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RESUMEN

Los productos que proveen estimaciones de lluvia derivadas de satélites son ttiles para el monitoreo tanto
ambiental como de sequias, y permiten ademas afrontar el problema de las observaciones derivadas de
estaciones pluviométricas mal distribuidas, siempre y cuando su precision sea conocida. Venezuela es alta-
mente vulnerable a eventos climaticos extremos como sequias extensivas y crecientes rapidas, por lo tanto
conocer las debilidades y fortalezas de las estimaciones de lluvias derivadas de satélites resulta util para la
planificacion de los recursos hidricos. Las estimaciones mensuales de 1luvia derivadas del producto Climate
Hazards Group InfraRed Precipitation with Stations (CHIRPS v.2) son contrastadas con los registros pro-
veniente de estaciones climaticas (1981-2007), empleando métricas numéricas para evaluar su desempefio
en la estimacion de la cantidad de lluvia, y métricas categoéricas para evaluar su capacidad de deteccion de
eventos de lluvia. Los analisis aplicados consideran diferentes categorias de lluvia, la estacionalidad y el
contexto espacial. Los resultados muestran que el producto CHIRPS v.2 sobreestima (subestima) los valores
mas bajos (altos) de lluvia, aunque en la mayoria de las métricas de habilidad muestra un buen desempefio.
Este producto consigue un mejor desempeiio durante la estacion lluviosa (abril-septiembre), pero sobreesti-
ma significativamente la frecuencia de los eventos de lluvias. También muestra mejor desempeifio global en
regiones planas abiertas (p. ej., Los Llanos), donde la precipitacion es influida por la actividad de la zona de
convergencia intertropical y los sistemas convectivos locales.

ABSTRACT

Satellite-derived rainfall products are useful for both drought and environmental monitoring, and they also
allow for tackling the problem of sparse, unevenly distributed and erratic rain gauge observations provided
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their accuracy is well known. Venezuela is a country highly vulnerable to extreme weather events such as
extensive droughts and flash floods; therefore, an understanding of the strengths and weaknesses of satel-
lite-based rainfall products is useful for the planning of water resources. Using numerical metrics in order to
evaluate performance, monthly rainfall estimates, from the Climate Hazards Group InfraRed Precipitation
and Stations (CHIRPS v.2) product, are compared to gauge data from the 1981-2007 interval and categorical
metrics for assessing rain-detection skills. The analysis was performed considering different rainfall catego-
ries, seasonality, and spatial context. The results show that the satellite product CHIRPS v.2 overestimates
(underestimates) low (high) monthly rainfall values; although on the majority of numerical metrics of skill
shows a good performance. This product, on the other hand, achieves better performance during the rainy
season (April-September), significantly overestimating, however, the rainfall-events frequency. The product
also shows best overall performance over flat and open regions (e.g., Los Llanos), where precipitation is

influenced by the Intertropical Convergence Zone activity and local convective systems.

Keywords: Venezuela, rainfall estimate, satellite, performance metrics, drought, flood.

1. Introduction

Venezuela is a tropical country located in northern
South America with a total area of 916 445 km?; about
96% of this area is land. Although most of Venezuelan
economy is based on the petroleum market, about
25% of the Venezuelan land area is dedicated to
rain-fed farming (Betancourt, 2001; Weyland, 2002).
Rain-fed agriculture is the dominant farming system
in the Central Plains of Venezuela. This region also
contains the largest reservoirs in the country, which
supply water to the biggest and industrialized cities,
which are located mainly in the northern region (Ber-
roteran and Zinck, 2000; Sanso and Guenni, 2000;
Mora and Rojas, 2007; Paredes et al., 2014).

The Caroni river hydropower reservoirs system
(known as the Guri dam) is the most important energy
source nationwide. Situated in the southeast region,
it provides nearly 70% of the national hydropower
demand (Bartle, 2002; Bautista, 2012). Both the cen-
tral and southeast regions are characterized by high
rainfall variability (Paredes and Guevara, 2000; Pare-
des et al., 2014). This climatological feature favors
the occurrence of prolonged droughts whose impacts
can negatively affect the agricultural and electrical
sectors (Easterling et al., 2000; Blunden and Arndt,
2015). For instance, the rainfall deficit during 2010
(Millano and Paredes, 2013) and 2015 revealed that
the hydropower and agriculture sectors are highly
sensitive to extreme drought conditions in Venezuela
(Grimm and Tedeschi, 2009); consequently, rainfall
measurement and monitoring play an important role
in rainfall-linked risk management.

Rainfall monitoring is of remarkable importance
for drought-prone and flood-prone regions (Xie
and Arkin, 1997; Kogan, 1998; Hong et al., 2007).

Therefore, there is an increasing need for accurate
rainfall-based products for different applications,
such as agricultural monitoring and water resources
management in remote areas (Boken et al., 2005;
Toté et al., 2015). In Venezuela, conventional rain
gauges have been the main source of rainfall data
(Paredes and Guevara, 2010). However, most of the
rain gauge networks currently available are inade-
quate to produce reliable rainfall analysis, largely
due to their scarce spatial coverage, the high-pro-
portion of missing data, and short-length records
(Guenni et al., 2008; Vila ef al., 2009; Rozante et
al., 2010).

Satellite-based rainfall estimates may provide
plentiful information with spatio-temporal high-res-
olution over widespread regions where conventional
rainfall data are scarce or absent (Su et al., 2008; Li
et al., 2010). However, these estimates have several
limitations (e.g., significant uncertainty), because
none of the satellite sensors detect rainfall as such
and the relationship between observations and pre-
cipitation is based on one or several proxy variables
(Wuet al., 2012; Toté et al., 2015).

