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RESUMEN

En el presente trabajo se desarrollaron y probaron dos métodos generalizados ponderados de imputación 
de los valores de datos faltantes, utilizando para ello series diarias de precipitación. Se usaron registros de 
precipitación del estado de Tabasco, México, del periodo 1980-2012, para probar y evaluar la metodología 
propuesta. La imputación de datos faltantes en una estación meteorológica determinada se realizó utilizando 
información diaria de estaciones cercanas con patrones similares de precipitación. La selección de paráme-
tros óptimos para las fórmulas propuestas se basó en la minimización del error medio absoluto mediante 
una estrategia evolutiva (CMA-ES). Se utilizó el método de K-medias junto con la distancia euclidiana para 
elegir las estaciones meteorológicas cercanas adecuadas. Se aplicaron cinco métodos diferentes para estimar 
el número óptimo de clústeres: el método de Elbow, la estadística de Gap y los índices TraceW, de Hartigan 
y de Krasnowski-Lai. Adicionalmente, se evaluó la estabilidad estructural de los clústeres seleccionados para 
demostrar que representan la estructura de datos correcta y no son resultado de un procedimiento interno 
artificial del algoritmo de agrupación. Los resultados de dos pruebas estadísticas, Friedman y Nemenyi post 
hoc, mostraron que los dos nuevos métodos presentados, producen estimaciones estadísticas significativa-
mente mejores en comparación con otros métodos encontrados en la literatura. 

ABSTRACT

In the present work, two new generalized weighted methods of imputation of missing data are developed and 
tested using a daily rainfall series. The proposed methodology allows to fully rebuild the time series while 
preserving its statistical properties. Rainfall records in the state of Tabasco, Mexico, during the period 1980-
2012 were used to test and evaluate the proposed methodology. The imputation of missing data in a given 
weather station is performed by using daily data from neighboring stations with a similar rainfall behavior. 
The choice of optimal parameters for the proposed formulae is based on minimizing the mean absolute error 
(MAE) via an evolutionary strategy (CMA-ES). The K-means method was used with the Euclidean distance 
in order to select the adequate neighboring weather stations. Five different methods were applied to estimate 
the optimal number of clusters: the elbow method, gap statistics, TraceW, Hartigan and Krzanowski-Lai 
indices. In addition, the structural stability of the chosen clusters was evaluated in order to demonstrate 
that these represent the correct data structure and are not the result of an artificial internal procedure of the 
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grouping algorithm. Results from two different statistical tests, Friedman and Nemenyi post hoc, showed 
that our two new methods produce significantly and statistically better estimation when compared to existing 
methods in the literature. 

Keywords: missing data, rainfall data, K-means clustering, optimization, deterministic interpolation methods.

1. Introduction 
There are several methods to estimate and reconstruct 
missing rainfall data (Kashani and Dinpashoh, 2012). 
The most common methods are the use of satel-
lites (Githungo et al., 2016; Ekeu-wei et al., 2018; 
Phoeurn and Ly, 2018), climate models (Singh and 
Xiaosheng, 2019) and statistical programs (Kim and 
Pachepsky, 2010; Serrano-Notivoli et al., 2017a). 
However, despite their utility, satellites provide 
limited coverage and, in most cases, they have very 
coarse resolutions that limit local applications. Sim-
ilarly, climate models are useful but are limited by 
their spatial scale and are often quite expensive to 
be developed (Reinoso, 2016). Methods of artificial 
intelligence, such as artificial neural networks (ANN) 
and support vector machines (SVM) (Mileva-Bos-
hkoska and Stankovski, 2007; Mwale et al., 2012; 
Hasan et al., 2015) have a complex mathematical 
formulation. Therefore, their application demands 
greater efforts with respect to linear methods, and 
also requires intensive calculations with a high com-
putational cost. Statistical imputation methods are 
the most common technique and can be classified as 
deterministic, stochastic or random, and those based 
on artificial intelligence (Campozano et al., 2015). 
Among the statistical methods, the deterministic 
approach is the most common procedure due to its 
robustness, simplicity of implementation and high 
degree of computational efficiency (Campozano et 
al., 2015). Deterministic weighted methods belong 
to the spatial interpolation techniques; they represent 
an adequate approach for the imputation of missing 
data in daily precipitation series and have received 
greater acceptance and applicability (Teegavarapu 
and Chandramouli, 2005; Ahrens, 2006; Kim and 
Pachepsky, 2010; Chen and Liu, 2012). 

Several important studies have already been pub-
lished regarding the use of deterministic weighted 
methods for the estimation and reconstruction of 
missing rainfall data. The inverse distance weighting 
method (IDW) is the most widely used approach 

for the estimation of missing data in hydrology and 
geographical sciences (Xia et al., 1999; Eischeid et 
al., 2000; Teegavarapu and Chandramouli, 2005; Lee 
and Kang, 2015). However, despite its usefulness, 
several authors have presented improvements to the 
IDW method by incorporating other mathematical 
approaches that enhance its results. For example, Tee-
gavarapu and Chandramouli (2005) used a data-based 
approach to impute missing precipitation values. 
Furthermore, these authors proposed improvements 
to the IDW method by replacing the weighting value 
with the correlation coefficient. This new method was 
called the coefficient of correlation weighting (CCW) 
method. Results indicate that CCW is far superior 
to the traditional IDW in estimating the missing 
rainfall records. Wagner et al. (2012) applied seven 
methods to compare various spatial interpolation 
approaches applied to precipitation, which included 
deterministic methods such as the Thiessen polygon 
and statistics and geostatistical approaches (ordinary 
kriging, regression-inverse distance weighting and 
regression-kriging). The methods tested by these 
authors showed that the best performing were those 
based on regression analysis. However, the appli-
cation of these models in precipitation estimates 
showed that they may cause negative results that do 
not correspond to the physics of the phenomenon 
(the minimum amount of daily rainfall is zero), and 
should be readjusted to zero (González Hidalgo et 
al., 2002; Teegavarapu, 2012). Geostatistical esti-
mation methods based on theoretical foundations 
(particularly kriging) are based on showing the 
proportion in which the variance between points in 
space changes and is expressed in a semi-variogram. 
However, this procedure is limited because it relies 
on a certain amount of data to produce a reliable 
and adequate variogram (Toro-Trujillo et al., 2015). 
Regardless of having a high number of points to 
interpolate, some authors argue that kriging does 
not show improvements with respect to the IDW 
method (Wagner et al., 2012).
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In another relevant study, Teegavarapu et al. 
(2009) applied genetic algorithms (GA) and a dis-
tance weighting method to estimate missing pre-
cipitation data. These authors concluded that GA 
provided more accurate estimates over the distance 
weighting method. Chang et al. (2006) applied GA 
to search the most suitable order of distances in the 
variable-order inverse distance method; their results 
show that the variability of the order of distances 
is small when the topography of rainfall stations is 
uniform. This study also confirmed that the vari-
able-order inverse distance method is more suitable 
than the arithmetic average method and the Thiessen 
polygons method in describing the spatial variation of 
rainfall. Suhaila et al. (2008) modified the coefficient 
of the CCW method and proposed a new weighting 
method using the correlation coefficient with the 
inverse distance weighting method (CIDW). Their 
results show that the modified methods presented 
better performance in the estimation of missing 
rainfall data when compared to previous versions in 
terms of three evaluation measures.

