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RESUMEN

Meéxico es un pais vulnerable a los eventos climaticos extremos; sin embargo, el impacto no es uniforme
en todo el territorio, por lo que se analizan y modelan las temperaturas extremas de 12 ciudades de México
con la suposicion de que existe un clima no estacionario en todas las regiones del pais. A partir de la base
climatologica disponible de temperaturas maximas y temperaturas minimas, se estimo una tendencia temporal
con las pruebas no paramétricas de Mann-Kendall y el método de pendiente de Sen, y se utiliz6 la distribu-
cion generalizada de valores extremos (GEV) para modelar ambas temperaturas. Para evaluar la fortaleza
de los modelos propuestos con la incorporacion de una covariable, se utilizaron tanto la prueba de razon de
verosimilitud como los criterios de informacion de Akaike y de Bayes, y se estimaron los niveles de retorno
para escenarios temporales futuros. Se detect6 una tendencia al calentamiento urbano, tanto con las pruebas
no paramétricas como con la distribucion GEV, aunque con comportamiento heterogéneo. En la serie de
temperatura maxima, la mitad de las ciudades analizadas se mostrd no estacionaria; de éstas, la ciudad de
Guadalajara, situada en el centro-occidente del pais, presento tendencia negativa. En el caso de las temperaturas
minimas la tendencia fue mas uniforme: 90% de las ciudades se mostraron no estacionarias con tendencia
positiva y so6lo el 10% (una zona urbana al oriente de la zona metropolitana del Valle de México [Milpa Alta]
y una ciudad costera del Golfo de México [Veracruz]) mostraron una serie estacionaria. Se concluye que
los periodos de retorno de extremos térmicos estimados en un clima cambiante varian temporalmente, por
lo que la modelacion estadistica debe tomar en cuenta ese comportamiento en razon de su importancia para
valoraciones de riesgos y propodsitos de adaptacion.

ABSTRACT

Mexico is vulnerable to extreme climatic events; however, their impact is not uniform in all the country. This
study presents an analysis of extreme temperatures in 12 Mexican cities, modeled under the assumption of a
non-stationary climate. Temporal trends were estimated from an available climatological base of maximum
and minimum temperatures with the non-parametric tests of Mann-Kendall and Sen’s slope method, and a
generalized extreme value (GEV) distribution was used to model both temperatures. A likelihood ratio test
and Akaike and Bayesian information criteria were used to evaluate the optimal model choice with incorpo-
ration of a covariate. Using the best model, return levels and confidence intervals for future scenarios were
estimated. A trend towards urban warming was detected from both the non-parametric tests and the GEV
distribution, although with heterogeneous behavior. In the series of the maximum temperatures, half of the
cities analyzed were non-stationary, and of those, the city of Guadalajara, located in the center-west of the
country had a negative trend. The trend for minimum temperatures was more uniform, as 90% of the cities
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were non-stationary with a positive trend, and only 10%, in an urban area to the east of the metropolitan arca
of the Valley of Mexico (Milpa Alta) and a coastal city of the Gulf of Mexico (Veracruz), showed stationary
series. It is therefore concluded that return periods of thermal extremes estimated in a changing climate
temporarily showed a significant variation, so statistical modeling must consider this behavior due to its
importance for risk assessments and adaptation purposes.

Keywords: extreme temperatures, non-stationary climate, generalized extreme value distribution, return

periods, cities of Mexico.

1. Introduction

Extreme climate events (ECE) must be periodically
monitored and analyzed in detail, due to their role
as high impact agents on society, environment, and
ecosystems. An extreme climatic or meteorological
event refers to the occurrence of a climatic or mete-
orological variable which value is above or below a
threshold that is close to the upper (or lower) limits
of the range of observed values of the variable
(Seneviratne et al., 2012). ECE are important because
of their impacts, but they are difficult to quantify sta-
tistically, as they are infrequent and occur at multiple
scales (Palmer and Riisdnen, 2002). The definitions
of “rare” vary, but an ECE would normally be as rare
as, or rarer than, the 10th or 90th percentile of the
observed probability density function.

It is likely that different ECE affect specific re-
gions and increases in their frequency and intensity
have been detected in several regions of the world
(Brown et al., 2008; Almazroui et al., 2014; Chen et
al., 2015; Wypych et al., 2017; Caloiero, 2017). It is
expected that these ECE will intensify in the future
in response to global climate changes caused by the
emission of greenhouse gases (Beniston et al., 2007;
Gao et al., 2012; Lau and Nath, 2012; Easterling et
al., 2016; Grotjahn et al., 2016; Schoof and Robeson,
2016).

There are basically two fundamental approaches
to study ECE: global circulation models (GCMs),
and statistical models using the extreme value theory
(EVT). Contemporary GCMs, such as those used
for the 5th Coupled Model Intercomparison Project
(Taylor et al., 2012) are a key component of regional
climate change projections, but their limited spatial
resolution reduces their utility in estimating local or
regional extremes without substantial post-process-
ing (Schoof and Robeson, 2016). On the other hand,
the central issue of EVT is the modeling of extreme
events, and the main purpose of this theory is to

provide asymptotic models for the distribution tails
(Furié and Meneu, 2011). Therefore, EVT aims at
deriving a probability distribution of events at the far
end of the upper or lower ranges of the probability
distributions (Coles, 2001); its main advantage is
that it allows for estimating and analyzing the prob-
ability of occurrence of events that are outside of the
observed data range (Raggad, 2018).

For these reasons, EVT is the approach that has
been chosen in this research due to its wide appli-
cability in different fields that are related to extreme
weather and climate events and their impact: ecology
(Moritz, 1997; Meehl et al., 2000; Dixon et al., 2005;
Katzetal., 2005; Jentsch et al., 2007; Burgman et al.,
2012); extreme temperatures and heat waves (Meehl
and Tebaldi, 2004; Della-Marta et al., 2007; Parey et
al., 2007; Garcia-Cueto et al., 2010; Waylen et al.,
2012; Tanarhte et al., 2015; Liu et al., 2015; Shen et
al., 2016); extreme rainfall (Katz et al., 2002; Kout-
soyiannis, 2004; Friederichs, 2010; Papalexiou and
Koutsoyiannis, 2013; Kim et al., 2015; Boucefiane
and Meddi, 2019); and damages to the communities
that affect agroecosystems through changes in soil
moisture and evapotranspiration rates (Miralles et al.,
2014; Whan et al., 2015; Guan et al., 2015; Hatfield
and Prueger, 2015).

Changes in extremes of temperature and precipi-
tation have been evaluated in different regions of the
world. However, until the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change
(Trenberth et al., 2007), the cities had been treated
as “noise-generating” entities in globally studied cli-
matic signals. In the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC,
2013), a special chapter was dedicated to the subject
of cities, and their role in climate change. This is
not surprising, as although cities are very important
contributors to social and economic well-being,
they require an uninterrupted source of energy for
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all their activities. Cities consume approximately
75% of global primary energy and emit between 50-
60% of the greenhouse gases (GHG) on the planet
(Rosenzweig et al., 2011). This figure can be raised
to 80% when indirect emissions generated by inhab-
itants of the cities are included (UN-Habitat, 2011;
Kraussmann et al., 2017). Thus, cities promote global
warming, and contribute to an increase in average
surface temperature at the planetary level.

In addition to the global effects of GHG, the
worldwide upward trend of urban growth must be
considered, both in population and in its areal ex-
tension. This growth has generated environmental
problems, not only air pollution and solid waste,
but also those concerning a different environmental
product, such as the genesis of an urban climate. In
particular, the main connotation of urban climate is
the formation of an urban heat island, which in turn
requires additional water and energy to maintain ther-
mal comfort through air-conditioned spaces (Coutts
etal.,2012; Wangetal.,2016; de Munck et al., 2018,
Skelhorn et al., 2018). Thus, cities that are already
particularly vulnerable to ECE caused by global
climate change must now also consider the effects
caused by local climate change. Therefore, it can be
inferred that because a city is the geographical space
that brings together a majority of the population and
provision of services, it will be where the greatest
vulnerabilities associated with the impacts of climate
change manifest themselves (UN-Habitat, 2011).