Algorithms to estimate rainfall from satellite ob-
servations are based either on thermal infrared (TIR)
bands (from which cloud-top temperature can be
inferred), or on passive microwave (PMW) sensors.
The TIR-based approach takes into account the cold
cloud duration (CCD), which is the time interval that
a temperature pixel is below a certain threshold. This
technique assumes that rainfall and CCD are linearly
correlated (Kidd et al., 2003; Joyce et al.,2004). The
PMW-based approach takes advantage of the fact that
microwaves can penetrate clouds to explore their in-
ternal properties through the interaction of raindrops
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with the radiation field. In fact, the pattern of ab-
sorption/scattering of incident radiation provides
information about atmospheric liquid water content
and rainfall intensity (Kummerow et al., 2001).

Several studies show that TIR-based rainfall esti-
mates may have a large uncertainty when some types
of cold or warm clouds are present. This is the case
of cirrus clouds, which are frequently confused with
convective clouds such as cumulonimbus that have
similar brightness; only cumulonimbus may produce
rain (Grimes, 2008; Thiemig et al., 2013). Similarly,
the PM-based rainfall estimates have a marked bias
in the presence of warm orographic rains, and of very
cold surfaces like those found in mountain-tops cov-
ered by ice, which can be interpreted as precipitation
(Toté et al., 2015). In general, PMW-based algorithms
show better performance than TIR-based techniques
for instantaneous rain over well-defined geographic
regions while for estimates, over longer periods, the
TIR outperforms PMW algorithms (Kidd, 2001). To
deal with these technical limitations, the more recent
satellite-based rainfall products combine multiple
data sources as TIR/PMW-based rainfall data sets
coupled with in situ precipitation observations and/
or numerical model rainfall fields in order to improve
the accuracy of these products (Joyce et al., 2004).
TIR-PMW combined rainfall products from satellites
are the latest in the series of rain products that have
evolved over four decades.

At present, there is a wide variety of satellite-based
rainfall products derived from multiple data sourc-
es. Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS) is a relatively new rainfall
product with high temporal and spatial resolution,
and is based on multiple data sources. The CHIRPS
product was developed by the U.S. Geological Survey
Earth Resources Observation and Science Center in
association with the Santa Barbara Climate Hazards
Group at the University of California.

The CHIRPS product requires two steps for its
operational production: (i) Pentadal rainfall estimates
(five-day rainfall) are created from Cold Cloud Du-
ration-based satellite data, which are obtained from
regression models, and calibrated by using TMPA
3B42 pentadal precipitation; these estimates are
expressed as a percentage of normal precipitation by
dividing the estimated values for regression models
by their long-term averages (this outcome is named
CHIRP). (i7) In-situ observations from stations are

blended with the CHIRP data in order to produce
CHIRPS (Toté et al., 2015).

Monthly precipitation climatology used in the first
step (named CHPclim) is obtained from the Agromet
Group of the Food and Agriculture Organization of
the United Nations (FAO) and the Global Historical
Climate Network (GHCN); both are re-sampled to a
common 0.05° grid by applying a moving window
regression at local level and by considering several
predictors drawn from the satellite fields and elevation
and slope. The CHIRPS station stream processing
incorporates data from public data streams (such as
the GHCN monthly, GHCN daily, among others), and
several private archives. The CHIRPS station blending
procedure is a modified inverse-distance weighting
algorithm. At this point, the CHIRP defines a local
de-correlation distance, which is the distance where
the estimated point-to-point correlation is zero. To
generate these values, time series of CHIRP data are
used to calculate the average correlation at a distance of
1.5° for each grid cell. This correlation combined with
the assumption that the expected correlation is 1 when
distance is 0, allows for estimation of a de-correlation
slope, which is used in turn to estimate the zero-cor-
relation distance. The correlation structure evolves in
space and time tending to be stronger in areas of heavy
well-organized convection (Funk ez al., 2014)

The satellite-based rainfall estimates adjustment
vs. rain gauge observations can increase the accuracy
of estimated rainfall values. This operational proce-
dure requires a rain gauge network with an appro-
priate spatial coverage and records of high quality to
perform an adequate calibration and validation (Ebert
et al., 2007). The assessment of satellite-based rain-
fall data is a key aspect; several performance indexes
support the choice of most adequate rainfall-based
products for certain applications; e.g., drought early
warning, environmental monitoring or flood forecast-
ing (Sorooshian et al., 2000). Most validation studies
have been carried out in the African Sahel (Laurent
et al., 1998; Nicholson ef al., 2003), southeastern
Africa (Toté et al., 2015), Brazil (Negri et al., 2002;
Franchito et al., 2009), and Colombia (Dinku et al.,
2010), among others countries. Despite its great po-
tential for large-scale environmental monitoring, the
CHIRPS product reliability has not been analyzed in
detail in the case of the Venezuelan territory.

The aim of this article is to evaluate satellite-de-
rived monthly rainfall estimates from the CHIRPS
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product for Venezuela, by comparing the CHIRPS-
based rainfall estimates against rain gauge observa-
tions supplied by the Venezuelan meteorological and
hydrological institute. The rainfall estimates for dif-
ferent rainfall categories and their variations within
a temporal and spatial context is emphasized in this
study. The CHIRPS product was chosen for its high
spatial and temporal resolution and its free access.
Specific questions are addressed here as to how the
CHIRPS-based rainfall estimates can be compared to
the gauge data for different rainfall categories, over
the seasonal and spatial context.

This article is organized as follows: section 2 gives
a short description of the study area; the data sets used
are briefly described in section 3; the more relevant
statistical methods are detailed in section 4; and section
5 comprises a discussion of the more notable results.
Finally, conclusions are summarized in section 6.