Another relevant study conducted by Lo (1992) 
added the proportion of distance to altitude, while 
Chang et al. (2005) added the inverse of these two 
parameter products in the IDW method. Seyyednejad 
et al. (2012) proposed to use each of these parameters 
separately in the numerator, denominator or together 
as coefficients in the IDW method. These studies have 
clearly improved deterministic imputation methods 
that allow for the estimation of missing rainfall 
values. However, none of the existing methods can 
be considered to be applicable globally, since the 
accuracy of these methods are usually affected by 
different factors that go far beyond the selected inter-
polation process itself. Specifically, the selection of 
the best method for estimating missing precipitation 
data may vary from region to region depending on 
rain patterns and spatial distributions (de Silva et al., 
2007). The selection of the best approach should take 
into account the topographic and orographic effects 
of rainfall (Sivapragasam et al., 2015).

In this work, two new generalized weighted 
methods are proposed. The first method is able to 
recover the weighting functions of the normal ratio 
method weighted with correlations (NRWC) (Young, 
1992) and a normal ratio modified with the inverse 
distance method (NRIDW) that uses a new weighting 

function that combines the weight functions of the 
NRWC and IDW together with an altitude factor. The 
second method being proposed generates weighting 
functions that are reported in the literature, such as 
CCWM, IDW, CIDW and the relation of altitude 
with the weighted method of the inverse distance 
(HIDW). This new method constitutes a general-
ization of previous methods with the improvement 
of adding the altitude factor. We believe that both 
proposals are new contributions to the literature, 
particularly because the weighting coefficients are 
determined in an objective manner, minimizing the 
difference between estimated and observed rainfall 
data. The two new methods can be classified as op-
timal interpolation methods with several parameters 
that need to be optimized to obtain the best results. 
This optimization was addressed by using inherently 
continuous algorithms. The metaheuristic adaptation 
of the covariance matrix (CMA-ES) (Hansen et al., 
2003) was used in all of the weighting functions that 
are needed to find optimal exponents. This method 
offers better performance than previously reported 
GA (Hansen et al., 2011; Arsenault et al., 2013). In 
addition, to test the two new methods, 11 weighted 
methods were compared in terms of reliability of the 
precipitation estimates generated. The two new meth-
ods are shown to provide an improvement because 
they include an optimal parameter estimation mech-
anism for the imputation of daily rainfall records. 
An automatic procedure is developed that allows to 
completely rebuild the time-series while preserving 
its statistical properties. The methods were tested 
in the study region of Tabasco, a southern Mexican 
state that is known because of its high rainfall rates. 
A set of rainfall records covering 32 years between 
1980 and 2012 was used to test and validate the new 
methodology.

2. Methods
2.1 Historical application of deterministic methods 
to fill missing data in time series 
Several existing weighted methods that pertain to 
spatial interpolation techniques are presented in the 
following subsection. The methods examined include 
the modified CCWM, CIDW, and NRIDW, as well as 
the HIDW. The main difference between these inter-
polation methods is the way in which the weighting 
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factors (Wi) are estimated. The general formulation 
to represent these methods was proposed by Li and 
Heap (2014) and has the following form:

Zt = Wi · Zi

N

i=1
∑  (1)

where Zt is the estimated value of an attribute or 
variable at point of interest t, Zi is the value observed 
in the i-th neighbor station and N is the number of 
neighboring stations that are used for the estimate 
of daily rainfall. In addition, satisfies the restriction 
∑N

i=1 Wi = 1. 
Suhaila et al. (2008) proposed several modifi-

cations to the existing calculation methods for esti-
mating the missing rainfall values in Petaling Jaya, 
Malaysia. The first method, which modified the CCW 
method, consisted in changing the weighting function 
of the latter (Teegavarapu and Chandramouli, 2005),

Wi =
rit

∑N
i=1 rit

 (2)

by 

Wi =
rit

p

∑N
i=1 rit

p (3)

where rit represents the correlation coefficient of the 
daily precipitation data between the target station t 
and the i-th neighboring station; N is the length of the 
precipitation time series and p is a parameter between 
2 and 6. The second method was the CIDW. Here, 
advantage is taken because the IDW is influenced by 
the minimum distances between the target station and 
the neighboring stations. In addition, the correlation 
factor can also contribute positively to improve the 
estimates of the missing values of rainfall, consider-
ing that the neighboring stations would have greater 
correlation with the target station. Thus, the weight-
ing factor of this method is given by

Wi =
rit

p dit
–2

∑N
i=1 rit

p dit
–2

 (4)

where dit represents the distance between the target 
station t and the i-th neighboring station. Finally, 
they combine the best proposed NR method (Young, 
1992), which is the NRWC, whose weighting func-
tion is

Wi =
(ni  – 2)rit

2
 (1 – rit

2)–1

∑N
i=1 (ni  – 2)rit

2
 (1 – rit

2)–1 (5)

With the weighting function of the IDW method 
it is called modified NRIDW, and its weighting 
function is

Wi = .(ni  – 2)rit
2
 (1 – rit

2)–1dit
–2

∑N
i=1 (ni  – 2)rit

2
 (1 – rit

2)–1dit
–2  (6)

Suhaila et al. (2008) concluded that the proposed 
methods presented better performance in the estima-
tion of the missing rainfall data, in comparison with 
their previous versions in terms of three evaluation 
measures. Lo (1992) added the proportion of distance 
to altitude, while Chang et al. (2005) added the in-
verse of these two parameter products in the IDW 
method. Seyyednejad et al. (2012) proposed to use 
each of these parameters separately in the numerator, 
denominator or together as coefficients in the IDW 
method. Thus, more general models (HIDW) than 
those proposed by Lo (1992) and Chang et al. (2005) 
are obtained; its weighting function is 

Wi =
dit

–q
  hit

–S

∑N
i=1 dit

–q
  hit

–S (7)

where hit represents the altitude difference between 
the target station t and the i-th neighboring stations. 