In Mexico approximately three out of four people
(72.3%) live in cities according to Fundacion Cen-
tro de Investigacion y Documentacion de la Casa
and Sociedad Hipotecaria Federal (CIDOC-SHF,
2011). This percentage is expected to increase in
the medium term, as according to projections of the
National Population Council the number of people
in 384 localities of the National Urban System will
increase by 16.6 million (from 82.6 million in 2010
to 99.3 million in 2030) as a result of an annual av-
erage growth rate 0f 0.92% (Hernéndez et al., 2014).
The urban proportion of the national population will
increase to 77.9% (18.1 million new urban inhab-
itants). This trend of the geographic dynamics of
cities is inequitable with low levels of quality of life
and urban sustainability, and not all cities have the
same development potential. Thus, the challenges in
facing climatic risks such as heat waves and floods

will be massive if quantitative scientific studies are
not carried out.

Very little research has been conducted in Mexico
on extreme climate values in urban environments
(Magana et al. 2003, 2012; Cavazos and Rivas, 2004;
Rios-Alejandro, 2011; Garcia-Cueto et al., 2013,
2014, 2018; Martinez-Austria and Bandala, 2017).
This can be explained by a limited access to mea-
sured climate data, limitations in the geographical
coverage of the networks of stations, and interrup-
tions in climate series due to missing data. In view
of this and given the quantitative uncertainty of the
climate extremes mentioned at the urban level and
their great importance for the assessment of risks and
adaptation proposals, this study selects some cities
in Mexico with important increases in population
and in areal extension, which have recently been
affectated by ECE.

Thus, this study has three main objectives: (a) to
detect thermal behavior in some growing cities of
Mexico, (b) to model extreme temperatures through
the EVT, and (c) to make projections of return lev-
els for extreme temperatures in a future changing
climate.

This paper is organized as follows: section 2 pres-
ents the climatology of extreme values in Mexico;
section 3 presents the study area and the climate data,
and section 4 provides a theoretical outline of the
methodology. The results and discussion are present-
ed in section 5. In section 6, conclusions are drawn.

2. Climatology of extreme temperature values of
Mexico

Figures 1 and 2 show the 10th and 90th percentiles of
minimum and maximum temperatures, respectively
(Cavazos et al., 2013), for the period 1961-2000; the
methodology used in these figures is described in
Colorado-Ruiz et al. (2018). According to extreme
climate indices derived from reliability ensemble av-
eraging (REA) (Fig. 1), the coldest winters and their
10th percentile (P10) during the winter months of De-
cember, January, and February (DJF) for Mexico are
characterized by minimum temperatures below 0 °C
in the highlands of the Sierra Madre Occidental and
the Mexican High Plateau, and between 0 and 5 °C
in much of northern Mexico. Figure 2 shows that the
extreme values of the 90th percentile (P90) of the
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Fig. 1. Thresholds of P10 of minimum temperature for win-
ter, obtained with the ensemble of the Reliability Ensemble
Averaging (REA) for 1961-2000 (Cavazos et al., 2013).
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Fig. 2. Thresholds of P90 of maximum temperature for
summer, obtained with the ensemble of the Reliability
Ensemble Averaging (REA) for 1961-2000 (Cavazos et
al., 2013).

maximum temperatures during the summer months of
June, July, and August (JJA) expand the area covered
by the isotherms of 25 and 40 °C to a narrower strip in
the border region. This region of semiarid climate is
the most extreme in Mexico; therefore, it is the most
susceptible to negative impacts caused by increases
in temperature.

The projected climate changes at a national level
(Cavazos et al., 2013) agree with those obtained
globally (Alexander et al., 2006; Caesar et al., 2011;
Song et al., 2014). Regarding those related to the
increase in the frequency of heat days, heatwaves and
variability in precipitation will exacerbate problems
related to natural and human systems (Ummenhofer
and Meehl, 2017). If we analyze the 10th and 90th
percentiles of extreme temperatures at the national
level, there is a notable lack of reliable and timely

information at the regional and urban levels for risk
assessment, which justifies the study carried out
herein.

3. Data and study area

A digital historical collection of daily temperature
data for several cities in Mexico was possible using
information from climatological stations operated
by the Servicio Meteorologico Nacional (SMN, Na-
tional Weather Service). Unfortunately, the selection
of urban areas of interest faced some limitations, as
not all climate stations have the same record length,
and none had a strict data quality control. Based on
a previous analysis of the growth of some cities in
Mexico and the occurrence of climatic events that
have affected them in important ways, 21 cities were
selected in the first instance. However, an analysis of
the quality of climate information limited the study to
only 12 cities. These cities are heterogeneously dis-
tributed in the country because, as mentioned above,
they were selected for their population growth and
urban development. Data quality control was carried
out for the daily information for each city, consisting
of the following synthetic process.

The SMN database from the Climate Computing
Project (CLICOM) was extracted in the .csv format,
using Matlab and RClimdex software. The climatic
information was explored, and quality control was
performed for the original database. The daily me-
teorological values of maximum temperature (TXX)
and minimum temperature (TNN) were selected
with a computation routine; at the same time, a
continuity of the time series was sought by adding
missing dates and values, if possible, and adding
a —99.99 label for missing data. Subsequently, the
database was imported into the RClimdex program
(Zhang and Yang, 2004), ensuring the internal and
temporal consistency of the daily climatological
information. This quality control validated the
following: (1) internal coherence, by verifying
that the maximum temperature was always greater
than the minimum temperature; (2) identification of
atypical values and changes in the seasonal cycle
or variability of the data through visual inspection
of the time series of TXX and TNN, and (3) identi-
fication of values located more than four standard
deviations (o) from the mean as outliers and possible
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errors. Finally, outliers were verified individually to
determine if they had been caused by an atypical
event or if the measurement was incorrect and had
to be discarded.

Temporal homogeneity of the data was then eval-
uated using the RHtest V3 software (Wang and Feng,
2010) to identify abrupt jumps or change-points. This
homogeneity test is based on a two-phase regression
model with a linear trend for the entire series, applied
to selected series for each of the cities.

The final selection included the following
cities and/or intra-urban regions for the detailed
analysis of extreme temperatures: Aguascalien-
tes, Mexicali, Tijuana, Tuxtla Gutiérrez, Mexico
City (with analysis of the climatological sta-
tions of Ursula Coapa, Gran Canal, and Milpa
Alta), Leon, Guadalajara, Monterrey, Puebla,
Tlaxcala, Veracruz and the metropolitan area of
the Valley of Mexico, including the urban ar-
eas of Toluca, Aculco and Chapingo (Table I).
Their locations are presented in Figure 3 and, as
can be seen, the analysis includes cities distributed
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in central Mexico (18-25° N latitude), a city in
southeastern Mexico (Tuxtla Gutiérrez), another
innortheastern Mexico (Monterrey), and two more in
northwestern Mexico (Tijuana and Mexicali).
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Fig. 3. Locations of intra-urban cities or regions according
to Table I.

Table I. City or urban region, climatological station number, elevation, period of useful data,
historical values of extreme maximum temperature, and extreme minimum temperature.