2. Study area

Venezuela is located between 73-60° W, 1-12° N with
a tropical climate characterized by a warm and hot
rainy season from April to September and a relatively
cool and dry season from October to March. Annual
mean rainfall varies from north to south and from
the Caribbean coast to the highlands due mainly to
orographic factors, which induce a spatial pattern
with a wetter region in the southeast and a semiarid
region along the northwest coast (Pulwarty et al.,
1992; Peterson and Haug, 2006).

The synoptic-scale weather system over most of
the country is controlled by the Intertropical Con-
vergence Zone (ITCZ), except for the production of
rainfall along the Venezuelan coastal region, which
is influenced primarily by the tropical disturbances
occurring off the coast of northwestern Africa. Fur-
thermore, subtropical fronts and tropical temperate
troughs may favor the occurrence of heavy inland
rainfall at any time of the year (Pulwarty et al., 1992;
Lyon, 2003; Guenni et al., 2008).

The rainfall regime can be affected by El Nifio-
Southern Oscillation (ENSO). Generally, the cool
phase of ENSO is linked to wetter conditions above
the average, whereas the warm phase of ENSO is
related to drought conditions (Acevedo et al., 2001;
Paredes and Guevara, 2010; Pérez, 2012; Pealo-
za-Murillo, 2014). Recently, most significant climate
events have been severe droughts, such as those of
2009/10, 2013/14 and early 2015 in large parts of
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central-northern Venezuela, and heavy rainfall in
early June 2015, which induced flash floods and
landslides in the Venezuelan Andes.

3. Data

3.1. Gauge-based rainfall data

Monthly rain gauge observations were provided by
the Instituto Nacional de Meteorologia e Hidrologia
(INAMEH; available online at http://www.inameh.
gob.ve/mensual/) and the Servicio de Meteorologia
de la Aviacion Militar Venezolana (SEMETAVIA).
The quality of this data, at each station and month,
was previously verified based on the criterion of
monthly mean +3.5 standard deviations. Values out-
side this threshold and duplicated values of adjacent
months were coded as missing data (Chapman, 2000).
The monthly rainfall time series with more than 20%
missing data were also omitted. A number of 154
stations were selected with these criterions whose
monthly rainfall time series covered the period form
1981-2007 (Fig. 1, Table I).

The percentage of missing data per station and
month varied between 0 and 17.60% with an aver-
age of 11.44%. The mean distance to the coastline is
134 km, and stations are located, on average, at an
elevation of 478 masl. Table I lists the natural region
where each station is located: coast plains and islands
(11%), Guayana (8%), plains (25%) and high-moun-
tains (56%). These natural regions have been defined
based on the main climate and topographic features
among biophysical and other factors given by the
Venezuelan Ministry of Environment and Natural
Resources (available online at http://tapiquen-sig.
jimdo.com).

3.2. CHIRPS-based rainfall data

The CHIRPS v.2 dataset, a satellite-based monthly
rainfall product (available online at http://chg.geog.
ucsb.edu/data/chirps/), was used. The main data
sources used in the creation of CHIRPS were: (i)
pentadal precipitation climatology at grid scale (six
pentads per month); (ii) quasi-global geostationary
thermal infrared (IR) satellite observations from the
Climate Prediction Center (CPC) and the National
Climatic Data Center (NCDC) (B1 IR); (iii) the
Tropical Rainfall Measuring Mission (TRMM) 3B42
product from NASA; (iv) atmospheric model rain-
fall fields from the NOAA Climate Forecast System
(CFSv2); and (v) in situ precipitation observations
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station for the period 1981-2007. Numbers indicate the station ID.

obtained from a variety of sources including national
and regional meteorological services. All the data
sources were compiled as five-day rainfall accumu-
lations (Funk et al., 2014).

Pentadal rainfall estimates created from the satel-
lite data, based on CCD regression models were cali-
brated with the TRMM 3B42 product. These pentads
were then expressed as a percentage of normal by
dividing the estimated values by the long-term in-
frared-based precipitation averages (i.e., 1981-2012),
known as CHIRP. Next, stations were blended with the
CHIRP data to produce CHIRPS (Tot¢ et al., 2015).
The CHIPRS product, with a spatial resolution of
0.05° (about 5.3 km) and a quasi-global coverage
of 50°S-50°N, 180° E-180° W, is available from 1981
to near present at pentadal, decadal, and monthly
temporal resolution (Funk et al., 2014).

The CHIRPS product was used with monthly ag-
gregation for the period 1981-2007, which overlaps
the period of ground-based rainfall data. The monthly
scale was chosen because it is adequate for drought

monitoring based on drought indices such as the
Standardized Precipitation Index (Seiler et al., 2002;
Paredes et al., 2015) and environmental monitoring
(Lovett et al., 2007).

4. Methods
4.1. Generation of the validation dataset
To produce the CHIRPS v.2 product several stations
should be blended with the CHIRP data. The number
of stations that the CHIRPS team uses in the blended
phase vary in time because these observations come
from a variety of sources such as the Global Surface
Summary of the Day (GSOD) dataset provided by the
NCDC, WMO's Global Telecommunication System
(GTS) daily archive provided by NOAA CPC, and
the national and regional meteorological services,
among other sources. These stations are known
as anchor-stations and have been chosen for their
high-quality observations (Funk et al., 2014; Fig. 1).
Approximately 43% of the selected stations have
been used as anchor-stations at least once in the



328 F. J. Paredes Trejo et al.

Table I. Geographical and other information of selected rain gauges for the period 1981-2007. (Continued.)