Table I shows a summary of the previously 
reported imputation methods that were tested and 
compared to our methods in our study (we included 
abbreviations and references).

2.2 New methods to estimate missing rainfall data
Two new imputation methods based on the NRIDW 
and CIDW are applied in this study. These two new 
approaches are distinguished by the inclusion of 
free parameters (several parameters that need to be 
optimized to obtain the best results) and by the con-
sideration of the altitude factor. The search for opti-
mal parameters is conducted by using heuristic and 
metaheuristic techniques, since these methods allow 
obtaining a solution that is close to the optimum, in 
a computationally acceptable time. These algorithms 
can be used in the search for solutions of any optimi-
zation problem. In our work, the optimal parameters 
are computed by means of the adaptation strategy 
of the covariance matrix (CMA-ES) (Hansen et al., 
2003). The optimization algorithm was implemented 
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using the R software with the “cmaes” and “parma” 
libraries (Trautmann et al., 2011; Ghalanos, 2016). 
CMA-ES offers a better performance (Hansen et al., 
2011) as compared with the optimization technique 
based on particle clouds (PSO) (Du and Swamy, 
2016), as well as with GA (Tsangaratos et al., 2019). 

The altitude-rainfall relationship has been investi-
gated previously by (Hevesi et al., 1992a, b), who used 
cokriging to incorporate elevation into the mapping 
of the spatial variability of rainfall. They reported a 
significant correlation (0.75) between average annual 
precipitation and elevation recorded in 62 stations in 
Nevada and southeastern California. Another relevant 
study conducted by al-Ahmadi and al-Ahmadi (2013) 
analized the relationships between annual and seasonal 
rainfall and the altitude of the terrain. These authors 
used 180 rainfall stations with 35 yrs of monthly 
records from 1971 to 2005 in Saudi Arabia, apply-
ing the global ordinary least square (OLS) and local 
geographically weighted regression (GWR) methods. 
Their results show that using the GWR method they 
obtained coefficients of determination  higher than 
0.64 between altitude and annual, winter, spring, 
summer, and fall rainfalls. Sadeghi et al. (2017) eval-
uated rainfall distribution and the effect of elevation 

as a secondary variable to interpolate rainfall in Iran 
using several geostatistical techniques such as kriging, 
co-kriging, IDW, radial basis function, global polyno-
mial interpolation, and local polynomial interpolation. 
These authors concluded that the rain amount is imme-
diately influenced by elevation and also that the result 
of co-kriging has a direct correlation with elevation 
changes. According to Goovaerts (2000), precipitation 
tends to increase with increasing elevation, mainly be-
cause of the orographic effect of mountainous terrain, 
which causes the air to be lifted vertically, and the 
condensation occurs due to adiabatic cooling. These 
studies have shown that the amount and distribution 
of rainfall is directly affected by elevation. This is why 
several methods for the imputation of rainfall have 
included the altitude as a critical component. Our two 
proposed generalizations (shown below) continue that 
trend and include an altitude factor. 

2.2.1 Generalization of the modified normal ratio 
with the inverse distance method (GNRIDW)
The weighting function of the NRIDW method is a 
combination of the weighting functions of the NRWC 
and IDW methods (see Eq. [6]). Usually q = 2 is 
taken as the default value in the weighting factor 

Table I. List of the 9 deterministic imputation methods with their respective code.

# Impute method Code Reference

1 Classical normal ratio method NR (Paulhus and Kohler, 1952)

2 Normal ratio method weighted with
correlations

NRWC (Young, 1992)

3 Inverse distance weighting method IDWM (Teegavarapu and Chandramouli, 2005; Chang 
et al., 2006; Moeletsi et al., 2016)

4 Weighted correlation coefficient method CCW (Suhaila et al., 2008; Ford and Quiring, 2014)

5 Modification to the weighted
correlation coefficient method

CCWM (Suhaila et al., 2008)

6 Normal ratio modified with inverse
distance method

NRIDW (Suhaila et al., 2008)

7 Modified correlation coefficient with
inverse distance method

CIDW (Suhaila et al., 2008)

8 Inverse distance weighting of normal
ratio with correlation

NRIDC (Azman et al., 2015)

9 Relation of the height with the
weighted method of the inverse distance

HIDW (Seyyednejad et al., 2012)



242 J. L. Morales Martínez et al.

related to the IDW method (dit); however, although 
q=2 is the most commonly used value (Teegavara-
pu and Chandramouli, 2005; Boke, 2017) there is 
no theoretical justification for preferring this value 
over others (Bajjali, 2018). Therefore, other possible 
values for q should be investigated as well. Given 
the above-mentioned and considering the altitude as 
one of the factors that may affect the rainfall records, 
the following modification to the NRIDW method is 
proposed:

Wi =
(Ni  – 2)rit

2
 (1 – rit

2)–1 dit
–q hit

–s

∑N
i=1 (Ni  – 2)rit

2
 (1 – rit

2)–1 dit
–q hit

–s
 (8)

where rit, dit, and hit represent the correlation coeffi-
cient, the distance and the altitude difference between 
the target station t and the i-th neighboring stations, 
respectively.

If s = q = 0 is set in Eq. (8), the weighting function 
of the NRWC method is recovered (compare with 
Eq. [5]). If, instead, s = 0 and q = 2, the weighting 
function of the NRIDW method is obtained (compare 
with Eq. [6]). Therefore, this proposal constitutes a 
generalization of both the NRWC and NRIDW meth-
ods. Finally, it is emphasized that the parameters q 
and s belong to ℝ+ and their values are determined 
according to the solutions of the following optimi-
zation problem:

min MAE(q,s) =

Subject to q,s ≥ 0

|Zi – Zt (t)|q,s

1 N

i=1
∑N  (9)

where Zi is the i-th observed rainfall value, Zt is the 
i-th predicted rainfall value and is calculated as Zi (t) 
= ∑N

i=1 Wi · Zi with Wi according to Eq. (8). 