ID City or urban region Climatological  Elevation Period TXX  TNN

station number®  (masl) °C) (°C)
1 Aguascalientes 01030 1889 1950-2015  40.0 —6.0
2 Mexicali 02033 4 1950-2012  52.0 -7.0
3 Tijuana 02038 120 1950-2012  45.0 0.0
4 Tuxtla Gutiérrez 07165 570 1980-2010  42.0 7.1
5 Ursula Coapa, CDMX 09014 2256 1971-2013  34.5 -3.0
6  Gran Canal, CDMX 09029 2239 1952-2008  38.5 7.5
7  Milpa Alta, CDMX 09032 2420 1963-2012  34.0 -2.5
8 Leon 11095 1828 1959-2014  39.5 -2.5
9  Guadalajara 14066 1550 1957-2013  47.0 -1.5
10 Aculco, ZMVM 15002 2490 1970-2011  32.0 -5.0
11 Toluca, ZMVM 15126 2726 1974-2009 33.6 -10.0
12 Chapingo, ZMVM 15170 2250 1954-2010  37.5 -8.5
13 Monterrey 19049 495 1949-2009  48.0 -7.5
14 Puebla 21035 2122 1955-2013  36.5 -6.0
15 Tlaxcala 29030 2230 1969-2013  39.2 7.4
16  Veracruz 30192 16 1930-2014  42.7 7.9

aClimatological station number refers to the key that the National Weather Service (SMN) of

Mexico manages in its files.

TXX: extreme maximum temperature; TNN: extreme minimum temperature; CDMX: Mexico
City; ZMVM: metropolitan area of the Valley of Mexico.
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Our study focused on ECE using a parametric
non-stationary generalized extreme value (GEV)
distribution model, which tacitly assumes that
extreme events are changing over time as climate
changes. Instead of the climate change indices used in
Garcia-Cueto et al. (2018), the current study directly
applies extreme temperature values. In addition, the
non-stationary GEV model is applied to investigate
how the return levels of extreme temperatures might
change in the future.

It is worth mentioning that for the city of Mexicali,
due to the importance of extreme temperatures for
human comfort and energy consumption for use in
air conditioning, other studies have been carried out
(Garcia-Cueto et al., 2010, 2013). Unlike current re-
search, in Garcia-Cueto et al. (2010) warm days were
modeled with the GEV and the maximum tempera-
ture was included as a covariate, without performing
a temporal trend analysis of extreme temperatures.
Their difference with respect to Garcia-Cueto et al.
(2013) is that the trends of extreme temperatures
and their return periods are updated with a method-
ological process that requires a re-parameterization
of the GEV model, which gives greater reliability in
its estimation.

4. Methodology

In this section we present the techniques used for
trend analysis and a brief review of the GEV dis-
tribution, to provide a basis for the modeling of ex-
treme temperature events. As described in section 1,
the GEV distribution is used to model extremes in
atmospheric science and in many other scientific
fields. Using the trends of annual temperature series,
we describe the non-stationary models, the criteria
for deciding which GEV model to use, the estimation
of the parameters of the GEV distribution, and the
return levels.

4.1 Trend analysis

The detections of monotonic trends of increase or
decrease in TXX and TNN in a time series were
analyzed using the Mann-Kendall non-parametric
test (Mann, 1945; Kendall, 1975) and Sen’s method
for slope estimates (Sen, 1968). The Mann-Kendall
test is based on ranges and has been found to be
an excellent tool for detecting trends in climatic

applications (Burn and Hag Elnur, 2002; Mugume
et al., 2016). One of the advantages of this test is
that the data does not need to be adjusted to any
distribution. The second advantage of this test is its
low sensitivity to sudden breaks owing to non-homo-
geneous time series, extreme values (outliers), and
non-linear trends (Helsel and Hirsch, 1992; Tabari et
al., 2011). Given its robustness, the Mann-Kendall
test has become very popular in evaluating trends in
environmental data and allows adequate compari-
sons across regions (Fengjin and Lianchun, 2011;
Qiang et al., 2011; Wang et al., 2013; Dumitrescu et
al., 2015; Ongoma et al., 2016). Sen’s method uses
a linear model to estimate the slope of a trend, and
the variance of the residuals must be constant over
time (Salmi et al., 2002). Many studies (Taxak et
al., 2014; Caloiero, 2017; Garcia-Cueto et al., 2018;
Raggad, 2018, among others) have described these
methods explicitly.

4.2 Generalized extreme values (GEV) stationary
distribution
The general framework of this study is a statistical
EVT. The EVT aims to characterize rare events by
describing the tails of the underlying distribution. The
EVT concerns the asymptotic stochastic behavior of
the extreme order statistics of a random sample, such as
the maximum and minimum values of identically dis-
tributed independent random variables (Coles, 2001).

The Fisher-Tippett theorem (1928) states that if
the distribution of the normalized maximum of a
sequence of random variables converges, it always
converges to the GEV distribution, independently of
the underlying distribution. In this regard, let X, ...,
X, be a sequence of identically distributed indepen-
dent random variables with a common distribution
function £; the maximum sample, M,, with n being
the size of the block, is defined as M, = max {X],
Xa, ..., Xu}. X usually represents the maximum (or
minimum) values measured on a regular time scale or
blocks of time, so M,, represents the extreme values of
the process in n units of observation time. The blocks
of data in this study are sequences of observations
having the length of a year, i.e., the approach uses
the maximum and minimum values per annual blocks
of temperature.

For these data, the distributions of M, according
to the EVT can be modelled as blocks of identically
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distributed extreme values with a GEV distribution
as defined by Eq. (1), with a cumulative distribution
function with three parameters given by (Coles,
2001):

G (z; p, 0, &) =exp [—{1 + &z — p)lo} %] (1)

This distribution is defined on the set {z: 1 + & (z -
)/a>0}. Here, u is the location parameter (—oo < <
), g is the scale parameter (o> 0), and ¢ is the shape
parameter (—oo < £ <o) that determines the nature of
the behavior of the tail of the maximum distribution.
The justification for the GEV distribution arises from
an asymptotic argument.

The GEV distribution combines the three possible
limiting distributions on extreme values in sample
data in a single expression. It is a family of continuous
probability distributions developed to combine the
three distributions of extreme values: Gumbel (= 0),
Fréchet (> 0), and Weibull (¢ <0), or distributions of
extreme values types I, II, and 11, respectively. Each
of the three types of distributions has distinct forms
of' behavior in the tail. The Weibull is bounded above,
meaning that there is a finite value which the maxi-
mum cannot exceed. The Gumbel distribution yields
a light tail, meaning that although the maximum
can take on infinitely high values, the probability of
obtaining such levels becomes exponentially small.
The Fréchet distribution has a heavy tail and decays
polynomially, so that higher values of the maximum
are obtained with greater probability, as would be the
case with a lighter tail (Gilleland and Katz, 2006).
The flexibility of the GEV in describing all three
types of tail behavior in a single family greatly sim-
plifies the statistical implementation.

4.3 GEV non-stationary distribution

As we will see later, the extreme temperatures in
several cities being analyzed show temporal trends,
so the assumption of an independently distributed
and identically distributed series of data with constant
properties over time (stationary) needs to be modified
to consider the effects of long-term climate change. In
fact, there is increasing evidence that extreme series,
whether thermal or hydroclimatic, are not stationary,
due to natural climatic variability or anthropogenic
climate change (Jain and Lall, 2001; Milly et al.,
2008). Modeling of the non-stationarity within the
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GEV distribution scheme requires improved mod-
els, in which model parameters are expressed as a
function of time, and possibly with the incorporation
of other covariates (El Adlouni et al., 2007; Leclerc
and Ouarda, 2007; Panagoulia et al., 2013; Parey et
al., 2018).

We incorporate the non-stationarity by allowing
the location parameter (1) of the GEV distribution
to be time dependent (Renardt et al., 2013). Using
the notation (u, o, &) to denote a GEV distribution
with parameters u, o, &, a suitable model for extreme
temperatures in year ¢, Z;, could be as presented in
Eq. (2) (Furié and Meneu, 2011):

Z,= GEV [u(1), 0, ¢] 2

where u (f) = o + w1 (¢) for parameters o and y;. In
this way, temporal variations in the observed process
are modeled as a linear trend for the location param-
eter of the extreme value model, which in this case is
the GEV distribution. The parameter y corresponds
to the value of u when ¢ is the initial time, whereas
the parameter y; corresponds to the annual rate of
change in annual extreme temperatures.