Station’s serial ~ Latitude Longitude Elevation Distance to Monthly Natural region
number ©) ©) (masl) coastline (km)  missing data (%) (name)
25 5.01 —61.15 870 400 9.90 Guayana

232 % 11.42 —69.68 16 8 11.40 CPI

415 * 9.98 —66.84 591 70 16.00 HM

795 11.03 —64.29 82 4 8.30 CPI

881 * 11.08 —63.97 5 0 10.80 CPI

883 * 11.04 —63.91 76 8 9.00 CPI

885 * 11.11 —63.92 10 2 8.60 CPI

893 * 11.02 —63.94 91 8 8.30 CPI
1147 10.43 -70.20 696 96 12.00 HM
1174 10.24 -70.53 578 73 12.00 HM
1175 10.10 —70.45 479 74 11.70 HM
1177 10.35 —70.20 517 104 12.00 HM
1186 10.11 —70.24 424 96 11.70 HM
1187 10.16 —70.08 439 114 12.00 HM
1198 10.07 —70.04 545 115 11.70 HM
1204 10.02 —69.53 668 154 11.10 HM
1206 * 10.07 —69.27 534 126 13.60 HM
1207 * 10.08 —69.32 574 130 11.10 HM
1209 * 10.08 —69.36 592 134 11.40 HM
1216 10.82 —69.28 839 73 12.00 HM
1220 * 9.81 —69.51 1575 163 11.40 HM
1221 9.83 —69.50 1321 161 11.70 HM
1222 * 9.78 —69.54 1368 163 11.10 HM
1227 * 10.64 —69.08 122 84 11.40 HM
1231 10.59 —69.94 387 89 11.70 HM
1233 10.58 —69.69 281 94 11.70 HM
1238 * 10.55 —69.24 167 101 12.30 HM
1240 10.58 —69.53 557 97 11.40 HM
1241 10.60 —69.44 610 96 11.40 HM
1261 10.27 —69.93 384 123 12.00 HM
1265 10.29 —69.46 697 130 11.40 HM
1268 10.28 —69.15 736 104 11.10 HM
1271 10.16 -69.91 489 132 12.00 HM
1272 10.15 —69.59 794 143 11.40 HM
1273 10.14 —69.71 755 142 11.10 HM
1274 10.04 —69.68 583 152 12.00 HM
1354 10.25 —68.80 271 72 14.80 HM
1381 10.14 —68.87 240 85 15.40 HM
1404 10.53 —67.35 240 2 13.00 HM
1487 10.13 —67.15 678 47 16.40 HM
1720 10.99 —64.03 0 0 8.30 CPI
1721 10.98 —64.16 1 1 10.20 CPI
1806 10.97 —63.84 26 1 10.80 CPI
1810 10.19 —63.36 821 46 14.50 HM
1859 10.27 —63.44 822 33 16.00 HM
1883 10.24 —63.55 1108 29 9.90 HM
1886 10.16 —63.52 982 39 8.30 HM
1889 10.10 —63.09 33 49 8.60 CPI
1897 10.01 —63.56 298 53 8.60 HM

CPI: coastal plains and islands; HM: high mountains.
*This station was used as an anchor station at least once during the 1981-2007 period.
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Table I. Geographical and other information of selected rain gauges for the period 1981-2007. (Continued).

Station’s serial ~ Latitude Longitude Elevation Distance to Monthly Natural region
number ©) ©) (masl) coastline (km)  missing data (%) (name)
2106 * 9.81 —70.12 1530 100 11.70 HM
2108 * 9.95 —70.11 502 104 12.70 HM
2109 * 9.87 —70.07 1615 106 12.70 HM
2110 10.02 —70.34 493 82 11.70 HM
2113 * 9.06 -70.70 1515 49 15.70 HM
2118 9.87 -70.27 801 84 11.70 HM
2119 * 9.81 —70.18 567 93 12.00 HM
2124 9.74 —70.01 2063 111 11.10 HM
2126 * 9.67 —70.28 816 82 15.70 HM
2127 * 9.76 —70.24 582 86 16.00 HM
2129 * 9.73 -70.45 276 63 16.00 HM
2132 % 9.56 —70.63 184 46 15.70 HM
2139 9.59 —69.86 1415 128 11.10 HM
2144 * 9.46 —70.47 430 65 17.00 HM
2146 * 9.64 —70.42 257 67 15.70 HM
2149 9.50 —70.84 30 25 16.00 CPI
2151 * 9.71 —70.53 218 54 14.50 HM
2162 * 9.31 —70.66 1058 43 15.70 HM
2170 * 9.25 —69.93 377 123 16.40 HM
2171 9.20 —69.73 270 146 12.00 Plains
2172 * 9.37 —70.66 627 43 17.60 HM
2204 * 9.92 —69.63 696 155 13.00 HM
2208 9.91 —69.19 448 128 11.40 HM
2209 * 10.03 —69.32 663 133 11.40 HM
2215 * 9.88 —69.52 1118 160 11.10 HM
2225 * 9.79 —69.58 1555 159 11.70 HM
2227 * 9.69 —69.52 894 165 11.40 HM
2229 7.79 —69.15 73 270 14.20 Plains
2231 * 9.66 —69.66 1272 150 17.00 HM
2234 * 9.74 —69.66 1333 150 16.40 HM
2241 9.69 —69.96 1094 117 15.70 HM
2245 9.63 —69.79 1049 136 15.70 HM
2246 9.60 —69.32 294 161 14.50 Plains
2251 9.63 —69.99 1100 114 15.70 HM
2252 9.57 —70.00 1281 113 15.70 HM
2253 9.43 —69.37 237 177 15.70 Plains
2259 9.50 —69.08 139 150 13.00 Plains
2260 9.30 —69.72 516 146 12.70 HM
2261 9.43 —69.95 634 121 14.20 HM
2264 * 9.55 —69.23 229 157 14.80 Plains
2266 9.40 —69.49 349 171 16.00 Plains
2267 9.38 —69.21 158 169 13.90 Plains
2268 9.74 —69.81 669 133 15.70 HM
2281 * 9.07 —69.80 278 141 12.30 Plains
2286 9.16 —69.58 142 163 13.60 Plains
2295 9.09 —69.67 144 154 12.70 Plains
2299 9.02 —69.73 151 149 14.80 Plains
2300 * 9.67 —68.98 169 128 16.00 Plains
2308 * 9.88 —68.47 619 77 14.50 HM

CPI: coastal plains and islands; HM: high mountains.
*This station was used as an anchor station at least once during the 1981-2007 period.
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Table 1. Geographical and other information of selected rain gauges for the period 1981-2007. (Continued).