2.2.2 Generalization of the modified correlation co-
efficient with the inverse distance weighting method 
(GCIDW)
In line with the above reasoning, the CIDW method 
can be generalized as well. Let us considerer the q 
exponent of the IDW as a parameter to be optimized 
and, as before, let us add the altitude factor. As a re-
sult, a generalization of CIDW is obtained in which 
the weighting factors are given as follows:

Wi =
rit

p dit
–q hit

–s

∑N
i=1 rit

p dit
–q hit

–s  (10)

where rit, dit and hit represent the correlation coeffi-
cient, the distance and the altitude difference between 
the target station t and the i-th neighboring stations. 
In this proposal, unlike the previous one, there are 
three parameters (p, q and s) whose spatial domain is 
ℝ+. To obtain different combinations of the parame-
ters we can retrieve some of the methods described 
above. For example, if s = q = 0 is set in Eq. (9), the 
weighting function of the CCWM method is recov-
ered (compare with Eq. 3), whereas, if s = p = 0, the 
weighting function of the IDW method is obtained. 
Besides, if p = 0 we retrieve the weighting function of 
the HIDW method (compare with Eq. [7]). Finally, if 
s = 0 and q = 2, the weighting function of the CIDW 
method is obtained (compare with Eq. [4]). 

Given that in both of the methods being proposed 
the weighting coefficients Wi are determined in a di-
rect way by solving the optimization problem given 
in Eq. (9), our proposals can be classified as optimal 
interpolation methods with several parameters to be 
optimized.

2.3 Study area
In order to apply the different imputation methods and 
to illustrate how the two new proposed procedures 
work, we have chosen the state of Tabasco, which is 
located in the southern region of Mexico. Tabasco 
is bordered by the states of Chiapas, Campeche, 
Quintana Roo and Yucatán (see Fig. 1), which are 
considered the wettest region in the country. Ta-
basco extends from the coastal plain of the Gulf of 
Mexico to the mountain ranges of northern Chiapas. 
Geographically it is located between 17º 15’-18º 39’ 
N, and 91º 00’-94º 17’ W. It is bounded to the north 
by the Gulf of Mexico and the state of Campeche, to 
the south by the state of Chiapas, to the east by the 
Republic of Guatemala and to the west by the state 
of Veracruz (Fig. 1). Tabasco has an area of 25 267 
km2, representing 1.3% of the Mexican territory. The 
major part of the state is a plain surface with a few 
elevations to the south of the state (5.84% of the total 
state’s area) (Sosa Cabrera, 2010), which are relative-
ly low in relation to the average sea level (400-900 
masl). The territory of Tabasco is located in a tropical 
zone close to the Gulf of Mexico, which results in a 
warm climate with only small temperature variations 
throughout the year. The yearly average temperature 
is 27 ºC, with an average range of variation of 18.5 
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to 36ºC. The historical yearly average rainfall in the 
state is of 2184.6 mm, which is the highest annual 
precipitation in Mexico. The highest rainfall zone is 
in the mountain range in the south-center part of the 
state, with precipitation values above 4000 mm yr–1, 
while the rest of the state has recorded precipitation 
values in the range of 1200 to 2500 mm yr–1.

2.4 Climatological database
The state of Tabasco has 83 meteorological stations. 
However, after a careful analysis of their records, 
the following problems were found: i) some stations 
were not useful because the data was collected at 
different time scales (days, months and years) and ii) 
some stations with daily rainfall records did not have 
enough information. Only stations with a minimum 
of 30 yrs of uninterrupted rainfall information, as 
recommended by the World Meteorological Organi-
zation (WMO, 2011) were chosen. The period from 
January 1, 1980 to December 31, 2012 was chosen 

to conduct this investigation. Since there is not a 
well-established criterion of what to consider as an 
acceptable percentage of missing data in a time series 
dataset (Dong and Peng, 2013), an assumption was 
made to consider datasets with daily rainfall with at 
most 25% of missing data. This approach allowed 
to have a more reliable dataset, even though rainfall 
time series with higher percentages of missing data 
have been considered in other studies (Malek et al., 
2010; Campozano et al., 2015; Toro-Trujillo et al., 
2015). Table II shows a summary of the main features 
of the selected weather stations, which cover 82% of 
Tabasco’s municipalities (14 of 17). The information 
was obtained through the Climate Computing Pro-
gram (Clicom) system of the National Meteorological 
Service (http://clicom-mex.cicese.mx). None of the 
weather stations selected had a complete dataset.

The standard deviation in the state varied between 
12.503 and 23.230 mm day–1. These ranges were 
recorded in very contrasting zones: the lower range 
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corresponds to weather station 27040, located in 
the municipality of Balancán, to the west-northwest 
of the state, with an annual precipitation range be-
tween 1500 and 2000 mm, while the highest daily 
precipitation range was found in meteorological 
station 27061, located in the municipality of Teapa 
to the center-south of the state (highest rainfall area), 
with annual ranges above 2500 mm. The Pearson’s 
linear correlation coefficient between the standard 
deviation and the daily mean values of rainfall was 
0.934. Therefore, both variables are related pos-
itively, which means high values of precipitation 
are associated with high variability (Sokol Jurkoviç 
and Pasariç, 2013). This relationship allows us to 
obtain a variation coefficient that homogenizes the 
variation between all the meteorological stations. In 
all the weather stations, asymmetric values greater 
than or equal to 4.080 were obtained, therefore, the 
rainfall data-set have a positive biased distribution, 
that is, the distribution of precipitation data tends to 
be concentrated towards the left rather than towards 
the right of the mean. Finally, it can be observed 
that the kurtosis coefficient of the daily rainfall dis-
tribution has a minimum of 22.623, implying that 
in all the meteorological stations there is a visible 
concentration of rainfall values in the central area of 
the distribution. As a result, all of the distributions 
are leptokurtic (Hood et al., 2007).

In order to provide a better perspective on the 
behavior of rainfall, the calculation of the correla-
tions between the amount of daily rainfall with all 

possible pairs of the selected weather stations was 
carried out. At the same time, the distances between 
the geographical locations of the selected stations was 
also computed. Figure 2 shows the correlations of the 
rainfall plotted against the distance, given in kilome-
ters. Weather stations that are separated by distances 
beyond 140 km have low correlation values (lower 
than 0.30) and have a low degree of linear association. 
On the other hand, nearby weather stations have more 
similar rainfall behaviors than pairs of geographically 
distant weather stations. DeGaetano (2001) suggests 
that weather stations that are geographically close to 
each other should be grouped, because it provides an 
idea of the spatial structure of the variables under 
study. Cluster analysis is one of the most common 
used techniques to identify groups of homogeneous 
climates (DeGaetano, 2001). Given that the data 
satisfies the assumption of the existence of spatial 
correlations between the amount and the frequency 
of rainfall between neighboring weather stations, the 
choice of the latter technique was applied in our study. 
The above analysis is supported by the results shown 
in figure 2, where a negative relationship between the 
correlation of daily rainfall amounts and the distance 
between weather stations is evident.