4.4 Parameter estimation

Many techniques have been proposed for the esti-
mation of parameters in extreme value models. The
maximum likelihood method is a general and flexible
estimation method for the unknown parameters g,
o, and & within a family F. This technique estimates
the parameters to give maximum probability to the
observed values. In addition, the method allows
for the inclusion of covariates such as time into the
model (Katz et al., 2005). This approach is partic-
ularly attractive, due to its adaptability to complex
constructions of models in techniques based on plau-
sibility (Coles, 2001). It should be mentioned that this
estimation technique has an inherent difficulty, in that
the maximum likelihood estimators must be within
certain limits, so that the conditions of regularity
required by the asymptotic properties are valid. That
is, if £>—0.5, the obtained parameter estimators are
regular in the sense of having the usual asymptotic
properties; when —1 < ¢ < —0.5, the estimators can
generally be obtained, but do not have standard as-
ymptotic properties; and when ¢ <—1, the estimators
are unlikely to be obtained (Smith, 2001).
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The maximum likelihood method was chosen
in this study to estimate the parameters, mainly
because: (a) the data sample for each climate station
is sufficiently large (with the exception of Tuxtla
Gutiérrez and Toluca, all of the other climate stations
have series larger than 40 years), and accordingly
it is comparable in performance to other methods;
(b) it allows for the easy incorporation of covariate
information (non-stationary distributions, which, as
we will see, are frequently presented in this study),
and (c) it is easier to obtain error limits than in most
alternative methods. Eq. (1) assumes that the data are
maximum or minimum annual blocks. The estima-
tion of u, o, and ¢ is performed using the maximum
likelihood function for the independent maxima of

annual blocks z, ..., z, according to Eq. (3):
dG i; y» U,
L%a@=nm—i%§ig (3)

4.5 Return levels

When considering the extreme values of a random
variable, the interest lies in determining the level of
return of an extreme event, which is defined as a certain
value z,,. In that regard, p is the probability that the z
value is exceeded in a year or, alternatively, the level
that is expected to be exceeded on average once every
1/p years (1/p is often referred to as the return period).
In the terminology of extreme values, z,, is the level of
return associated with the return period 1/p (Cooley et
al., 2007), and basically refers to the average waiting
time until the z level is exceeded again.

The return level is obtained from the GEV distri-
bution by the cumulative distribution function, which
is equal to the desired probability/quantile ratio, 1-p.
Estimates of the return levels for the distribution of
maximum or minimum annual values can be obtained
with Eq. (4), by obtaining estimators of their param-
eters by the maximum likelihood method:

p=2 1=y for &£ 0

4
u—ology, for =0

where p = —log (1 — p). In addition, by the delta
method (Eq. [5]):

Var(z,) = Vz) VVz, )

where V is the variance-covariance matrix of (u, o,
&), and with Eq. (6):

0z, 0z, Oz
T _ p ZZp 6
Vz, _8,u R (6)

The above is evaluated in (u, o, &). Caution should
be exercised in interpreting inferences of return levels,
especially for long periods of return; this is because the
normal approximation to the distribution of the maxi-
mum likelihood estimator may be poor, and generally
better approximations are obtained with the likelihood
profile function. This methodology can be applied
when it is required to make an inference regarding
some combination of parameters. We can obtain con-
fidence intervals for any z, return level. This requires
a reparameterization of the GEV model, so that z, is
one of the parameters of the model; the log-likelihood
profile is obtained by maximization with respect to the
remaining parameters in the usual way (Coles, 2001)
and is obtained by means of Eq. (7):

n=z,+ g [1-{-log(1-p)] ™

In this way, the GEV model is expressed in terms
of the parameters (zp, o, &). For the choice of the GEV
model and to evaluate the strength of the evidence of
more complex models (stationary or non-stationary),
the criteria of the likelihood ratio test were applied,
along with those of Akaike and Bayes.

4.6 Likelihood ratio test

By including more parameters in the model, the max-
imized likelihood function will necessarily increase
(Coles, 2001), and this method confirms whether
the improvement is statistically significant. The test
compares two nested models, and thus one model,
a base model, must be contained in another model
with more parameters.

Formally, the likelihood ratio test (LRT) says that
if you have two models, one called My which is the
simplest model adjusted to the extreme data set, and
another called M, to which a covariate has been added
to improve the behavior of the same extreme data,
then a proof of the validity of the model My relative
to the model M, at the level of significance a is to
reject My in favor of M if:
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D =2{l, (M) — Iy (My)} > ¢, ®)

where ¢, is the quantile of the distribution. In Eq.
(8), [ (M) is the maximized likelihood logarithm for
the M| model, and /) (M) the maximized likelihood
logarithm for the My model.

4.7 Akaike and Bayes information criteria
Alternatives to the LRT for comparing the relative
quality of a statistical model include the Akaike in-
formation criterion (AIC) and the Bayes information
criterion (BIC), which were also used in the selection
of the best model for adjustment. None of these cri-
teria require a nested model as in the LRT. The AIC
is defined according to Eq. (9):

AIC (p) =2n, - 21 ©)

where n;, is the number of parameters in a model of
order p, and / is its maximized value of log-likelihood
(Thiombiano et al., 2017). The best model is the one
with the smallest AIC value (Katz, 2013; Mondal and
Mujumdar, 2015). Similarly, for the adjustment of a
model of order p to data with a sample size of n, the
BIC is determined with Eq. (10):
BIC (p) = n, (In nn) — 2/ (10)

Both the AIC and BIC attempt to counteract the
problem of over adjusting a model by adding more
parameters, through the incorporation of a penalty
based on the number of parameters (Panagoulia et
al., 2013). The BIC is more parsimonious than the
AIC. Among the candidate models, the model with
the lowest AIC/BIC ratio is preferred.

Given that the database for each city appears to
be sufficiently large (n > 30 years), the maximum
likelihood method is confirmed for the estimation
of the three parameters of the GEV distribution.
This is basically because the method easily incor-
porates covariable information into the estimates
of the parameters. Besides, it has a series of at-
tractive properties and it seems to be more suitable
for situations in which climate change within the
sample analyzed cannot be ignored (Kharin and
Zwiers, 2005).

The modeling was supported by the free software
R and the in2extRemes package that is designed to be

used in the analysis of extreme weather and climate
events (Gilleland and Katz, 2005, 2013).

5. Results and discussion

In this section we present and analyze the results of
the parametric approach based on the GEV distribu-
tion for modeling the maximum annual value of the
TXX and TNN for each of the selected urban areas in
Mexico. The data series are analyzed in each climato-
logical station, the use of stationary and non-station-
ary models is evaluated, and a statistical evaluation
of the changes in TXX and TNN is presented.

We modeled the data series through the GEV
distribution of three parameters, using stationary and
non-stationary models for periods that varied from
83 years (Veracruz) to 31 years (Tuxtla Gutiérrez);
the other cities had intermediate periods (Table I).
The inclusion of non-stationarity is plausible for our
modeling approach, as can be visualized for many
locations. As an example, time series of TXX (Figs.
4, 6, 8, and 10) and TNN (Figs. 5, 7, 9, and 11)
are shown for four of the 12 urban areas (Tijuana,
Guadalajara, Toluca, and Puebla), with a trend line
using Sen’s slope estimator. The graphs for several
cities show a clear trend in the maximum and mini-
mum annual data. The graphical analysis and results
of the Mann-Kendall trend test justify the use of
non-stationary GEV models over time as a covariate.
The trends shown are statistically significant with a
p-value <0.05, except for the TXX of Toluca, whose
trend is significant with a p-value <0.1, and the TXX
of Tijuana, whose trend is not significant.

