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RESUMEN

El presente estudio se enfoca a la investigación de la variabilidad tanto vertical como cercana a la superficie 
de las concentraciones de monóxido carbono (CO), así como de sus fuentes potenciales, obtenidas tanto in 
situ como a partir de datos satelitales del instrumento MOPITT (Measurement of Pollution in the Tropos-
phere) sobre una región semiárida (Anantapur, India), de enero de 2016 a diciembre de 2017. La variación 
diurna del CO muestra picos pronunciados durante la mañana (de 07:00 a 09:00 horas) y la tarde (de 19:00 a 
21:00 horas) asociados con actividades antrópicas locales y el impacto de la altura de la capa de mezcla, así 
como bajas concentraciones en el día (12:00 a 15:00 horas). Los bajos niveles durante las horas de la tarde 
pueden deberse al incremento de la altura de la capa de mezcla y al decremento de las fuentes antrópicas. 
La media estacional del CO no mostró variaciones evidentes, con los niveles más altos observados durante 
el invierno (329 ± 52 ppbv), seguido por el premonzón (327 ± 57 ppbv), el postmonzón (234 ± 36 ppbv) y el 
monzón (192 ± 22 ppbv). Los niveles altos de CO observados durante el invierno se atribuyen a emisiones 
antrópicas y a la escasa altura de la capa de mezcla. La distribución vertical del CO mostró picos secundarios 
en presencia de niveles de presión altos (300-200 hPa) durante el invierno, el premonzón y el postmonzón, lo 
cual indica que hay transporte desde diferentes fuentes regionales. El análisis de la concentración ponderada 
de la trayectoria (CWT, por sus siglas en inglés) de la masa de aire, obtenida a partir del modelo HYSPLIT 
(Hybrid Single Particle Lagrangian Integrated Trajectory) confirma de manera razonable estos hallazgos. El 
presente estudio sugiere que, con excepción de la época del monzón, las masas de aire transportadas desde 
la región de la cuenca indogangética también contribuyen al incremento de las concentraciones de CO en 
el sitio receptor.

ABSTRACT

The present study focuses on the investigation of both near-surface and vertical variability of carbon mon-
oxide (CO) concentrations and their potential sources obtained from both in situ and satellite Measurements 
of Pollution in the Troposphere (MOPITT) over a semiarid region (Anantapur, India) from January 2016 to 
December 2017. The diurnal variation of CO shows sharp morning (07:00-09:00 LT) and evening (07:00-
09:00 LT) peaks associated to local anthropogenic activities as well as the impact of the mixed layer height, 
and low concentrations during daytime (12:00-15:00 LT). The low levels during afternoon hours may be 
due to the increase of the mixed layer height and the decrease of anthropogenic sources. The seasonal mean 
CO showed no obvious variation, with highest levels observed in winter (329 ± 52 ppbv), followed by the 
pre-monsoon (327 ± 57 ppbv), post-monsoon (234 ± 36 ppbv) and monsoon (192 ± 22 ppbv). The high levels 
of CO during the winter are attributed to increased emissions from anthropogenic sources and a shallow mixed 
layer height. The vertical distribution of CO showed secondary peaks at high-pressure levels (300-200 hPa) 
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during winter, pre-monsoon, and post-monsoon, which indicates CO transport from different source regions. 
These findings are reasonably confirmed through the air mass Concentrated Weighted Trajectory (CWT) 
analysis obtained from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. This 
study suggests that except for the monsoon, air masses transported from Indo-Gangetic Basin region also 
contribute to the enhancement of CO concentrations at the receptor site.

Keywords: carbon monoxide, MOPITT, HYSPLIT, semiarid.

1.	 Introduction
Rapid industrial development and economic growth 
in South Asia has contributed to increasing emis-
sions of trace gases and particulate matter in the 
atmosphere, which have a strong impact on both 
global and regional environment (Akimoto, 2003; 
Pozzer et al., 2012). The nature and extent of these 
emissions are employed to develop policies to mit-
igate their impact. Biomass and fossil fuel burning, 
as well as vehicular emissions are the most import-
ant sources for the formation of carbon monoxide 
(CO), though a lower amount of CO derives from the 
ocean and geological activity (Reddy et al., 2008). 
This gas indirectly contributes to global warming 
and also reduces the blood’s ability to carry oxy-
gen to body organs. It is known as a precursor of 
ozone (O3) and is a source of CO2. In addition, CO 
is responsible for the direct surface emission and 
oxidation of hydrocarbons (Duncan et al., 2007). It 
can react chemically with other atmospheric con-
stituents (primarily the hydroxyl radical, OH.) that 
would otherwise destroy methane. CO’s chemical 
lifetime is relatively short and spatially variable in 
concentration, depending on the OH concentrations 
(Lawrence et al., 2003). 