2.5 Methodology to test the proposed methods
Taking into account that the spatial clustering of ob-
servation sites is a common practice in climatology 
(DeGaetano, 2001; Teegavarapu, 2012), and that 
empirical methods use weather stations with similar 
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Fig. 2. Correlations between the climatological stations of Tabasco. Here 
the correlations between the amounts of daily rainfall with all possible 
pairs of the selected weather stations are calculated, as well as the dis-
tances between the geographical locations of the selected stations. Both 
quantities are shown in a scatter chart.
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rainfall patterns (Xia et al., 1999; Teegavarapu and 
Chandramouli, 2005; Ramos-Calzado et al., 2008; 
Suhaila et al., 2008; Campozano et al., 2015), the 
hypothesis being tested here is that missing rainfall 
data in a target station can be imputed by consider-
ing the daily rainfall dataset of several neighboring 
weather stations. The procedure followed to evaluate 
our hypothesis can be summarized as follows:

1. The first step is to carry out a cluster’s analysis 
through the K-means grouping method, in order to 
define the geographic regions with homogeneous 
properties. 

2. Then, it is necessary to choose a data-set without 
missing data in each one of the clusters.

3. After that we chose a number N of similar neigh-
boring weather stations with respect to the given 
target station.

4. Then, for each target station and in each cluster, 
we applied a number of existing (previously se-
lected) imputation methods.

5. The above item is complemented by applying two 
new proposals (not found in the literature) for the 
imputation of missing data.

6. Then, following a well-established criterion (mean 
absolute error [MAE]), we evaluated and chose 
the best method (optimum parameters) among the 
ones used in the former items.

7. Finally, an iterative algorithm was evaluated in 
each of the target weather stations, which applies 
the best imputation method (among the ones con-
sidered here) in each cluster.

These steps are described in more detail in the 
following sections.

2.5.1 Non-hierarchical cluster analysis
Cluster analysis is one of the statistical techniques 
frequently used in meteorology and climatology to 
group stations in regions with homogeneous climates 
(Gong and Richman, 1995; DeGaetano, 2001). In this 
study, the K-mean grouping algorithm (Teegavarapu, 
2014; Mohammadrezapour et al., 2018; Reddy et 
al., 2018;) is used to identify spatial groups of the 
aforementioned weather stations (see Fig. 1). This 
allowed for the visualization of the spatial structure 
of rainfall and to perform an efficient search of neigh-
boring weather stations that are closest to the target 

station. In order to validate the cluster’s structure, five 
techniques were used: 1) the elbow method, 2) the 
TraceW index (Milligan and Cooper, 1985), 3) the 
Hartigan index (Hartigan, 1975), 4) the Krzanowski 
index (Krzanowski and Lai, 1988), and 5) the gap 
statistics (Tibshirani et al., 2001). In order to evaluate 
the stability of the clusters, the algorithm described 
by Hennig (2007) was used, which was implemented 
using the “fpc” software package using R (Hennig, 
2015). The stability evaluation of the clusters is 
based on the use of the Jaccard coefficient (Guha et 
al., 1999), while the plausible variations in the initial 
dataset are obtained by bootstrap resampling (Effron 
and Tibshirani, 1993).

2.5.2 Selection of similar neighboring stations
In all spatial interpolation schemes, the selection and 
amount of similar neighboring weather stations are 
very important factors that influence the results of 
the interpolations (Eischeid et al., 2000). There are 
many ways to select neighboring weather stations. 
Some are based on the correlation coefficient (Young, 
1992; Eischeid et al., 1995, 2000), while in others 
the proximity between neighboring weather stations 
is represented by means of a statistical distance ap-
proach (Ahrens, 2006; Ramos-Calzado et al., 2008). 
According to Eischeid et al. (2000) adding more than 
four neighboring stations does not significantly im-
prove the results of the interpolation and sometimes 
worsen the estimates. In this work, a criterion of no 
more than four neighboring stations was selected as 
the distance between stations.

2.5.3 Evaluation of the estimation methods perfor-
mance
There is no agreement in the literature as to what is 
the best interpolation method that can be applied in 
all the disciplines that attempt to fill missing data in 
a time series. This is because the precision of these 
methods is usually affected by different factors 
beyond the selected interpolation process itself (Li 
and Heap, 2008). In particular, the selection of the 
best method for estimating missing rainfall data may 
vary from region to region depending on rainfall pat-
terns and spatial distributions (de Silva et al., 2007). 
Therefore, it is crucial to choose the most appropriate 
interpolation method for each meteorological station 
in a given study area. A trivial way in which this task 
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can be achieved, is by evaluating every selected in-
terpolation method in each target station. In this way 
it is apparent to identify the method that provides the 
best estimates. Usually spatial interpolation methods 
produce numerical errors associated with the estima-
tion. Therefore, a way to compare the performance of 
these methods is through using measures that quan-
tify the committed error. In this regard, MAE is the 
most natural measure to calculate the average error 
(Willmott and Matsuura, 2005). The aforementioned 
error measure is given by

MAEi = ∑n
t=1|Zi(t) – Zi(t)|

1
n  (11)

where n is the total number of observations, Zt (t) is 
the estimated value and Zi(t) is the observed value, 
related to the corresponding meteorological variable 
in the target station i.

2.5.4 Iterative algorithm
In this subsection we describe the iterative proce-
dures used in order to establish reasonable imputed 
values for daily rainfall. Below we describe, first, the 
process to find the optimal estimation method and its 
parameters, and then, the algorithm for the estimation 
of missing data is presented.

2.5.4.1 Methodology to find the optimal estimation 
method
We begin by grouping the set X={x1,x2,…,xn} of 
d--dimensional, n weather stations through using the 
K-mean method within a group of K clusters, C={ck, 
k = 1,2,…,K}.. Then, for the k-th cluster in the set 
C, ck a dataset is selected where there are no missing 
values. The next step is to determine the number 
of neighboring weather stations by considering the 
Euclidean distance criterion:

dij = (Wik – Wjk)T (Wik – Wjk) (12) 

where dij is the Euclidean distance between the i-th 
and the j-th stations that belong in the cluster ck. 
These are represented in the space of the variables 
by the vectors

Wik = and Wjk = ,
x1jk
x2jk

xdik

···( ) x1jk
x2jk

xdjk

···( )

respectively. The variables we consider in this work 
are the longitude and the latitude in their UTM co-
ordinates. Subsequently, each of the aforementioned 
methods shown in Table I, are evaluated. The CMA-
ES optimization method was used to find optimal 
parameters-exponents of all weighted methods, 
including our proposals. For each parameter to be 
optimized, a search space located within the interval 
(10–8,50), was considered. In order to avoid falling 
into a local minimum, 50 iterations are performed, 
and the average absolute error is calculated. Finally, 
the optimal method for each destination station is the 
one that provides the absolute minimum of MAE.