The time series of TXX and TNN were used to
estimate the parameters in the distribution of GEV
with and without trends, as well as the periods of

50
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Fig. 4. Trend of extreme maximum temperature (TXX) in
Tijuana from 1950 to 2012.
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Fig. 5. Trend of extreme minimum temperature (TNN) in
Tijuana from 1950 to 2012.
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Fig. 6. Trend of extreme maximum temperature (TXX) in
Guadalajara from 1957 to 2013.
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Fig. 7. Trend of extreme minimum temperature (TNN) in
Guadalajara from 1957 to 2013.
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Fig. 8. Trend of extreme maximum temperature (TXX) in
Toluca from 1974 to 2009.
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Fig. 9. Trend of extreme minimum temperature (TNN) in
Toluca from 1974 to 2009.
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Fig. 10. Trend of extreme maximum temperature (TXX)
in Puebla from 1955 to 2013.
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Fig. 11. Trend of extreme minimum temperature (TNN)
in Puebla from 1955 to 2013.

return. The models were adjusted to the maximum
annual temperature and minimum annual temperature
of each of the 16 climate stations using the maximum
likelihood (ML) method.

An attempt was made to improve the modeling
approach by allowing the location parameter (u) to
depend on time. As mentioned, three model selection
criteria (AIC, BIC, and LRT) were used to select the
best model from a collection of nested models. The
best adjustment models for TXX and TNN through the
GEV distributions, as selected by the criteria separately
listed for each urban area, are summarized in Table II.



243

Trends in temperature extremes in cities of Mexico

"JOAS] AOUDPYUOD %G AU} J& QUBOYIUTIS

‘(7) pue (1) 'sbg ur poaugap uonnqrysp A0 oy} Jo sidjowered are S <o ‘Irl on
*JS9) 0131 POOYI[ANI] ;YT ‘BLIILIO UONBULIOJUL SoAeq D[ BLIOILIO UOHBWLIOUL IV DIV
{0JIXAIN] JO A9[[BA 9y} JO Bate uejrjodonowt (NAINZ A1) 01X (XN amjerddud) WnWIUIW dWanXd (NN.L ‘oInerodud) wnwixew awanxo (XX [,

LT'0 LS SEE “8'STE by 0~ “€L'T “TO00 ‘TETT

xS0V ‘TE0TE ‘SSOIE V10 TI'T 400 “10°€€E

LA D19 DIV 2 ‘0 “1n 0n :jopowt xedur'|

CIEELO'ETE PYO—“EL'T “T¥'TL ¥9S€ “T'6E 01°0 OV’ T ‘St DId DIV 2 ‘0 ‘1 ;]opou juejsuo) ZNIOBIDA

*971 °L°091 “LY'EST ©99°0— ST 'S0°0 ‘€€~ 1270 °C8LT“CTLI 010 ‘61°T °S00°0 ‘€S’ T€ AT °DId DIV 2 ‘0 ‘1 “0nf :[apow Jeaur|
SILT‘T991 ‘60— ‘€91 ‘IS T~ €6VLT “IS691 “T1°0 ‘61T $9°1¢ DI DIV 2 ‘0 “n ;apow JueIsuo) e[eOXe[ L

%L 1T “68'80T '8S°00T ‘ST°0— ‘ST°T “S0°0 96'T— %L'16 T6'S61 TY'LYT ‘LO'0— 660 TI'0 ‘1L LT DId DIV 2“0 ‘1 0n :jopowr xedur|
$$'9TT T€°0TT ‘YT 0~ 9’1 ‘9OF'0— €S €8T “C'LLT ‘STO—“LET ST OE DI DIV 2 “0 ‘7 ;jopowt Jueisuo) e[qong

«L' €1 ‘€8°L0OE ‘8E'66T “€L'0— V€900 ¥9T— L0 ‘6TELT ¥8HIT 910~ 681 ‘100~ ‘60r LT DId DIV 2 “0 ‘1 0n :japowr zedur|
LIS TTIE IS 0-6£€ ST T~ §9°69T ‘1€°€9T “91°0~16°T ‘61°0F DI DIV 9“0 “n ;]spowr JueIsuo) Aa1103u0]N
%S 1T ‘8THET T1°9TT “6€°0— “SL'T *L0°0 “S9°S— % TTLETOT TYOT ‘LT0~LT'T SO0 °L80E I DId DIV 2 0 ‘1 “0n :opowr xedur| (NANZ)
YLIST 19°SYT ‘SE€0—“LOT ‘€L € 61T 6T EIT ST 0~ 6€1 81°CE DI DIV 2 ‘0 “n ;]opou Jueisuo) o3urdey)
«STL SETEL TO9TL PE0—“LTT ‘8070 ‘v'8~ «S'LLYTYT PI'9ET “LP00 ‘811 °90°0 ‘1997 LT DI DIV 2 0 ‘1 0nf :jopowr redur| (NANZ)
STIPI “SOET ‘STO—"9F'1 “I'L~ 8E€OPT ‘€9 THI ‘H0°0—“6€T “1L'LT DI DIV 9 ‘0 ‘' ;]spowr Jueisuo) ©on[oL
xS'8TEY TSI 8P’ ST “6L°0—99'T ‘€1°0—“€6°0 IdT D14 DIV 2 0 1 “0n :jopowr xedur| (NANZ)
TLLT66'TLT ‘190~ 60T ‘S1T— DI DIV 2 ‘0 “n ;]opowr jueisuo)) 09[Ny

%6'STLT'OYT 0'8ET T90—"61'TOI'0°TOT  +I'€1 ¥9H61 “LF'981 ‘8T0—91'T 00— 199¢ LA DI DIV 2 0 ‘177 *0n :jopotur reaur|
0'89T °L8°19T ‘€50~ 79T ‘S€'¥ 1L°€0T “8S°L6T ‘YT 0~ LT T ‘8F'S€E DId DIV 2 ‘o ‘n ;jopowr jueisuo)  erefejepenn

%9 1€ P890T PL861 950~ 8S'T ‘80°0 9'0— I'TITEITECTLOT LT0-SETTO0€SHe T °DId DIV 2 0 ‘1 “0n :opowr xedur'|
T YET ‘SE8TT PE0— €81 “LY'1 1€°€IT€TLOT ‘610~ 6£T ‘€0°SE DI DIV 2 ‘0 “n ;]opou Juejsuo) uga|
YST6C LT ‘SEPIT 970~ 8% 1 V00— TTO  9ST CECPLI ‘6T L9T ‘80°0— ‘8T ‘€00~ ‘6167  LAT DId DIV 2“0 ‘1 0n :jopowr zedur| (XWan)
LT'691 ‘68°€91 €40~ 99T “0S°0— CIELT “S8°LIT “ST'0~‘6t'T ‘65°8CT DId DIV 2 ‘0 “n ;]opou juejsuo) ey ediy
18°0 ‘S'STT “€€°L0T TEO0—"1T°T ‘8000~ TE€TE LT DI DIV 2 0 117 0n :jopouut zeaur| (Xnan)
8T'TIT ‘S1°90T ‘00— €T’ 1 ‘1°CE DId DIV 2 ‘0 ‘M ;]opowr Juejsu0)  [EUE)) UBID
« 1T €891 “STTT “01°0— TET ‘19070 1L°0— €LTCOLT STEIL LTO- 9F'1 ‘€00 ‘€STIE L1 °DId DIV 2 0 ‘1 “0nf :jopouw sedur] (XINaD)
€99LT ‘SETLT “ST°0~SS°T °LS0 LT89T ‘86791 ‘960~ “8S°1 “TTTE DId DIV 2 ‘0 “ ;jopowr juejsuo)  edeo)) e[nsip)
«SSPT b8 Y01 “01°66 ‘L¥'0—“LT'T ‘60°0 90°6 81°0 °98'T01 “€1°96 “ST'T "€00°0— ‘€€°0y LT DId DIV 2 “0 ‘1 0nf :japow redur| za11Nn0
96°STT “99° 111 “SH'0—“OF'T ‘8¥°01 19'86 “0€¥6 ‘0L0—“LT'1 “6T°0F DI DIV 2 ‘0 “n ;]spow JueIsuo) epxng

