.1029/1999JD901047
https://doi.org/10.3402/tellusa.v68.31820
https://doi.org/10.1109/IREC.2017.7926006
https://doi.org/10.1109/IREC.2017.7926005
https://doi.org/10.1109/IREC.2017.7926005
https://doi.org/10.3390/atmos9070272
https://doi.org/10.3390/atmos6010021
https://doi.org/10.3390/atmos6010021


277Performance evaluation of the WRF model in a tropical region

Willmott CJ, Robeson SM, Matsuura K. 2012. A refined 
index of model performance. International Journal of 
Climatology 32: 2088-2094. https://doi.org/10.1002/
joc.2419

Xie B, Fung JCH, Chan A, Lau A. 2012. Evaluation of 
nonlocal and local planetary boundary layer schemes 
in the WRF model. Journal of Geophysical Research 
117: D12103. https://doi.org/10.1029/2011JD017080

Xiu A, Pleim JE. 2001. Development of a land surface mod-
el. Part I: Application in a mesoscale meteorological 
model. Journal of Applied Meteorology 40: 192-209. 
https://doi.org/10.1175/1520-0450(2001)040<0192:-
DOALSM>2.0.CO;2

Zempila MM, Giannaros TM, Bais A, Melas D. 2016. 
Evaluation of WRF shortwave radiation parameter-
izations in predicting global horizontal irradiance in 
Greece. Renewable Energy 86: 831-840. https://doi.
org/10.1016/j.renene.2015.08.057

Zhang D, Anthes RA. 1982. A high-resolution model 
of the planetary boundary layer-sensitivity tests 
and comparisons with SESAME-79 data. Journal 
of Applied Meteorology 21: 1594-1609. https://
doi.org/10.1175/1520-0450(1982)021<1594:AHR-
MOT>2.0.CO;2

Zilitinkevich SS. 1995. Non-local turbulent transport: 
pollution dispersion aspects of coherent structure 
of convective flows. Transactions on Ecology and 
the Environment 6: 53-60. https://doi.org/10.2495/
AIR950071

Zucatelli PJ, Nascimento EGS, Aylas GYR, Souza NBP, 
Kitagawa YKL, Moreira DM. 2019. Short-term 
wind speed forecasting in Uruguay using computa-
tional intelligence. Heliyon 5: e01664. https://doi.
org/10.1016/j.heliyon.2019.e01664

https://doi.org/10.1002/joc.2419
https://doi.org/10.1002/joc.2419
https://doi.org/10.1029/2011JD017080
https://doi.org/10.1175/1520-0450(2001)040
https://doi.org/10.1016/j.renene.2015.08.057
https://doi.org/10.1016/j.renene.2015.08.057
https://doi.org/10.1175/1520-0450(1982)021
https://doi.org/10.1175/1520-0450(1982)021
https://doi.org/10.2495/AIR950071
https://doi.org/10.2495/AIR950071
https://doi.org/10.1016/j.heliyon.2019.e01664
https://doi.org/10.1016/j.heliyon.2019.e01664