2.5.4.2 Algorithm for estimating missing data
The purpose of the iterative algorithm described be-
low (Fig. 3) is to establish reasonable imputed values 
for daily rainfall. Moreover, for the i-th target station 
belonging in the ck cluster, the weight-function Wi 
(obtained through the methodology described in the 
subsection above) is required. 

Firstly, the algorithm requires initial parameters. 
Line 1 introduces the weighting functions that are 
associated with the i-th stations belonging in the 
ck cluster. Then, line 2 introduces a series of initial 
values: A defines the maximum number of iterations 
to be considered, B defines the tolerance with which 
to work and C represents the initial value of a given 
counter. 

Secondly, an iterative procedure is applied to each 
cluster from line 3 to line 21. In line 4, for each one 
of the xi target stations belonging in the cluster ck, the 
distance from the neighboring stations is calculated 
by using Eq. (10). Considering each one of the dis-
tances, the four neighboring stations corresponding 
to each one of the xi target stations are chosen. Then, 
the missing data is identified by using the δ indicator 
function, that is, δ = 1 if the daily rainfall data in xi is 
missing and δ = 0 otherwise. Line 6 assigns the origi-
nal data matrix DNL, where N represents the whole set 
of available data in the study for every target station, 
and L represents the cluster length ck to a new matrix 
ENL. This is done in order to preserve the original data 
and not to lose them in the imputation process. From 
line 7 to line 12, the missing data is replaced by the 
average monthly rainfall, considering the historical 
behavior for each one of the target stations xi. We first 
calculate the average Mik monthly rainfall matrix for 
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each one of the target stations xi. Then, for the lacking 
j in the original data ENL, corresponding to the month 
i in the target station k, the missing j is replaced by 
the monthly average in Mik. Finally, line 12 rewrites 
the data matrix that will be imputed and we name it 
FNL. From line 13 to 21, the main process for impu-
tation of missing data is performed. In this part of the 
algorithm we start by reading the best method and its 
parameters (obtained in the subsection Methodology 
to find the optimal estimation method), the data of the 
xi target stations, the data of the xj, j ≠ i neighboring 
stations, as well as the different weighting functions 
Wi associated with each one of the xi target stations. 
Then, only the missing data are estimated, that is, 
the data corresponding to a value of the function 
δ ≠ i. The mean value calculated in the previous 
stage is replaced by the values obtained when using 
the optimal methods. So far what has been done is 
a forward procedure where more than one neigh-
boring station has been selected in order to estimate 
the missing values in one or in more than one target 
stations. Line 21 repeats the process started on line 
16 but in an inverse manner. Therefore, a backward 
procedure is now being considered. It is possible that 
at the beginning of these processes great differences 

arise, but with the passage of the iterations the process 
eventually stabilizes. 

Finally, the stop criterion is verified in lines 22 
to 25. In lines 22 and 23, two descriptive statistics 
are computed: the mean and the variance per column 
for two consecutive iterations. These are saved in 
matrices P2,L and Q2,L, respectively. The first row of 
both matrices is composed by the arithmetic means, 
while in the second row the variances are found. In 
order to establish the stopping criterion, we evaluate 
whether the sum of each row of | P2,L – Q2,| is less 
than 10–13. Therefore, there are no significant differ-
ences between the data set with missing values and 
the complete data set. 

In order to provide greater clarity of the iterative 
algorithm to estimate missing rainfall data, the flow 
diagram is presented in figure 4.

3. Results and discussion
3.1 Validation of the clusters’ structure
The validation and stability of the structure of the 
clusters is analyzed in figure 5a, which shows that 
clusters incorporate much information that results in 
high values of variance. As shown in this figure, there 

1: input ck and Wi

2: A ← 1000, B ← 10–13, C ← 0
3: for K = 1 to length (ck) do
4: Calculated dij = (Wik – Wjk)T (Wik – Wjk) and determine four neighboring stations
5: Identify missing data for all xi though an indicator function δ
6:  ENL ← DNL (Assign the original data matrix to a new matrix)
7.  for i=1  to 12 do (Analysis per month)
8.  Mik ← monthly average
9:  if the data j absent in ENL corresponds to month i of the target station k then,
10:   it replaces j by Mik

11:   ENL ← Mik

12:  FNL ← ENL (rewrite the data matrix that will be imputed)
13: while C < A do
14: C ← C + 1
15: GNL ← FNL (initial matrix)
16: for k=1 to length (ck) do
17: Read de data of: xi, xj, j ≠ i neighboring stations
18: Read the best method its parameters, read Wi

19: H ← vector estimate missing data
20: FN,K ← H
21: Repeat 16 but in reverse order
22: P2,L ← average per column of GN,L, variance per column GN,L

23: Q2,L ← average per column of  FN,L, variance per column FN,L

24: if (row Sums |P2,L – Q2,L| < B) then
25: Break 

Fig. 3. Algorithm to estimate missing data developed in R (R Core Team, 2013)
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is a rapid decay until a point k = 4. From this k-value 
on, the marginal gain drops drastically and the total 
sum of the squared errors within the clusters tends 
to change slowly. As a result, an arm-like structure 
with an “elbow” is observed at the point k = 4. The 
optimal number of clusters corresponds, precisely, to 

the position of the elbow. However, the elbow method 
is heuristic and may or may not work always. For 
this reason, four different methods were also tested 
to compute the optimal k value; i.e., optimal number 
of clusters. Figure 5b shows the gap statistic method. 
This procedure compares the total within intra-cluster 

Step 1

Step 3

Step 2

Start

Stop
(see, line

25)

Read cluster Ck, Weighting function Wi,
Initial values A,B and C (see, lines 1-2

Target station selection K=1 to length
(ck) (see, line 3)

if k>lenght ck

Selection of neighbors (see, line 4)

Identify missing data through an
indicator function δ (see, lines 5-6)

Interative process forward and
backward (see, lines 13-21)

if (row Sums
|P2,L – Q2,L| < B)

Replace average values ENL ← Mik

(see, lines 7-12)

YesYes

(see, lines 22-24)

No

No

Fig. 4. Flowchart showing a summarization of the proposed method to estimate missing data. Step 
1: the algorithm requires initial parameters; step 2: an iterative procedure is applied to each cluster; 
step 3: the stop criterion is verified.