%S6'VT 8Y 11T 60T “Y1°0—SO'T ‘€00 LTO0  %L8'€ “6T°T6T TL €8T HTO— 01T €00 PI'LE  LAT DI DIV 2 0 117 0n :jopouur esur|
8T TTTSY'SIT V00901 P11 10°T6T ‘8S'S8T “€T0~LT°T ‘€0’ DId DIV 2 ‘0 ‘n ;]opou juejsuo)) euen(iy,

«V 1€ ‘8EP]T I8 SLT ‘6Y'0—8TT 800 ‘CI v~  +9€L ‘16'7E€T 6€°9TC 81°0—“1€1 “€0°0 LSSy LT DId DIV 2 “0 ‘1 0n :japowr redur|
9 11€ 1TS0E ‘6v°0— 16T €L T~ 61'8ET 9L TET L10—“8ET ‘YL 'OV DI DIV 2 ‘0 “n ;]spowr JueIsuo) I[edIXON

x6'8€ ‘€89 ‘VS'6ST LSO~ 061 “€LO0 Vi~
€0°€0€ “9¥'96T ‘€0~ 9T ‘6TT

880 “LO' 19T “1€7CST 8700~ “€€'1 ‘6000 ‘6°€E
9L'LST61°1ST 990°0— ‘LE'T ‘STHE

LT 014 DIV 2“0 17 *0nf :[opow 1edur'

DIF DIV © ‘o 1 ;Jopowt Jueisuo)) sojualjeosendy

NNL

XXL

sigrowered AgD

LD

‘ejep duwdIIxX9

amjerodwoy 03 parjdde jopowr (AFD) SoN[eA dWAIXS PAZI[LIOUIS 9y} Ul # JOJ S[OPOW JBIUI| PUEB JUBISUOD O} JO BLIJILIO PUB SOJBWIIISY IojoweIed ] 9[qe].



244 O. R. Garcia-Cueto et al.

In total, 58 models were generated. Table I shows
the resulting estimators and the criteria for selecting
the best model to be used in the estimation of return
periods. According to this table, for the temporal trend
of TXX, significant at a 95% confidence level, it can
be seen that: (a) 44% of locations (seven urban areas)
show a significant trend, (b) 50% of locations (eight
urban areas) have no significant trend, and (c) 6%
of locations (one urban area) show no trend. For the
temporal trend of TNN, also significant at the 95% con-
fidence level, it was found that: (a) 82% of locations
(13 urban areas) show a significant trend, (b) 12% of
locations (two urban areas) show no significant trend,
and (c) 6% of locations (one urban area) show no trend.

According to the shape parameter (§), and by
performing a detailed analysis, it was found that for
the case of TXX, 63% of the climatic stations were
adjusted to the Weibull distribution (& < 0), 25%
were adjusted to the Gumbel distribution, 6% were
adjusted to the Fréchet distribution, and 6% did not
fit any of the three distributions. In the case of TNN,
94% of the analyzed climatic stations were adjusted
to the Weibull distribution, and only 6% did not adjust
to any of the distributions.

In the case of TXX, which exhibits a significant
temporal trend, it was found that 72% was adjusted
to the Weibull distribution, 14% to the Gumbel dis-
tribution, and 14% to the Fréchet distribution. For
TNN, it was found that those that show a significant
temporal trend (82%) and those that are stationary
(12%) conformed to the Weibull distribution.

Overall, for both extreme temperatures TXX
and TNN, it was found that the 57% following the
Weibull distribution are statistically significant to the
temporal trend at the 95% confidence level. One of
the properties of this distribution, which may even
be controversial because of the trend found, is that
both extreme temperatures have an upper limit that
cannot be exceeded.

Figures 12 and 13 describe the temporal trend
pattern of decadal trends for the location parameter
(1) of the maximum and minimum temperatures
according to non-stationary GEV models (Table II).
About the TXX (Fig. 12), the most significant pos-
itive trend occurred in the center and east regions
(Toluca, Chapingo, Puebla and Veracruz), whereas
the lowest trends occurred in the northwest regions
(Tijuana and Mexicali).
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Fig. 12. Spatial patterns of trends of the location parameter
(w) for the maximum temperature. Red (blue) triangles
mean positive (negative) values. Full triangles mean sig-
nificant trends at the 5% level. The symbol ® indicates
without change.
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Fig. 13. Spatial patterns of trends of the location parameter
(w) for the minimum temperature. Red (blue) triangles
mean positive (negative) values. Full triangles mean sig-
nificant trends at the 5% level.

Respect to the TNN (Fig. 13), the most significant
positive trends were most relevant in different geo-
graphical areas of the country, i.e., higher in the west
center (Guadalajara and Leon), southeast (Tuxtla
Gutiérrez), some urban areas located in the central
part (Ursula Coapa, Toluca, Chapingo, Tlaxcala and
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Puebla), and in the northeast and northwest (Monter-
rey and Mexicali), whereas the lowest positive trend
occurred in the urban area of Tijuana (with a value of
0.30). The most significant negative trend occurred
in an urban area.

Once the best models were selected, the return
levels of the extreme, maximum, and minimum tem-
peratures were estimated. Tables III and IV present
the estimators and confidence intervals for return
levels to 10, 20, 50, and 100 years, for both station-
ary and non-stationary models. The stationary return
levels for TXX in Table I1I, indicate that the values
increase for increasingly larger periods (10, 20, 50,
and 100 years), except for the urban area of Tuxtla
Gutiérrez. In addition, the confidence intervals were
increasingly wider as the periods of return increased.
In Aguascalientes the TXX can be expected to pro-
gressively exceed 37.1 °C on average every 10 years,
37.9 °C on average every 20 years, 38.9 °C on average
every 50 years, and 39.7 °C on average every 100
years. The 95% confidence intervals for these return
periods, in °C, were 36.4-37.8, 37.0-38.9, 37.5-40.4,
and 37.8-41.5, respectively.

Among the locations considered in that block, and
in the context of the stationary return levels, Monter-
rey (in the northeast of the country) was associated
with the highest return levels, and Milpa Alta (in
the metropolitan area of the Valley of Mexico in the
center of the country) had the lowest return levels.
Based on the 95% confidence interval and according
to Table III, we can expect that the largest TXX event
recorded for Milpa Alta could reappear for the next
10 years. Moreover, there is a high probability that
the annual TXX will exceed the maximum historical
value in the next 50 years, except in the sites Gran
Canal and Monterrey.

The estimated return levels assume stationarity,
meaning that the level of return for a return period is
the same for the successive years. This implies that
the statistical properties of the parameters y, o, and
& are constant.

In a non-stationary case, the parameters of the
GEV distribution vary over time, and the return
levels of extreme temperatures will also follow that
temporal trend. Under a changing climate, the return
value can be interpreted as an extreme quantile of a

Table III. Stationary and non-stationary return levels for extreme maximum temperature and its 95% confidence

levels (in parentheses).