Few studies of CO concentrations have been 
conducted in India by using in-situ techniques (Lal 
et al., 2000, 2012; Naja and Lal, 2002; Sahu et al., 
2006; Beig et al., 2007; Mallik and Lal, 2014; Sarangi 
et al., 2014). Apart from real-time measurements, 
satellite studies have also been performed to study 
the dynamical effects and long-term trends of CO 
concentrations in the troposphere (Kar et al., 2004, 
2008, 2010; Ghude et al., 2011; Kumar et al., 2013; 
Worden et al., 2013; Girach and Nair, 2014; Sheel 
et al., 2014; Yoon and Pozzer, 2014). For better un-
derstanding the variations of CO concentrations and 
their potential sources over a semiarid region, we 
analyzed CO data both in-situ and from the MOPITT 
instrument onboard the Terra satellite.

The main objective of the present study is to 
analyze the diurnal and seasonal variation of CO 
concentrations during the period 2016-2017. The 
vertical profiles of CO originating from the MOPITT 
instrument are examined during the study period. 
Source apportionment studies are also conducted 
with the help of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) fire counts and the Hy-
brid Single Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model for the identification of sources’ 
origins. Finally, a comparison study is carried out for 
CO in different parts of the Indian region.

2.	 Site description and instrumentation 
2.1 Site description
Anantapur is a very dry continental region which 
receives low precipitation throughout the year, with 
the greatest rainfall occurring during the monsoon 
(Reddy et al., 2016). The sampling site is surrounded 
by a number of cement plants, slab polishing, lime 
kilns, and brickworks; however, national highways 
NH 7 and NH 205 also constitute the largest sources 
of anthropogenic particles (Gopal et al., 2016). The 
climate is governed by monsoon-influenced marine 
weather systems. The entire study period is divided 
into four seasons: winter (December-February), 
pre-monsoon (March-May), monsoon (June-Au-
gust), and post-monsoon (September-November). 
The real-time near-surface CO concentration levels 
were measured at the Department of Physics, Sri 
Krishnadevaraya University (SKU, 14.62º N, 77.65º 
E, 331 masl), located at the southern edge of Anan-
tapur city (Fig. 1).

2.2 Near-surface CO
Near-surface CO concentrations are continuously 
monitored using the CO monitor analyzer (APMA-
370, Horiba, Germany). The analyzer worked ad-
equately based on the principle of non-dispersive 
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infrared absorption. It uses the AS-type detector 
from which extremely high-accurate results were 
obtained without any interference components. The 
performance, efficiency, accuracy, calibration and ad-
vantages of analyzers have been described elsewhere 
(Reddy et al., 2008). However, when the concentra-
tion of the interference gas changes (since there is a 

time gap for the sample and reference gases to reach 
the measurement cell) an influence due to the interfer-
ence gas may occur. In order to address this problem 
(such as a change in the interference gas concentra-
tion) APMA-370 measures the concentration of the 
interference gas component with an interference com-
pensation detector and corrects its influence on the 
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Fig. 1. Location of the Sri Krishnadevaraya University campus area in Anantapur. 
The monitoring site-building in the SK University campus is indicated with 
an arrowhead in the satellite aerial view.
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output signal of the measurement detector. To reduce 
uncertainty in thr levels, the filter was replaced every 
3-4 weeks, and calibration was performed at regular 
intervals. The CO analyzer was zero calibrated with 
zero air generator, and span calibration was per-
formed with the help of a multipoint calibrator. The 
linearity of the instrument was checked with an in-
ternal zero gas and five NIST traceable CO standards 
(60, 250, 300, 500, and 1000 ppb). In addition, daily 
instrument checks were performed using a 500 ppb 
CO standard and zero internal gas.