Fig. 5. Sum of squared error against number of clusters (scree plot). (a) Gap statistic. (b) Optimal number of 
clusters (k = 4).
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variation for different values of k with their expected 
values under a null reference distribution of the data. 
The optimal number of clusters is the value that 
maximizes the gap statistics. This means that the clus-
tering structure is far away from the random uniform 
distribution of points (Tibshirani et al., 2001). This 
plot shows the statistics by number of clusters (k) 
with standard errors drawn with vertical segments and 
the optimal value of k marked with a vertical dashed 
blue line. According to this observation k = 4 is the 
optimal number of clusters in the data.

Table III shows the results of comparing the 
TraceW, Hartigan and Krzanowski indices used to 
find the optimal k-value. In this way, five different 
methods were applied to estimate the optimal num-
ber of clusters. It is evident from these results that, 
in coincidence with the results of the elbow method, 
the optimal selection for k was 4. 

By analyzing the stability of the structure com-
posed of four clusters, the following stability values 
were obtained: 0.9208770, 0.9051905, 1.0000000 
and 1.0000000, respectively. It can therefore be seen 
that the four clusters are stable. This means that there 
is a high probability that all of these clusters repre-
sent the true structure in the data. Unlike our work, 
Teegavarapu (2014) carried out the estimation of 
missing precipitation data using optimal proximity 
metric-based imputation, nearest-neighbor classifica-
tion and cluster-based interpolation methods. In this 
study different cluster sizes were experimented. A 
total of six clusters resulted in the best performance 
measures.

3.2 Application and evaluation of the different im-
putation methods
In order to evaluate the performance of 11 imputation 
methods (nine from previous studies and two new 
methods proposed here) of the four clusters, a data-set 
was selected without the presence of missing values. 
The comparison between the observed and imputed 
values was quantified using the MAE. The CMA-
ES algorithm was employed in all of the weighting 
functions in order to find the optimal exponents.

Figure 6 shoes the behavior of the MAE for each 
one of the 11 allocation methods evaluated. The 

Table III. Values of the indices for data partitions in the 
state of Tabasco.

Indices Cluster number Index value

TraceW(k) 4 32255292808
H(k) 4 31.6603
KL(k) 4 10.3271

Fig. 6. Mean absolute error of the 11 deterministic imputation methods (Table I.). (a) station 27006, (b) station 27008, 
(c) station 27030 and (d) station 27054.
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weather stations 27006, 27008, 27030 and 27054 
were randomly selected to test these methods. The 
vertical axis represents the MAE, while the horizontal 
axis represents each of the methods mentioned in 
Table I. The new methods proposed here are identi-
fied by the numbers 10 and 11 in the above-mentioned 
figure. In weather stations 27006 and 27030 the 
method that shows the minimum MAE is the normal 
ratio, with values of 5.236 and of 5.498 mm day–1, 
respectively. In both cases the GCIDW proposal (the 
one identified through the number 11 in the figure) 
turns out to be the second-best selection. On the 
other hand, in the stations 27008 and 270054, the 
methods 9-11 (which incorporate the altitude factor 
in the weighting functions) present very similar 
results, although method 11’ shows the minimum 
MAE. Therefore, the new proposals presented in this 
paper, show better performance than the remaining 
methods considered.

The values of MAE for each one of the 11 allo-
cation methods evaluated is shown in Table IV, as 
well as the mean rank obtained by each imputation 
method according to the Friedmann test (Lee and 
Kang, 2015). In the last row, the symbol > denotes 
that the difference between one or more methods is 
statistically significant. For instance, {method1a} > 
{method2b} > {method3bc, method4c} indicates that 
the method 1 is significantly better than methods 2, 
3 and 4. In addition, method 2 is significantly better 
than method 4, while method 3 does not differ signifi-
cantly than methods 2, and 4 since it has common bc 
letters. Finally, method 3, despite not having differ-
ences with method 2 is placed next to method 4 since 
its average ranges are greater than those obtained by 
method 2 and more like those obtained by method 4. 

The results presented in Table IV show that the 
calculations of MAE when applying the GCIDW 
method with the exception of one case (weather 
station 27070) were always between the three lowest 
values (see superscript values). Therefore, GCIDW 
obtained the smallest mean rank. Besides, there is a 
significant difference between all the methods eval-
uated (significant p-value equal to 0.000). The MAE 
values in this work were similar to those obtained 
by other researchers (Deraisme et al., 2001; Suhaila 
et al., 2008; Qian et al., 2010; Seyyednejad et al., 
2012; Serrano-Notivoli et al., 2017b). In particular, 
the MAE values are between 4 and 8.6 mm with an 

average value close to 6 mm. Overall, performance 
results show that CCWM is superior compared to 
other methods found in the literature. Similar results 
were obtained by Azman et al. (2015) when they es-
timated missing rainfall data in Pahang using spatial 
interpolation weighting methods, probably due to the 
fact that the used stations were in the same cluster, 
and it indicates a strong relationship between all the 
stations.

To identify which method or methods are signifi-
cantly different, the Nemenyi post hoc test (Pohlert, 
2014) was performed. The results indicated there 
are three well-defined homogeneous subgroups (see 
last row in Table IV.), with the proposed method 
(GCIDW) being statistically significantly better than 
the other methods compared. Therefore, GCIDW can 
be considered the best method to estimate missing 
rainfall data among the methods analyzed. In Table V 
the optimal method for all of the stations within 
each cluster is presented. The proposed imputation 
methods resulted optimal in 13 of the 29 stations 
analyzed (this represents approximately 44.83% 
of the weather stations). In order of priority, NR, 
CCWM, NRIDC and HIDW were found in 9, 4, 2 
and 1 stations, respectively. 

Considering the large number of stations, it 
would be impractical and difficult to examine in 
detail a box diagram or an error histogram for each 
weather station. In Table VI a series of basic statis-
tics that synthesize and highlight the performance 
of each of the optimal methods for the original and 
imputed series, is shown. For all of the stations the 
basic statistics between both series are very similar. 
Regarding the arithmetic mean of daily rainfall, it 
is computed that, for the most part, values   corre-
sponding to the imputed series are slightly below the 
values   of the observed series. The same happens for 
scattering statistics. The form statistics shows that 
the imputed series presents a positive biased distri-
bution with a high concentration of rainfall values   
in the central zone of the distribution. Considering 
the results of Table VI, it can be concluded that 
the proposed iterative process allowed imputation 
of the missing data without significantly altering 
the distribution of the precipitation time series. 
Therefore, the imputed series of rainfall data does 
not present significant differences with respect to 
the original series.
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Finally, the inclusion of the factor that mea-
sures the difference in altitude between the target 
station and the neighboring stations, as well as the 
optimization of the parameters corresponding to the 
correlation exponents, p, distance, q and altitude, s, 
contributed significantly to the computation of better 
estimates of missing rainfall values.