Return levels
(20 years)

Return levels
(50 years)

Return levels
(100 years)

Stationary return levels (°C)

Urban zone Return levels
(10 years)
Aguascalientes 37.1 (36.4-37.8)

Tuxtla Gutiérrez

41.7 (41.5-42.0)

37.9 (37.0-38.9)
41.9 (41.7-42.0)
35.1 (34.6-35.6)
35.5 (34.6-36.5)
32.2(31.2-33.1)
38.2 (37.5-38.9)
44.7 (43.8-45.6)
35.8 (34.1-37.6)

38.9 (37.5-40.4)
42.0 (41.8-42.2)
35.5 (35.0-36.1)
36.5 (35.1-37.9)
33.0 (31.8-34.2)
38.9 (37.9-39.8)
45.7 (44.6-46.9)
37.5 (34.4-40.5)

39.7 (37.8-41.5)
42.0 (41.8-42.2)
35.8 (35.1-36.4)
37.2(35.4-39.1)
33.6 (32.0-35.1)
39.3 (38.8-40.4)
46.4 (45.0-47.7)
38.8 (34.5-43.2)

Non-stationary return levels (°C)

Ursula Coapa 34.7 (34.2-35.2)
Gran Canal 34.7 (34.0-35.4)
Milpa Alta 31.4 (30.7-32.2)
Leon 37.6 (37.0-38.1)
Monterrey 43.8 (43.0-44.6)
Tlaxcala 34.7 (33.6-35.8)
Mexicali 48.5 (48.0-49.1)
Tijuana 41.1 (40.3-41.8)
Guadalajara 38.2 (37.8-38.7)
Toluca 30.0 (28.9 -31.0)
Chapingo 33.5(32.9-34.1)
Puebla 30.2 (29.4-31.0)
Veracruz 36.3 (35.3-37.3)

49.4 (48.8-50.1)
42.2 (41.3-43.0)
38.3 (37.7-38.8)
31.5 (30.1-32.9)
34.5 (33.8-35.3)
32.0 (31.0-32.9)
37.9 (36.2-39.5)

50.9 (50.1-51.7)
43.9 (42.8-45.0)
37.6 (36.9-38.3)
34.6 (32.4-36.8)
36.6 (35.6-37.6)
36.3 (35.1-37.5)
40.7 (37.9-43.5)

52.7 (51.7-53.7)
45.9 (44.5-47.2)
36.1 (35.2-36.9)
38.6 (35.7-41.5)
39.5 (38.2-40.7)
42.8 (41.4-44.2)
44.0 (40.0-48.1)
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Table IV. Stationary and non-stationary return levels for extreme minimum temperature and its 95% confidence

levels (in parentheses).

Urban zone Return levels Return levels Return levels Return levels
(10 years) (20 years) (50 years) (100 years)
Stationary return levels (°C)
Milpa Alta 1.9 (1.4-2.3) 2.3(1.8-2.7) 2.6 (2.2-3.1) 2.8 (2.3-3.3)
Veracruz 14.9 (14.6-15.2) 15.3 (15.0-15.6) 15.6 (15.3-16.0) 15.8 (15.5-16.2)
Non-stationary return levels (°C)
Aguascalientes ~1.3 [-1.9-(-0.7)] -0.3 [-1.0-(0.4)] 2.1(1.3-3.0) 5.9 (4.9-7.0)
Mexicali —-0.3 [-0.9-(0.3)] 1.0 (0.4-1.6) 3.8 (3.1-4.5) 8.0 (7.1-8.8)
Tijuana 2.6 (1.8-3.4) 3.4(2.2-4.7) 5.0 (2.8-7.3) 7.1 (3.9-10.3)
Tuxtla Gutiérrez 11.5(11.1-12.0) 12.7 (12.3-13.2) 15.8 (15.2-16.3) 20.6 (19.9-21.2)
Ursula Coapa 2.5(1.7-3.3) 3.8 (2.9-4.8) 6.5 (5.3-7.8) 10.2 (8.6-11.8)
Leon 2.3 (1.7-2.8) 3.3(2.7-3.8) 5.8 (5.2-6.5) 9.8 (9.0-10.5)
Guadalajara 5.2 (4.7-5.7) 6.5 (6.1-7.0) 9.8 (9.3-10.2) 14.9 (14.4-15.4)
Aculco 2.6 (2.2-2.9) 2.6 (2.3-2.9) 2.3(1.9-2.7) 1.7 (1.3-2.1)
Toluca —5.7 [-6.4-(-5.0)] —4.6 [-5.3-(-3.8)] -1.9 [-2.9-(-0.8)] 2.2 (1.0-3.4)
Chapingo -2.4 [-3.0-(-1.8)] -1.2 [-1.8-(-0.6)] 1.3 (0.6-2.0) 5.1 (4.3-5.9)
Monterrey 2.1(1.5-2.8) 3.1(2.5-3.7) 5.1 (4.5-5.6) 8.0 (7.5-8.6)
Puebla 0.7 (0.2-1.2) 1.8 (1.2-2.4) 3.9(3.24.7) 6.9 (6.0-7.8)
Tlaxcala -1.3 [-1.7-(-1.0)] 0.6 [-1.0-(-0.3)] 1.0 (0.6-1.3) 3.5(3.1-3.9)

temperature distribution that varies over time (for
example, a return value of 20 years can be interpreted
as a value that has a 5% probability to be exceeded
in a particular year).

It is now possible to estimate return levels for
any year, which are also presented in Table III. For
example, note that the average return levels (in °C) for
Mexicali for 10, 20, 50, and 100 years, are 48.5, 49.4,
50.9 and 52.7, respectively. The confidence intervals
at 95% (in ° C) are 48.0-49.1, 48.8-50.1, 50.1-51.7,
and 51.7-53.7, respectively. The differences in return
levels between stations is remarkable, both in the
stationary GEV models and in the non-stationary
models. Mexicali, in the northwest of Mexico, is
associated with the highest return levels, whereas
Milpa Alta, a metropolitan area in Mexico City, has
the lowest return levels.

With respect to TNN, Table IV shows that only
stations Milpa Alta and Veracruz have stationary
return levels, and that the values increase slightly for
increasingly large return periods (10, 20, 50, and 100
years). In addition, the confidence intervals remain
nearly constant as the periods of return increase. For
example, Milpa Alta could expect the TNN to exceed
1.9 °C on average every 10 years, 2.3 °C on average

every 20 years, 2.6 °C on average every 50 years, and
2.8 °C on average every 100 years. The confidence
intervals, at 95% (in °C) are 1.4-2.3,1.8-2.7,2.2-3.1,
and 2.3-3.3, respectively.

As already mentioned, the estimated return levels
assume stationarity, meaning that the level of return
for a return period is the same for successive years.
This also implies that the statistical properties, as
mentioned for TXX, keep the parameters u, o, vy,
and & constant.

In a non-stationary case (as with TXX), the
parameters vary in time and the return levels of
extreme temperatures will follow a similar temporal
trend. It is possible to estimate return levels for any
year of interest in a time period. The return levels
for the non-stationary TNN series are presented in
Table IV. Note that the average return levels of 10,
20, 50, and 100 years (in °C) for Aguascalientes are
—-1.3,-0.3, 2.1, and 5.9, respectively, whereas their
confidence intervals, at 95% and in °C, progress from
-1.9t0 0.7, -1.0 to 0.4, 1.3 to 3.0, and 4.9 to 7.0,
respectively.