2.3 MOPITT
The vertical distribution of CO mixing ratios was 
obtained from the Measurements of Pollution in the 
Troposphere (MOPITT) level 3, version 8 instru-
ment, which is aboard the EOS Terra satellite and 
has a horizontal spatial resolution of 22 × 22 km 
and a track swath of 640 km. Daytime data products 
are archived on a 1º × 1º latitude-longitude grid in 
different pressure levels (900, 800, 700, 600, 500, 
400, 300, 200, and 100 mb). More details about the 
retrieval algorithm and validation are available in Pan 
et al. (1995) and Emmons et al. (2010). 

2.4 Aethalometer
Real-time measurements of the black carbon (BC) 
mass concentration were collected using a sev-
en-wavelength Aethalometer (AE 42, Magee Sci-
entific, USA). BC was collected continuously (time 
resolution of 5 min) from January 2016 to December 
2017. The aethalometer measures optical attenuation 
due to particles deposited on a quartz filter (filter-based 
technique) at seven wavelengths: 370, 470, 520, 590, 
660, 880, and 950 nm, with flow rate maintained at 3 
LPM. The BC measured at 880 nm is considered as the 
standard, since BC is the principal light absorber at that 
wavelength. More details about the uncertainty in the 
estimation of BC mass concentration with an Aetha-
lometer and correction factors were well documented 
by Hansen et al. (1984) and Weingartner et al. (2003).

2.5 Concentration weighted trajectory (CWT) anal-
ysis and MODIS fire counts
Concentration Weighted Trajectory (CWT) analysis 
was performed to identify the relative contribution of 
potential source regions to CO levels (Nazeer et al., 
2018; Kalluri et al., 2019, 2020a). Many researchers 

have also used HYSPLIT to identify the pollution 
transport process in different regions. In the CWT 
technique, trajectories reaching over the study site are 
weighted based on the mean concentration measured 
at the location during the arrival of the trajectory. In 
this technique, each grid cell is assigned a concentra-
tion obtained by averaging associated concentrations 
that crossed the grid cell: 
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where Cij is the average weighted concentration in 
the ijth cell, l is the index of the trajectory, M is the 
total number of trajectories, Cl is the concentration 
observed in the trajectory endpoint, and τijl is the 
time spent in the ijth cell by the trajectory l (Seibert 
et al., 1994). The fire-count data was obtained from 
the Fire Information for Resource Management 
System (FIRMS, http://firms.modaps.eosdis.nasa.
gov/firemap/). MODIS provides fire information 
based on a brightness temperature algorithm at the 
4- and 11-mm channels. Confidence levels ranging 
from 0 to 100%, were used to assign one of three 
fire classes to all the fire pixels. Further details about 
the principle and retrieval algorithm are available in 
Giglio et al. (2003). In the present study, data with 
high confidence (> 80%) was considered.

3.	 Results and discussion
3.1 Diurnal and monthly variation of CO
The observed diurnal variation of CO is characterized 
by two peaks during the morning (07:00-09:00 LT) 
and night hours (21:00-23:00 LT). Low concentra-
tions are noticed during daytime (12:00-15:00 LT) 
(Fig. 2). The diurnal variation of CO shows a pre-
dominant peak during the morning as compared to the 
evening, which may be due to variations in the mixed 
layer height and anthropogenic sources. In contrast, 
during the evening, traffic emissions remain almost 
the same, but the mixed layer height decreases, which 
results in higher CO concentrations. During the night, 
CO levels showed little variation in comparison to 
daytime. The diurnal variation with low concentra-
tion during the afternoon could partly be affected 
by lower anthropogenic activities, photooxidation 
processes, and a high mixed layer height. A similar 
diurnal variation of CO was found in other regions 
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of India, such as Ahmadabad (Lal et al., 2000), Chile 
(Rappengluck et al., 2005), Pune (Beig et al., 2007), 
Kanpur (Gaur et al., 2014), Agra (Verma et al., 2017), 
and Kathmandu valley (Bhardwaj et al., 2018). 

The in-situ measured CO surface levels have no 
obvious seasonal variability. Monthly mean maxi-
mum and minimum of CO were noted in March (324 
± 59 ppbv) and August (155 ± 28 ppbv). The month-
ly maximum CO concentration was observed in 
March, on account of anthropogenic emissions from 
agricultural fields (north) close to the measurement 
site. Crop residues are burned by farmers to clear 
agricultural fields to enhance the next crops yield, 
which contributes to a higher amount of CO (Dalvi 
et al., 2006). The seasonal variation of CO showed its 
highest levels in winter (329 ± 52 ppbv) followed by 
pre-monsoon (327 ± 57 ppbv), post-monsoon (234 ± 
36 ppbv) and monsoon (192 ± 22 ppbv). The highest 
levels of CO during winter may be attributed to: (1) 
weak photochemical removal, (2) an increase in local 
emission sources, and (3) low wind speeds that cause 
entrapment of pollutants near the surface. The lowest 
concentration was observed during the monsoon 
season due to winds blowing from the Arabian Sea.