4. Conclusions
In this work we have proposed two new general-
ized weighting methods and a methodology to fill 
missing data through using the optimal method and 
parameters. In these procedures we have incorporat-
ed the altitude difference between the target station 

and the neighboring stations, as a new variable. The 
performance of each method was quantified by the 
MAE. For all of the weight-functions required to find 
optimal exponents, the metaheuristic adaptation of 
the covariance matrix (CMA-ES) was employed. The 
results of this process show that the proposed meth-
ods are optimal at 44.83%, followed by the classical 
normal ratio method with approximately 31%. 

The weather stations of the state of Tabasco were 
clustered through the K-mean procedure, which is 
based on the Euclidean distance. In our analysis, 
UTM coordinates were used in order to locate the 
weather stations representing each east coordinate as 
a value on the x-axis and each north coordinate as a 
value on the y-axis. In order to validate the amount 

Table V. Selection of the optimal method for all stations within each cluster.

Membership Station Optimal
method

MAE p q s

Cluster 1

27007 11 6.040 6.33 6.91·10–9 0.214
27008 11 7.969 2.23 1.24 5.97·10–9

27015 10 7.45 2.62·10–9 2.18·10–1 -
27037 11 5.251 3.95 1.18·10–9 2.89
27039 1 6.194 - - -
27060 11 5.026 6.4 3.85·10–9 0.386
27075 11 7.613 2.41 1.72·10–9 1.27
27076 5 7.167 2.86 - -
27077 1 8.339 - - -
27078 1 6.689 - - -

Cluster 2

27002 1 4.581 - - -
27009 5 6.157 8.323 - -
27034 9 4.727 1.96 3.36 -
27036 5 5.921 1.784 - -
27050 1 4.231 - - -
27054 11 5.037 1.116 3.61 1.098
27084 11 4.813 18.283 5.96·10–9 6.137

Cluster 3

27004 11 6.072 30.5 10.776 0.278
27006 1 5.236 - - -
27021 11 6.149 3.99 1.263 10–4

27040 1 5.086 - - -
27047 5 7.521 10–4 - -

Cluster 4

27011 1 7.012 - - 9.42·10–9

27019 11 5.866 14.5 3.17 9.42
27030 1 5.491 - - -
27042 11 6.253 3.8 1.16 2.56·10–9

27044 8 4.027 9.94·10–9 - -
27061 11 4.225 7.93 4.67·10–10 0.529
27070 8 6.603 1.36·10–9
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of clusters, five methods were employed: (1) elbow 
method, (2) gap statistics, (3) TraceW index, (4) 
Hartigan index, and (5) Krzanowski and Lai index. 
The first two are graphic methods and in all cases 

the same results were computed. The study on the 
validity of the optimal number of clusters ends up 
with the stability study by using an algorithm based 
on the bootstrap method. All of the stability indices 

Table VI. Performance statistics for the original and imputed series.

Membership Station Series Mean STD VC S K

Cluster 1

27007 Original 5.694 17.365 3.050 6.768 75.527
imputed 5.560 16.758 3.014 6.811 76.970

27008 Original 5.686 16.425 2.888 6.234 61.613
imputed 5.617 16.097 2.866 6.203 61.018

 27015 Original 6.569 16.485 2.510 4.149 23.338
imputed 6.264 15.686 2.504 4.354 25.960

27037 Original 5.680 15.312 2.696 5.258 44.671
imputed 5.650 15.306 2.709 5.251 44.322

27039 Original 5.487 15.386 2.804 5.494 46.127
imputed 5.450 15.252 2.799 5.527 46.516

27060 Original 5.439 15.601 2.868 5.543 47.752
imputed 5.397 15.361 2.846 5.526 47.220

27075 Original 6.297 18.346 2.914 5.887 53.335
imputed 6.231 18.073 2.901 5.852 52.796

27076 Original 6.292 19.518 3.102 7.141 74.564
imputed 6.133 18.257 2.977 7.131 77.017

27077 Original 5.850 18.561 3.173 5.638 48.432
imputed 5.798 17.846 3.078 5.697 50.146

27078 Original 4.871 15.133 3.107 6.693 73.289
imputed 4.859 14.838 3.054 6.714 74.634

Cluster 2

27002 Original 3.920 12.588 3.211 6.987 81.330
imputed 3.947 12.132 3.074 6.985 83.146

27009 Original 4.801 15.082 3.142 6.154 56.439
imputed 4.713 14.562 3.089 6.586 67.426

27034 Original 4.501 14.584 3.240 7.131 82.448
imputed 4.534 14.324 3.159 7.049 81.585

27036 Original 5.433 15.387 2.832 6.438 73.218
imputed 5.440 15.284 2.809 6.411 73.007

27050 Original 4.264 13.181 3.091 6.764 70.298
imputed 4.339 13.022 3.001 6.697 69.929

27054 Original 5.386 15.283 2.838 5.776 55.439
imputed 5.409 15.124 2.796 5.759 55.272

27084 Original 4.860 14.199 2.922 5.768 49.995
imputed 4.794 14.189 2.960 6.222 61.476
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ensured that the four clusters obtained represent the 
true structure of the dataset. 

Choosing the optimal procedure for the analysis 
of missing data is a huge task, since a particular 
method can provide optimal estimates only for certain 
situations. In this regard, when analyzing missing 
data, our research shows that it is necessary to apply 
more than one alternative to evaluate each case and 
decide which method should be the optimal. In terms 
of performance, one of our proposals, specifically the 
GCIDW, yields better results in estimating missing 
rainfall data than those commonly used in litera-
ture. The numerical and graphical results computed 
by comparing the statistics of the original rainfall 
series with the imputed series show that there are 
no significant differences between the two series. 

Therefore, complete daily rainfall databases were 
obtained without significant statistical differences 
for the analyzed period (1980-2012). This procedure 
can be used in future research such as, for instance, 
multifractal rainfall analysis. The new methods pro-
posed in this work represent new tools not only for 
the treatment of rainfall missing data in the specific 
stations analyzed, but they can be safely applied to 
any other set of weather stations anywhere.
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