In the case of a non-stationary series, for both
TXX and TNN, a positive trend of the location pa-
rameter (u) will be reflected in the positive trend of
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the return levels (Chen and Chu, 2014). This means
that with greater magnitudes of the trend return levels
will increase considerably, and threshold values of
return levels will contain greater variation over time.
As examples of estimators of return levels, the time
series of return levels for TXX for the city of Puebla
(Fig. 14) and for TNN for the city of Guadalajara
(Fig. 15) are plotted, according to the GEV adjust-
ment non-stationary model. The difference in the
return level for 2 years for the city of Puebla from
the beginning of the period (1955) to the end (2013)
is approximately 5 °C, whereas the difference in the
return level of 2 years for the city of Guadalajara
from the beginning of the period (1957) to the end
(2013) is approximately 3 °C.
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Fig. 14. Time series of extreme maximum temperature
(TXX) return levels in Puebla in accordance with the
non-stationary generalized extreme value (GEV) model.
The red, green, and blue lines represent the return levels
of 2, 20, and 100 years, respectively. The black line rep-
resents observed values.
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Fig. 15. Time series of extreme minimum temperature
(TNN) return levels in Guadalajara in accordance with
the non-stationary GEV model. The red, green, and blue
lines represent the return levels of 2, 20, and 100 years,
respectively. The black line represents observed values.
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The application of the stationary and non-sta-
tionary GEV distributions has allowed this study to
model the behavior of extreme temperatures in some
cities of Mexico. Due to the lack of reliable data, only
16 climate stations were used, focusing on 12 urban
areas. The latitudinal dispersion of these climatic
stations ranged from 16° 45 (Tuxtla Gutiérrez) to
32°39’ (Mexicali), and with altitudes above sea level
varying from 4 m (Mexicali) to 2726 m (Toluca).
This resulted in several types of climates according
to the geographical location (Garcia-Cueto et al.
2018), making the analysis by chosen city even more
interesting. This is particularly true for those cities
that show significant trends and periods of return
that could put the adaptation of people and the urban
ecosystem at risk, particularly the fauna and flora.
We found that the TXX is increasing in Mexicali,
Tijuana, Toluca, Chapingo, Puebla and Veracruz,
and no significant changes were detected in the other
10 urban zones. A larger number of climatological
stations indicate increasing TNN compared to TXX,
namely Aguascalientes, Mexicali, Tijuana, Tuxtla
Gutiérrez, Ursula Coapa, Leon, Guadalajara, Aculco,
Toluca, Chapingo, Monterrey, Puebla and Tlaxcala.
Non significant increases were detected in only two
stations, i.e., Milpa Alta and Veracruz.

A comparison of the obtained results with those
from studies using the ETCDDI indices shows
similarities and some differences. For example,
Garcia-Cueto et al. (2018) used the same database
herein and found a statistically significant increasing
trend in the TX90 (warm days) and TN90 (warm
nights) indices for Aguascalientes, whereas for Mil-
pa Alta, both indices (TX90 and TN90) decreased
significantly. The difference is between the TXX
(stationary in this study) and TX90 (increasing trend)
for Aguascalientes; in the case of Milpa Alta, there
are coincidences in both indices (TXX with TX90
and TNN with TN90) that show decreasing trends.

At the country level, according to Gosling et
al. (2011), Mexico has experienced a generalized
warming since 1960. The frequency of cold days
has decreased, and the frequency of warm nights has
increased. There has also been a general increase in
average winter temperatures in the country as a result
of human influences on climate. Thus, during the
winter season, the occurrences of warm temperatures
are more frequent, and those of cold temperatures are
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less frequent. For the A1B emissions scenario, the
projected temperature increases of the Coupled Mod-
el Intercomparison Project Phase 3 (CMIP3) over
Mexico are approximately 4 °C near the US border,
with increases in the rest of the country between 2.5
and 3.5 °C. This implies that the influence of GHGs
will have an additive effect on the potential warming
caused by urbanization. This can become a major
problem affecting city dwellers both positively and
negatively, depending on their latitudinal location.

Significant trends in extreme maximum and min-
imum temperatures found in many parts of the world
(Heim Jr., 2015; Easterling et al., 2016; Houngninou
etal., 2017) reinforce the results obtained here. In the
US, extremely hot maximum and minimum tempera-
tures have shown increasing trends between the 20th
and 21st centuries and during the last four decades
(1971-2013), whereas the presence of extremely low
and minimum temperatures has decreased during
these periods (Hartmann et al., 2013).

The application of a theory of extreme events
to the TXX and TNN in 16 climatological stations
located in 12 urban areas of Mexico, in time series
with different periods, showed general trends in urban
warming, especially at night. However, values varied
from city to city. A less clear detection signal was the
diurnal heating. Although the causes for this behavior
of heterogeneous trends for TXX and TNN may be
of purely local origin and caused by the dynamics of
urbanization (land use change, anthropogenic activi-
ties), it cannot be ruled that they could be caused by
some other climatic phenomena of a greater scale.
For example, Mexico could be exposed to blocking
patterns, or modes of climate variability, such as
the El Nifio Southern Oscillation, Pacific Decadal
Oscillation, North Atlantic Oscillation, or the Mad-
den-Julian Oscillation, among others. These could be
causal factors that contribute to thermal trends since
in other regions of the world they have significantly
influenced the behavior of extreme temperatures
(Arblaster and Alexander, 2012; Parker et al., 2014;
Burgess and Klingaman, 2015; Matsueda and Takaya,
2015). All these factors are considered important for
possible attribution but are not the object of this study.

It is well known that cities will remain the most
vulnerable geographic spaces, especially in de-
veloping countries such as Mexico, as they often
concentrate large populations without adequate

infrastructure. Thus, knowledge of regions where the
climate is unstable (changing), and the knowledge
that extreme climate events are not controllable, but
have showed signals of an increasing trend, will serve
to generate some potential urban adaptation strategies
for facing current and future extreme temperatures.
For example, such temperatures can be addressed
by redesigning the urban space (making it safe,
ecological and acceptable) to reduce vulnerability
and strengthen urban water security. It should be
noted that each city is a case of analysis, and that an
adequate scheme of sustainable urban planning can
only be accomplished through the participation of
governmental authorities, productive sectors, aca-
demics, and local actors.

6. Conclusions

This study modeled the TXX and TNN recorded
in 16 climatological stations corresponding to 12
cities in Mexico, for periods that varied according
to the series of available data. The longest record
corresponded to Veracruz with 85 years (1930-
2014), and the shortest to Tuxtla Gutiérrez with 31
years (1980-2010). Through the application of the
non-parametric Mann-Kendall test and the Sen meth-
od, a trend towards urban warming was detected, but
no homogeneous behavior in all cities analyzed was
found. An important observation was the significant
prevalence of non-stationary series with the TXX
in half of the cities analyzed; only Guadalajara,
located in the center-west of the country, presented
a significant negative trend, perhaps due the effect
of “diming” by increases in aerosol pollution (Fon-
seca-Hernandez et al., 2018). Therefore, the annual
trends in daytime warming, represented by TXX, are
not necessarily identical in all selected urban areas
of Mexico. In the case of the TNN, which is related
to night warming, the behavior was more uniform.
Specifically, 90% of the cities are non-stationary
with a significant positive trend, and only two areas
presented a stationary series: one urban area located
to the east of the metropolitan area of the Valley of
Mexico (Milpa Alta), and another on the coast of the
Gulf of Mexico (Veracruz). With the adjustment of
the non-stationary GEV distribution to the data set
and by incorporating the trend of the location param-
eter, the trends of the return levels of 10, 20, 50, and
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100 years were estimated, while keeping the shape
and scale parameters constant.

The results are very similar to those from
non-parametric trend detection methods, both for
TXX and TNN. This confirms the non-stationary
behavior of half of the stations for TXX, and 90% of
the stations for TNN. Return periods of the thermal
extremes estimated in a changing climate for many of
the cities analyzed in this study vary significantly, and
the regularity with which extreme temperatures are
occurring is becoming more frequent. Thus, statistical
modeling should consider this behavior, due to its im-
portance for risk assessments for human health, flora
and fauna, and urban infrastructure. The proposed
non-stationary GEV model has provided new and
important information concerning changes in extreme
temperatures, and by estimating return periods, it has
provided their probability of recurrence. Some main
modes of climate variability as causal mechanisms
of attribution of extreme temperatures have not been
studied, making it a pending task.
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