Station’s serial ~ Latitude Longitude Elevation Distance to Monthly Natural region
number ©) ©) (masl) coastline (km)  missing data (%) (name)
2331 * 9.68 —68.97 161 127 15.40 Plains
2336 9.70 —68.44 165 93 12.00 HM
2338 9.76 —68.11 262 79 11.70 HM
2349 9.65 —68.05 152 90 11.10 HM
2350 9.48 —68.18 119 111 12.00 Plains
2358 * 9.64 —68.58 148 106 14.50 Plains
2364 * 9.51 —68.63 111 121 12.30 Plains
2378 9.33 —68.15 96 126 13.60 Plains
2513 * 9.45 —66.06 131 95 12.70 Plains
2528 9.83 —66.20 285 63 15.70 HM
2589 * 9.22 —66.00 182 116 12.30 Plains
2802 9.77 —603.67 276 76 9.30 Plains
2809 9.97 —63.47 217 60 16.40 HM
2810 9.96 —63.64 211 56 9.00 HM
2831 9.43 —63.73 216 113 9.00 Plains
2834 * 9.65 —63.67 224 89 12.30 Plains
2836 9.92 —63.86 361 58 9.30 HM
2840 9.37 —63.05 37 94 9.00 Plains
2850 9.16 —63.07 68 116 9.60 Plains
2914 9.09 —62.06 13 83 12.70 CPI
2915 9.55 —62.70 5 61 8.60 Plains
2980 9.17 —62.81 16 103 8.60 Plains
3216 * 8.89 —69.93 193 133 12.30 Plains
3241 8.95 —69.72 136 152 13.60 Plains
3309 8.99 —68.25 148 165 12.30 Plains
3400 * 8.88 —67.32 94 182 16.40 Plains
3820 8.98 —63.27 93 144 16.70 Plains
4404 * 7.90 —67.42 50 285 14.80 Plains
6424 5.60 —67.50 186 537 15.70 Guayana
8319 5.58 —61.75 1086 356 4.00 Guayana
8323 5.68 —61.56 1266 339 3.70 Guayana
8360 * 4.51 —61.14 907 455 6.80 Guayana
9402 * 3.14 —65.80 124 771 12.70 Guayana
9405 4.00 —67.67 111 693 12.70 Guayana
9408 * 5.07 —65.22 924 554 12.70 Guayana
9410 * 5.23 —66.17 126 549 12.00 Guayana
9415 * 2.80 —65.25 168 805 14.80 Guayana
26049 * 10.29 —67.60 467 24 6.80 HM
80092 8.03 -72.25 868 130 0.00 HM
80403 * 11.42 —69.68 16 8 3.70 HM
80410 * 10.23 —69.32 730 123 3.70 HM
80413 10.25 —67.65 431 28 4.90 HM
80416 * 10.50 —66.88 897 12 3.70 HM
80421 10.92 —63.97 16 2 4.30 CPI
80423 * 10.58 —62.30 14 1 3.70 HM
80425 * 9.82 —70.93 31 14 3.70 CPI
80428 9.08 —69.73 182 148 4.00 Plains
80435 9.75 —63.18 76 73 3.70 Plains
80438 * 8.60 —71.18 1949 57 3.70 HM

CPI: coastal plains and islands; HM: high mountains.
*This station was used as an anchor station at least once during the 1981-2007 period.
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Table 1. Geographical and other information of selected rain gauges for the period 1981-2007. (Continued).

Station’s serial ~ Latitude Longitude Elevation Distance to Monthly Natural region
number © © (masl) coastline (km)  missing data (%) (name)
80444 * 8.15 —-63.55 8 240 5.90 Plains
80448 * 7.23 —70.80 131 214 4.90 Plains
80450 * 7.68 —67.42 45 309 4.90 Plains
80453 * 7.30 -61.45 151 170 4.30 Guayana
80457 5.60 —67.50 186 537 4.00 Guayana
80462 * 4.60 -61.12 903 444 3.70 Guayana
80476 * 10.52 —71.65 16 2 0.30 cpi

CPI: coastal plains and islands; HM: high mountains.

*This station was used as an anchor station at least once during the 1981-2007 period.

study area between 1981 and 2007 (Fig. 1; Table I).
All selected stations were used here to validate the
overlapping period (1981-2007). The location points
of 155 rain gauges were transformed into polygons
with 5-km diameter. These polygons were rasterized
considering the projection system and resolution
of the CHIRPS v.2 product (EPSG 4326 and 0.05°,
respectively). Finally, the monthly satellite estimates
for each site and month were extracted throughout
the analyzed period.

4.2. Performance measures based on numerical
metrics

In the present study, five numerical metrics were
used. These metrics are based on a pair-wise com-
parison to evaluate the performance of the monthly
CHIRPS v.2 product, which estimates the amount of
rainfall on each rain gauge listed in Table I as follows:
Pearson correlation coefficient (), mean error (ME),
relative mean absolute error (RMAE), Nash-Sutcliffe
efficiency coefficient (Eff), and percent bias (PB).
These metrics are summarized in Table II.