3.2 Vertical variability of CO retrieved from MO-
PITT and synoptic meteorology
Figure 3 shows the vertical distribution of CO mixing 
ratios in different months retrieved from the MOPITT 

instrument over Anantapur. In general, the CO mixing 
ratio decreases with height from 1000 to 100 hPa; 
however, the surface CO mixing ratio was stronger 
at lower altitudes in all months. CO exhibits distinct 
seasonal variations near the surface (1000 hpa) with 
highest levels during the pre-monsoon (244 ± 37 
ppbv) and lowest in the monsoon (134 ± 10 ppbv). 
The pattern of seasonal variation at low altitudes 
(1000 hPa) observed by MOPITT was consistent with 
ground-level measurements. However, at low pres-
sure levels (low pressure corresponds to a higher alti-
tude), CO mixing ratios were found to be low during 
the monsoon due to washout processes, air masses 
originating from the Arabian Sea and less human ac-
tivity. During the pre-monsoon, numerous fires spot-
ted in central India were identified by MODIS. The 
continental air masses dominated during winter and 
pre-monsoon, resulting in higher CO concentrations 
at high altitudes (200 hpa). Vertical wind distribution 
an important cause of the vertical mixing of CO in the 
upper troposphere. Figures 4 and 5 represent the sea-
sonal vertical wind and horizontal wind circulation 
at 850 and 500 hPa over the observational site, ob-
tained from the European Centre for Medium-Range 
Weather Forecasts (ECMWF)-interim reanalysis and 
Modern-Era Retrospective Analysis For Research 
And Applications (MERRA) data during 2016-2017. 
The color bar in the figures represents wind speed, 
and the arrow indicates the wind direction and the 
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white square indicates the observation site. The wind 
during winter, pre-monsoon and post-monsoon at 
850 hpa was originated from the northwest and 
passed through central India before reaching the 
observation site. The northwestern winds are respon-
sible for the transport of CO from urban locations in 
central India. During the post-monsoon, a synoptic 
wind pattern originated from the central Indo-Gan-
getic Basin (IGB), which is due to an additional 
source of CO mixing ratios observed at low pressure 
levels over the measurement location. During the 
monsoon, season winds generally originate from the 
Arabian Sea and low anthropogenic activities, which 
are responsible for low CO mixing ratios over the 
measurement location. Figures 4 and 5 show that the 
observed CO concentration at high altitudes during 
winter and the post-monsoon is attributed to the 
vertical transport of surface level CO in the mid and 

upper troposphere. This is due to the fact that vertical 
velocities are negative and much weaker (downward 
motion) during winter and the post-monsoon seasons 
over the observational site, as seen in Figure 4a, g. 

3.3 Relation between BC and CO
BC and CO are a result of the combustion of fossil 
fuel and biomass burning, and they have a relatively 
long atmospheric lifetime. Both are inert chemi-
cally in a timeframe of a few hours, thus, chemical 
reactions are not expected to change their concen-
trations during air mass transport between emission 
sources and measurement sites (Baumgardner et al., 
2002). The scatter plots of BC and CO for different 
seasons are shown in Figure 6a-d. The correlation 
coefficient between CO and BC was found to be 
0.42,0.43,0.39,0.37 for winter, pre-monsoon, mon-
soon and post-monsoon, respectively. The moderate 
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correlation between CO and BC was influenced both 
by emissions from local activities and transport over 
the observation site. As suggested by previous studies 
(Kalluri et al., 2017, 2020b; Gopal et al., 2014, 2017) 
long-range transport could be an important source of 
absorbing aerosols (except during the monsoon) over 
the measurement location.