Pearson coefficient measures the linear relation-
ship strength between estimations and observations,
varying from —1 to 1 with a perfect positive correla-
tion being 1. ME and RMAE provide information
on the error estimation and the average magnitude
of error estimations, respectively. ME can take
any negative or positive value [mm.month '] while
RMAE acquires only positive values. Both have a
perfect score of 0. Eff quantifies rainfall estimations
accuracy in relation to the rainfall observations
mean, varying from minus infinity to one with a
perfect score equal to 1 (McCuen et al., 2006). PB
measures the average tendency of estimated values,

Table II. Formulas of performance measures based on
numerical metrics.

Name Formula

e __zle-aic )
JiG=erc=0)
Mean error

oo
ME =53(C~G)

Relative mean absolute

1
error RMAE = =5 (c-G))

Nash-Sutcliffe efficiency —GY
coefficient Eff =1- x(€ g)
Y(G-GY

Percent bias PB-100 Z(C _ G)
3G

G gauge rainfall measurement; G: average gauge rainfall
measurement; C: CHIRPS-based rainfall estimate; C:
average CHIRPS-based rainfall estimate; N: number of
data pairs.

which can either be larger or smaller than their
observed ones, with an optimal value of 0. RMAE
and Eff are non-dimensional while PB has units in
percentage (Oreskes et al., 1994; Gleckler et al.,
2008). For drought monitoring and hydrological
purposes, ME and RMAE values close to 0 and
Eff values close to 1 are required along with high
values of 7 in order to minimize both overestima-
tion and underestimation of rainfall amounts (Toté
etal., 2015).
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Table I11. Formulas of performance measures based on categorical metrics.

Name Formula
bility of detecti POD =—“—
Probability of detection A+C
False alarm rati FAR= 2
alse alarm ratio A+B
. A—Ar (4 +B)(A4+C)
ETS=———— where gy ="/ —/
Equitable threat score 1+ B1C—dr r N
I d Kui discrimi HK = 4 __B
ansen and Kuipers discriminant 1+C B+C
Heidke skill HSS = 24p —50)
eidke skill score (4 +C)YC+D)+(4 +B)B+D)
A+B
. FB=
Frequency bias A+C

A: number of hits; B: number of false alarms; C: number of misses; D: number of correct

negatives.

4.3. Performance measures based on categorical
metrics

Six categorical metrics were used in assessing the
monthly CHIRPS v.2 product performance for de-
tection of rainfall events on each rain gauge (listed in
Table I). These metrics were derived from a contin-
gency table (not shown here) in which letters A, B, C,
and D represent, respectively, hits (events forecast to
occur which did occur), false alarms (events forecast
to occur, but did not occur), missing (events forecast
not to occur, but did occur), and correct negatives
(event forecast not to occur, and did not occur) with
arainfall threshold of 5 mm (Toté et al., 2015). These
metrics are summarized in Table III.

The probability of detection (POD) and the
false alarm ratio (FAR) indicate the fraction of
observed events that were correctly forecasted and
the fraction of the predicted events that did not oc-
cur, respectively. The equitable threat score (ETS)
measures the fraction of observed and/or forecast
events that were correctly predicted, adjusted for
hits associated with random chance. The Hansen
and Kuipers discriminant (HK) shows how well
the CHIRPS-based rainfall estimates discriminate
between rain and no-rain events. The Heidke Skill

Score (HSS) measures the accuracy of estimates
accounting for matches due to random chance. The
frequency bias (FB) reveals systematic differences
between rain events frequency in gauge observa-
tions and CHIRPS-based rainfall estimates. POD
and FAR vary from 0 to 1; ETS varies from 1/3 to
1; HK and HSS vary from —1 to 1; and FB varies
from —oo to 1. The perfect score for these metrics is
1, except for FAR, which is 0 (Casati et al., 2008;
Brill, 2009). For drought monitoring and hydro-
logical purposes, values of FAR and FB close to 0
with ETS and HSS close to 1 are required in order
to maximize the detection of rainfall events (Toté
etal.,2015).

4.4. Ildentification of spatial patterns based on per-
formance measures

The results from performance measures were split into
categorical and numerical classes; two numerical ma-
trices (154 x 5 and 154 X 6 equivalents to stations per
metrics) were created subsequently. In order to examine
spatial patterns in the performance of CHIRPS-based
rainfall estimates, a nonhierarchical cluster analysis,
derived from the ~~-means method, was applied to these
numerical matrices (Everitt ef al., 2002).
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Cluster analysis is a multivariate exploratory data
analysis tool used for clustering data into groups
using a criterion of similarity (e.g., the Euclidean
distance). It has been used as an unsupervised clas-
sification technique for verification of precipitation
fields derived from numerical models (Marzban and
Sandgathe, 2006; Gilleland et al., 2009). In this study,
cluster analysis (CA) was used to identify similar
stations according to their categorical and numerical
performance measures.
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5. Results and discussion

5.1. Overall performance measures

Figure 2 shows rain gauge observations and CHIRPS-
based rainfall estimates at monthly scale for the pe-
riod 1981-2007. Note that the CHIRPS v.2 product
exhibits an overestimation of low rainfall values and
an underestimation of high values. These features are
also evident in their respective cumulative density
plots (Fig. 3). In general, Figures 2 and 3 reveal an
overestimation in the values of observed rainfall
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Fig. 2. Ground-based rainfall observations and CHIRPS-based rainfall estimates for
the period 1981-2007 (N = 44 155). Black line indicates 1:1 correspondence and
dashed line gives the linear regression best fit.
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Fig. 3. Cumulative density curves for variables shown in Figure 2. The gray and
black lines depict ground-based rainfall observations and CHIRPS-based rainfall

estimates, respectively.
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Table IV. Performance metrics that take into account all stations within the

study area.
r ME RMAE Eff PB
[fraction] [mm] [mm] [fraction] [%]
0.832 6.919 0.394 0.676 7.100
POD FAR ETS HK HSS FB
[fraction]  [fraction] [fraction] [fraction] [fraction] [fraction]
0.195 0.209 0.161 0.187 0.277 0.246

between 0 and about 200 mm/month, whereas for
values outside this range the amount of rainfall tends
to be underestimated by the CHIRPS v.2 product. One
implication of this result is that low rainfall estimates
could mask drought conditions (particularly absent
rainfall), which is a feature highly unfavorable in
drought-prone regions (e.g., the Caroni river hydro-
power reservoirs system).

Table IV summarizes performance metrics con-
sidering all stations listed in Table I. In general, ME
indicates that the CHIRPS v.2 product tends to over-
estimate rainfall with positive mean errors, which is
consistent with the small values of RMAE and PB.
On the other hand, the » and Eff metrics are moder-
ately high, suggesting an adequate correspondence
between observed and estimated rainfall values. In
terms of detection of rainfall events, the CHIRPS
v.2 product shows low values of POD, ETS, HK and
HSS, and moderately high values of FAR and FB

(Table 1V), revealing deficient performance. These
results warn that the detection of a rainfall event
based on the CHIRPS v.2 product is associated to
high uncertainty.

In general, the results from Table IV suggest that
CHIRPS-based rainfall estimates might be useful for
flood monitoring, but deficient for drought monitor-
ing in the study area. The number of anchor stations
used in the creation of CHIRPS in time could help
to explain this discrepancy. For example, Figure 4
shows that for the period 1981-1987, between 48
and 68 anchor-stations were used; for the period
1988-1996, between 23 and 54 anchors-stations were
used; and for the period 1997-2007, a maximum of
22 anchor-stations were used in the study area. The
gradual decrease in number of ground-based obser-
vations might have affected the correction stage of
the CHIRPS v.2 product, which is reflected as rainfall
estimates with low-accuracy (Toté et al., 2015).
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Fig. 4. Number of anchor stations used in the creation of the CHIRPS product within
the study area for the period 1981-2007 (derived from the CHIRPS station density
for a resolution of 0.05°; available online at http://chg.geog.ucsb.edu/data/chirps).
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Fig. 5. Numerical performance metrics grouped by rainfall categories for contrasting ground-based rainfall observations
with CHIRPS-based rainfall estimates. Dashed blue line indicates perfect score for each metric. Rain gauge categories

refer to ground-based rainfall observations.

5.2. Performance measures per rainfall category
In examining the variability of the measurement per-
formance, according to the observed rainfall amount,
all metrics listed in Table IV were calculated for
different rainfall categories supported by monthly
rainfall observations: <5 mm, N=15331; [5-10) mm,
N =2,096; [10-20) mm, N = 3,389; [20-50) mm, N
=17,548; [50-100) mm, N = 9,002; and > 100 mm,
N = 16,789 (N indicates the number of pair-wise
cases analyzed by category). Figure 5 displays these
results. On the whole, higher RMAE, lower Eff, and
higher PB can be seen in this figure for low rainfall
observations, situation similar and consistent with
the inferences made from Figures 2 and 3. Also, it
can be noted that rainfall observations less than 100
mm show negative ME values; this means a large
overestimation.

The above results support the hypothesis proposed
in the previous sections that rainfall estimates from
CHIRPS v.2 could be inadequate for drought mon-
itoring applications, although they are suitable for
flood monitoring applications given that uncertainty
tends to decrease for high rainfall observations.

5.3. Performance measures in the temporal domain
To zoom in on the performance features of the
CHIRPS v.2 rainfall product, this section will focus
on the numerical and categorical metrics in the sea-
sonal context. Figure 6 provides the values of the
numerical metrics by month for the period 1981-
2007. A difference between the dry and rainy season
is evident. During the dry season (October-March),
7 is lower (mean = 0.653), RMAE is worse (mean =
0.538), and Eff is lower (mean = 0.397). In contrast,
for the rainy season (April-September), most metrics
perform better. In fact, the correspondence between
rainfall estimates and station observations is higher
(based on r, mean = 0.791), RMAE is lower (mean
=0.363), and Eff is higher (mean = 0.607).

Note that the PB shows an interesting feature in
Figure 6. During the rainy season this metric dis-
closes a widespread overestimation with two peaks
on May and July (12.2 and 8.9%, respectively). The
dry season exhibits an abrupt shift between January
and February that the ME metric also depicts. This
means that CHIRPS-based rainfall estimates tend to
be underestimated throughout January and February,
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Pearson correlation coefficient by month.
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Fig. 7. As in Fig. 6, but for POD, FAR, and ETS metrics.

coinciding with the driest period in Venezuela, when
high-intensity and spatially isolated convective
storms of short duration are frequent, particularly in
the plains region (Pulwarty et al., 1992; Sanso and
Guenni, 1999).

Figure 7 summarizes categorical performance
metrics for both seasons. In general, the detection
of rainfall events shows its best performance during
the dry season (October-March), with higher POD
and ETS and lower FAR. Also, note that the CHIRPS
v.2 product obtains the highest values of POD and

FAR
~Jan
~_Feb 0.15-
0.10 -
‘Mar 0.05 - O¢t
| 0.00— |
/Apr Sep
Viay

Jul— Jdun

ETS and the lowest ones for FAR from January to
March, when rainfall events, linked to the activity of
the ITCZ are uncommon in the study area (Williams
et al., 2005).