3.4. Source apportionment and MODIS fire counts
In order to identify the CO transport pathways, 
isentropic CWT cluster analysis was derived based 
on air mass back-trajectories data at an altitude of 
500 m above the ground level using the HYSPLIT 
model and the MODIS Fire Mapper products 

to give an idea about the location and extent of 
fires for the entire period (Figs. 7 and 8) (Draxler 
et al., 1997). Local sources contribute actively 
to the measured CO, whereas polluted air originated 
from upwind high industrialized regions also play 
a part in the enhancement of CO as is evident from 
the observed trajectories during winter (Fig. 8a). 

Furthermore, a widespread of active fires was 
observed by MODIS in areas of the northeastern 
regions compared to other regions during the 
pre-monsoon, indicating the significant influence 
of biomass burning in the production of CO and 
its concentration levels in the troposphere (Figs. 
7b and 8b). A similar condition occurs during the 
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Fig. 8. Five-day isentropic HYSPLIT back-trajectories reaching over the study location in different seasons during 
the study period.
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post-monsoon, although less fires befall over the 
IGB region, and most of the anthropogenic particles 
are removed by the washout process triggered by the 
southwest monsoon over the measurement location 
(Kalluri et al., 2016, 2017). During the monsoon, 
winds originate from the Arabian Sea and pollution 
from anthropogenic activities is removed by the 
washout process (Fig. 8c).

3.5. Comparison with other sites in India 
It is interesting to compare our results with those 
obtained in other Indian regions (Table I). It can be 
seen that CO concentrations over the study region 
were greater than in a high altitude location (Nainital) 
and a rural location (Gadanki). However, it can also 
be noticed that CO concentration levels over polluted 
urban locations (Dehli, Agra, Kanpur) are more than 
twice compared with the present study location. Fur-
thermore, the seasonal variation of CO levels at the 
study site and Udaipur was almost similar except for 
the post-monsoon. A large difference was observed in 

both regions during the post-monsoon due to s change 
in the direction of air masses. However, CO levels 
at the measuring site were higher than in Udaipur 
since in the latter farmers burned crop residues from 
agriculture activities.

4.	 Conclusions
In this study we presented a comprehensive analysis 
of CO concentrations using in-situ and MOPITT sat-
ellite observations from January 2016 to December 
2017 over a semi-arid region in India (Anantapur). 
The important findings of the present study are sum-
marized as follows:

•	 The seasonal mean variation of in-situ measured 
CO concentrations was highest (329 ± 52 ppbv) 
during the winter and lowest (192 ± 22 ppbv) 
during the monsoon.

•	 Continental air masses dominated during winter 
and pre-monsoon, resulting in secondary peaks 
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Table I. Comparison of CO concentration levels over Anantapur with those reported from a other locations in India.

Station Period Concentration (ppbv) Reference

New Delhi 2000-2009 2940 ± 1729 Chelani, 2012

Delhi Jan 2013-Dec 2014 2500 ± 400 (PoM), 2500 ± 300(W),
2400 ± 800 (M)

Tyagi et al., 2016

Agra Nov 2003-Feb 2005 710 ± 159.4 Renuka et al., 2008

Kanpur Jun 2009-May 2013 721 ± 403 Gaur, 2014

Ahmedabad 2002 385 ± 200 Sahu et al., 2006

Gadanki 1993-1996 237 ± 64 Naja and Lal, 2002

Nainital 2009-2011 174 ± 108 Sarangi et al., 2014

Udaipur 2010-2011 462 ± 85 (W), 297 ±64 (PM),
252 ± 52 (M), 37 ± 58 (PoM)

Yadav et al., 2014

Anantapur Jan 2016-Dec 2017 329 ± 52 (W), 327 ± 57 (PM),
234 ±36 (M), 192 ± 22 (PoM)

Present study

Kathmandu Valley Dec 2012-June 2013 500 ± 230 Mahata et al., 2017

Agra Mar 2015 - Feb 2016 770 ± 466 ppb (W), 466 ± 301 (PoM)
232 ± 223 (PM), 153 ± 122 (M)

Verma et al., 2017

W: winter; PM: pre-monsoon; M: monsoon; PoM: post-monsoon.

of CO concentrations at high altitudes (200 hpa). 
•	 The moderate correlation between CO and BC 

is noticed at the observation site, where mea-
surements were influenced by emissions from 
various sources.

•	 The CWT analysis obtained from HYSPLIT 
suggests that except for the monsoon, air masses 
transported from central parts of India and the IGB 
region play a vital role in enhancing concentration 
levels at the receptor site.
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