Results from this analysis suggest that the ability
to discriminate rainfall events and non-rainfall events
from the CHIRPS v.2 product is very deficient; in par-
ticular, when the rainy season is taken into account.
Therefore, this product cannot be seen as a reliable
tool for drought monitoring based on the wet season
onset. Toté et al. (2015) suggested that the uncertainty
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fidence level for r, RMAE, Eff and elevation (based on the Welch two sample test applied to each numerical metric).
Eff and r, as non-dimensional fraction; ME and RMAE in mm; PB in percentage; elevation in masl.

of'this product is caused largely by its dependency on
0.25° TRMM training data, which may contribute to
its tendency to over-predict in view of the fact that
averaging over larger areas increases the frequency of
rainfall events. To overcome this limitation, drought
indices based on cumulative rainfall in time (such as
the Standardized Precipitation Index, which can use
a wide range of time scale) could be used (Seiler et
al., 2002; Paredes et al., 2015).

5.4. Performance measures in the spatial domain
In order to examine spatial patterns in the perfor-
mance of CHIRPS-derived rainfall estimates, the
performance metrics from each rain gauge shown
in Table I were partitioned into numerical and cate-
gorical metrics. Next, a cluster analysis was applied
to both matrices to identify homogeneous stations
according to the similarity of performance metrics.
Two clusters were identified for both groups. For
comparison purposes, the numerical and categorical
performance metrics for each cluster were assessed
through boxplots.

Figure 8 presents a comparison between numer-
ical metrics, while Figure 9a displays the spatial
distribution of the clustered stations. For all numer-
ical metrics, the C1 cluster shows the worse per-
formance. Note that the stations that belong to the
C1 cluster are mainly concentrated in the northwest
region of Venezuela and Margarita Island. Further-
more, most of the stations clustered in C1 are locat-
ed in the leeward part of the Andes (Figs. 1 and 9a).
This feature is interesting because it is well known
that these mountains induce prevailing dry climate
in several regions of South America (Giovannettone
and Barros, 2009). In this latter region, orientation
and topographic features facilitate the blocking of
the east trade winds and their channeling off this
region. Thus, most rainfall events are induced by an
isolated convective activity (Insel et al., 2010). At
the same time, unlike the rest of the country where
aunimodal pattern is dominant, the rainfall regime
in this region shows a bimodal pattern (Pulwarty et
al., 1992). In contrast, the stations clustered in C2
are largely located in flat open areas where there
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is a prevalence of convective rainfall driven by the
location and activity of the ITCZ and other tropical
disturbances (Sanso and Guenni, 2000).

A factor less evident that could influence the nu-
merical performance of the CHIRPS product is the
station distances in relation to coastline (not shown
in Fig. 8). In fact, the results highlight the importance
of this factor in Margarita Island (north of the west-
ern coastline; see Fig. 1), where the stations near the
coastline show a better numerical performance than
those located more inland (statistic evidence at the
95% confidence level).

Figure 10 shows a comparison between cat-
egorical metrics, while Figure 9b displays the
spatial distribution of the clustered stations. For
all numerical metrics, the C1 cluster shows the
best performance. The contrast found in Fig. 9
indicates that most stations clustered in C2 during
the validation procedure based on numerical met-
rics, show poor performance in the detection of
rainfall events (also clustered in C2). These results
suggest that the CHIRPS v.2 product tends to show
best overall performance in flat open regions.
This hypothesis is consistent with the one found
by Toté et al. (2015) for Mozambique, which is a
tropical country whose topographic features are
similar to those of Venezuela. In addition, previous
studies have shown that the accuracy of high-res-
olution satellite rainfall products tends to decrease
over complex terrains (Vicente et al., 2002; Dinku
et al.,2008,2011).

6. Conclusions

The satellite-based rainfall dataset derived from
the CHIRPS v.2 product was analyzed against a
rain gauge dataset provided largely by the Instituto
Nacional de Meteorologia e Hidrologia of Venezu-
ela. The CHIRPS v.2 product has a high spatial and
temporal resolution which makes it potentially useful
for drought and flood monitoring. Rain gauges in
Venezuela are sparse, poorly distributed, and often
have a high percentage of gaps in their observations.
On the other hand, satellite rainfall estimates have
random errors and bias due to the indirect relation
between observations and precipitation, along with
inadequate sampling and algorithm imperfections
(Toté et al., 2015). In this study, the analyses were
focused on numerical indicators for evaluating the
performance of the CHIRPS v.2 product to estimate
the amount of rainfall, and categorical indicators to
assess its rain-detection capabilities.

Overall, the CHIRPS v.2 product shows an over-
estimation of lower monthly rainfall values and an
underestimation of higher values (> 100 mm/month).
The coherence between rainfall estimates and station
observations is moderately high along the rainy sea-
son, but shows a marked underestimation during the
driest period, in particular from January to February.
Due to its tendency to misclassify rainfall events,
especially along the rainy season, the CHIRPS v.2
product has a low skill of rain detection. This high
uncertainty in rain detection indicates that it should
not be used for drought monitoring in Venezuela;
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Fig. 10. As in Fig. 8, but for categorical performance metrics. Clustered stations are statistically different at the 95%
confidence level (based on the Welch two sample test applied to each numerical metric). All as none-dimensional

fractions, except RMAE in mm and elevation in masl.

however, this limitation can be partially overcome
by using drought indices such as the Standardized
Precipitation Index, which is based on cumulative
rainfall instead of the presence or non-presence of
precipitation.

Estimates of rainfall were also analyzed under a
spatial context. Our results indicate that the CHIRPS
v.2 product tends to show best performance in flat
open regions (e.g., Los Llanos), where the synop-
tic-scale weather system is mainly dominated by
ITCZ activity and local convective systems.

As awhole, the CHIRPS v.2 product may show an
acceptable performance when it is used for hydrolog-
ical applications based on monthly rainfall amounts
(e.g., reservoir systems monitoring), but caution must
be taken when trying to identify the onset of rainfall
for agricultural purposes (e.g., irrigation management
in drought-prone regions).
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